0000000001000189

AUTHOR

Sebastian Westenhoff

showing 22 related works from this author

Ubiquitous Structural Signaling in Bacterial Phytochromes

2015

The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.

0303 health sciencesBacteriaPhytochromeProtein dynamicsta1182BiologyX-ray scattering010402 general chemistryBioinformaticsphytochromes01 natural sciences0104 chemical sciences/dk/atira/pure/sustainabledevelopmentgoals/clean_water_and_sanitation03 medical and health sciencesprotein dynamicsBiophysicsGeneral Materials SciencePhytochromePhysical and Theoretical ChemistrySignal transductionSDG 6 - Clean Water and SanitationHistidinesignal transduction030304 developmental biologyJournal of Physical Chemistry Letters
researchProduct

Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

2014

We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast global conformational change that arises within picoseconds and precedes the propagation of heat through the protein. This provides direct structural evidence for a 'protein quake': the hypothesis that proteins rapidly dissipate energy through quake-like structural motions. peerReviewed

Photosynthetic reaction centreMaterials scienceProtein ConformationPhysics::OpticsPhycobiliproteinsfrequency vibrational-modesRadiation DosageBiochemistryMolecular physicsArticlelaw.inventionProtein structureX-Ray Diffractionlawddc:570Scattering Small AngleMolecular Biologyta116Quantitative Biology::BiomoleculesScatteringLasersMolecular biophysicsFree-electron laserCell BiologyLaserstructural dynamicsEnergy TransferPicosecondBiophysicsUltrashort pulseBiotechnologyNature methods
researchProduct

Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling

2021

Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP a…

Histidine KinaseLightPROTEINSScienceAgrobacteriumHISTIDINE KINASESKinasesMolecular Dynamics SimulationPhotoreceptors MicrobialTRANSDUCTIONArticleCYANOBACTERIAL PHYTOCHROME CPH1ACTIVATIONBacterial ProteinsProtein DomainsCRYSTAL-STRUCTUREPHOSPHORYLATIONX-ray crystallographyBacterial structural biologyQREARRANGEMENTSphotoreceptorsAGROBACTERIUM-TUMEFACIENSPhosphoric Monoester HydrolasesINSIGHTSbacterial phytochromesEnzyme mechanismsbacteriaDeinococcus3111 BiomedicineSignal Transduction
researchProduct

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2019

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

DYNAMICSQH301-705.5ScienceEXCITED-STATEDIFFRACTION010402 general chemistryPhotosynthesisphytochromes01 natural sciencesCofactor03 medical and health scienceschemistry.chemical_compoundDeinococcus radioduransPROTON-TRANSFERREVEALSSFXCRYSTAL-STRUCTUREBiology (General)Bilin030304 developmental biologyISOMERIZATION0303 health sciencesbiologyPhytochromeD-RINGChemistryCRYSTALLOGRAPHYinitial photoresponsQRChromophore0104 chemical sciencesPhotoexcitationFemtosecondbiology.proteinBiophysics1182 Biochemistry cell and molecular biologyMedicine3111 BiomedicinevalokemiaproteiinitSignal transductionröntgenkristallografia
researchProduct

Tips and turns of bacteriophytochrome photoactivation

2020

Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module,…

Models MolecularProtein Conformation116 Chemical sciencesHISTIDINE KINASESSIGNAL-TRANSDUCTIONfotobiologiabacteriophytochrome photoactivation010402 general chemistry01 natural sciencesbakteeritPhytochrome B03 medical and health sciencesProtein structureBacterial ProteinsINDUCED PROTON RELEASEPHYTOCHROME-BCRYSTAL-STRUCTUREPhysical and Theoretical Chemistry030304 developmental biologyINDUCED CONFORMATIONAL-CHANGESPhysics0303 health sciencesRESONANCE RAMANMechanism (biology)AGROBACTERIUM-TUMEFACIENSPhotochemical ProcessesMolecular machine0104 chemical sciencesINFRARED FLUORESCENT PROTEINSCHROMOPHORE-BINDING DOMAINBiophysics1182 Biochemistry cell and molecular biologyvalokemiaproteiinitPhytochromeSignal TransductionPhotochemical & Photobiological Sciences
researchProduct

Structural photoactivation of a full-length bacterial phytochrome

2016

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.

Models Molecular0301 basic medicineProtein ConformationAstrophysics::High Energy Astrophysical Phenomena116 Chemical sciencesPhotoreceptors MicrobialphytochromesQuantitative Biology::Cell BehaviorStructure-Activity Relationship03 medical and health sciencesProtein structureBacterial ProteinsStructural BiologyDeinococcus radioduransBotanyResearch Articles219 Environmental biotechnologyMultidisciplinarybiologyPhytochromeHistidine kinaseta1182SciAdv r-articlesDeinococcus radioduransChromophorebiology.organism_classificationKineticsMicrosecond030104 developmental biologyStructural changephotoactivationBiophysicsPhytochromeFunction (biology)Research Article
researchProduct

Author response: The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2020

X-ray laserPrimary (chemistry)Materials sciencePhytochromebusiness.industryFemtosecondOptoelectronicsbusiness
researchProduct

On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome

2018

Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with …

0301 basic medicineModels MolecularCrystallography X-RayBiochemistrybakteeritProtein structurephotoconversionchromophore-binding domainTransferasestructural biologyCRYSTAL-STRUCTURETyrosineDEINOCOCCUS-RADIODURANSbiologyPhytochromeChemistryREARRANGEMENTSProtein Structure and FoldingDeinococcusmutagenesisBinding domainSignal TransductionMODULEPLANT PHYTOCHROMEPhenylalaninefotobiologia03 medical and health sciencesBacterial Proteinsprotein conformationcell signalingprotein structureBACTERIOPHYTOCHROMEMolecular BiologyX-ray crystallographysoluviestintäphytochromeAGP1BINDING DOMAINBinding Sitesta114030102 biochemistry & molecular biologyta1182Deinococcus radioduransCell BiologyChromophorebiology.organism_classificationphotoreceptor030104 developmental biologyStructural biologyFTIRBiophysicsTyrosineproteiinit3111 Biomedicineröntgenkristallografia
researchProduct

Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome.

2020

Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the Pr-to-Pfr transition is facilitated by two intermediate states, called Lumi-R and Meta-R. The molecular structures of the protein in these states are not known and the molecular mechanism of photoconversion is not understood. Here, we apply transient infrared absorption spectroscopy to study the photocycle of the wild-type and Y263F mutant of the phytochrome from Deinococcus radiodurans (DrBphP) from nanoto milliseconds. We identify two sequentially forming Lumi-R states …

Models MolecularLight Signal TransductionSpectrophotometry InfraredspektroskopiaMutantGeneral Physics and AstronomyInfrared spectroscopy010402 general chemistry01 natural sciences03 medical and health scienceschemistry.chemical_compoundProtein structureBacterial ProteinsinfrapunasäteilyPhysical and Theoretical ChemistryTyrosineSpectroscopy030304 developmental biology0303 health sciencesBiliverdinPhytochromebiologyChemistryDeinococcus radioduransbiology.organism_classification0104 chemical sciencesProtein Structure TertiaryMutationBiophysicsproteiinitvalokemiaDeinococcusPhytochromePhysical chemistry chemical physics : PCCP
researchProduct

Light-induced Changes in the Dimerization Interface of Bacteriophytochromes

2015

Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximat…

Histidine KinaseLightProtein ConformationMutantCrystallography X-RayBiochemistryProtein structureBacterial Proteinsx-ray scatteringcell signalingDeinococcusMolecular BiologybiologyPhytochromeHistidine kinaseMutagenesista1182Photoreceptor proteinDeinococcus radioduransCell Biologybiology.organism_classificationphotoreceptormolecular dynamicsProtein Structure TertiaryBiochemistryhigh performance liquid chromatography (HPLC)BiophysicsDeinococcusPhytochromeDimerizationProtein KinasesmutagenesisMolecular BiophysicsJournal of Biological Chemistry
researchProduct

Light-induced structural changes in a monomeric bacteriophytochrome

2016

International audience; Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of th…

0301 basic medicineAllosteric regulationInfrared spectroscopyBiological Systems010402 general chemistry01 natural sciencesARTICLES03 medical and health scienceschemistry.chemical_compoundSDG 17 - Partnerships for the Goalslcsh:QD901-999[CHIM]Chemical SciencesInstrumentationSpectroscopyRadiationPhytochromebiologyChemistryMolecular biophysicsta1182/dk/atira/pure/sustainabledevelopmentgoals/partnershipsDeinococcus radioduransBiochemical ActivityCondensed Matter Physicsbiology.organism_classification0104 chemical sciences030104 developmental biologyMonomerStructural changebacterial phytochromesBiophysicslcsh:CrystallographyStructural Dynamics
researchProduct

Illuminating a Phytochrome Paradigm – a Light-Activated Phosphatase in Two-Component Signaling Uncovered

2020

ABSTRACTBacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome fromDeinococcus radiodurans(DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome fromAgrobacterium fabrum(AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBp…

0303 health sciencesPhytochromebiologyChemistryKinasePhosphataseHistidine kinaseDeinococcus radioduransbiology.organism_classificationCell biology03 medical and health sciencesResponse regulator0302 clinical medicineKinase activity030217 neurology & neurosurgeryHistidine030304 developmental biology
researchProduct

Signal amplification and transduction in phytochrome photosensors

2014

[Introduction] Page 2 of 20 Sensory proteins must relay structural signals from the sensory site over large distances to regulatory output domains. Phytochromes are a major family of red-light sensing kinases that control diverse cell ular functions in plants, bacteria, and fungi. 1-9 Bacterial phytochro mes consist of a photosensory core and a C-te rminal regulatory domain. 10,11 Structures of photosensory cores are reported in the resting state 12-18 and conformational responses to light activat ion have been proposed in the vicinity of the chromophore. 19-23 However, the structure of the signalling state and the mechanism of downstream signal re lay through the photosensory core remain e…

Models MolecularLight Signal TransductionProtein ConformationCrystallography X-RayArticleProtein structureBacterial Proteinsmolecular biophysicsDeinococcusBinding siteCalcium signalingBinding SitesMultidisciplinarybiokemiabiologyPhytochrometa1182Deinococcus radioduransChromophorebiology.organism_classificationBiochemistryBiophysicsDeinococcusPhytochromeTransduction (physiology)röntgenkristallografiaNature
researchProduct

The three-dimensional structure of Drosophila melanogaster (6–4) photolyase at room temperature

2021

A crystal structure of a photolyase at room temperature confirms the structural information obtained from cryogenic crystallography and paves the way for time-resolved studies of the photolyase at an X-ray free-electron laser.

MECHANISMMaterials scienceAbsorption spectroscopyDNA repairfotobiologia02 engineering and technologyCrystal structureREPAIR ACTIVITY03 medical and health sciencesCOLI DNA PHOTOLYASEX-RAY-DIFFRACTIONCryptochromeStructural BiologyAnimalsserial crystallographyCRYSTAL-STRUCTURECRYPTOCHROMEPhotolyaseSERIAL FEMTOSECOND CRYSTALLOGRAPHY030304 developmental biology0303 health sciencesCrystallographyflavoproteinsFADResolution (electron density)TemperaturebanaanikärpänenDNAkidetiede(6-4) photolyase021001 nanoscience & nanotechnologyResearch PapersRADICAL TRANSFER(6–4) photolyaseroom-temperature structureCrystallographyphotolyasesDrosophila melanogasterRECONSTITUTIONX-ray crystallography1182 Biochemistry cell and molecular biologylämpötilaproteiinit0210 nano-technologyDeoxyribodipyrimidine Photo-LyasePHOTOACTIVATIONVisible spectrumActa Crystallographica Section D Structural Biology
researchProduct

Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching

2019

Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although crystal structures of dark and light adapted states have been determined, the molecular mechanisms underlying photoactivation remains elusive. Here we demonstrate that the conserved tongue region of the PHY domain of a 57kDa photosensory module of Deinococcus radiodurans phytochrome, changes from a structurally heterogeneous dark state to an ordered light activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phy…

Models MolecularLightTongue regionBiophysicsphototransduction03 medical and health sciences0302 clinical medicineProtein DomainsPHYmolekyylidynamiikkaprotein structureNMR-spektroskopiaNuclear Magnetic Resonance Biomolecular030304 developmental biologyphytochrome0303 health sciencesPhytochromebiologyChemistryProtein NMR SpectroscopyDeinococcus radioduransArticlesDarknessbiology.organism_classificationmolecular dynamicsNMRStructural heterogeneityDark stateModulationBiophysicsvalokemiaproteiinitDeinococcusPhytochrome030217 neurology & neurosurgeryBiophysical Journal
researchProduct

Structural mechanism of signal transduction in a phytochrome histidine kinase

2022

AbstractPhytochrome proteins detect red/far-red light to guide the growth, motion, development and reproduction in plants, fungi, and bacteria. Bacterial phytochromes commonly function as an entrance signal in two-component sensory systems. Despite the availability of three-dimensional structures of phytochromes and other two-component proteins, the conformational changes, which lead to activation of the protein, are not understood. We reveal cryo electron microscopy structures of the complete phytochrome from Deinoccocus radiodurans in its resting and photoactivated states at 3.6 Å and 3.5 Å resolution, respectively. Upon photoactivation, the photosensory core module hardly changes its ter…

Models MolecularkinaasitMultidisciplinaryphotochemistryHistidine KinaseLightBacteriaelectron microscopyBiochemistry and Molecular BiologyGeneral Physics and AstronomyelektronimikroskopiaGeneral ChemistryGeneral Biochemistry Genetics and Molecular BiologykinasesBacterial Proteinsplant signalling3111 BiomedicinePhytochromevalokemiaBiokemi och molekylärbiologiSignal Transduction
researchProduct

Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy

2018

Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach …

0301 basic medicineInfrared spectroscopyMolecular Dynamics SimulationBiochemistryCatalysis03 medical and health scienceschemistry.chemical_compoundchromophore-protein interplayColloid and Surface ChemistryBacterial ProteinsSpectroscopy Fourier Transform InfraredPeptide bondta116BiliverdinbiologyPhytochromeHydrogen bondBiliverdineta1182WaterHydrogen BondingDeinococcus radioduransGeneral ChemistryChromophorePhotochemical Processesbiology.organism_classification030104 developmental biologychemistryBiophysicsProtein Conformation beta-StrandDeinococcusPhytochromevalokemiaproteiinitSignal transductionstep-scan FTIR spectroscopyAdenylyl CyclasesJournal of the American Chemical Society
researchProduct

Structural basis for light control of cell development revealed by crystal structures of a myxobacterial phytochrome

2018

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals. This article presents cryo- and room-temperature crystal structures of the unusual phytochrome from the non-photosynthetic myxobacterium Stigmatella aurantiaca (SaBphP1) and reveals its role in the fruiting-body formation of this ph…

MODULE0301 basic medicinePHOTOACTIVE YELLOW PROTEINSIGNALING MECHANISMabsorption spectraMutantfotobiologiaphytochromesBiochemistryyhteyttäminenbakteeritSTIGMATELLA-AURANTIACA03 medical and health sciencesFRUITING BODY FORMATIONGeneral Materials ScienceMolecular replacementStigmatella aurantiacalcsh:ScienceUNUSUAL BACTERIOPHYTOCHROMEPHOTOCONVERSIONHistidine030102 biochemistry & molecular biologybiologyPhytochromeChemistryCRYSTALLOGRAPHYta1182photosynthetic bacteriaphotoreceptorsGeneral ChemistryChromophoreCondensed Matter Physicsbiology.organism_classification030104 developmental biologyCHROMOPHORE-BINDING DOMAINBiophysicsmyxobacterialcsh:Q3111 BiomedicinePhotosynthetic bacteriaproteiinitMOLECULAR REPLACEMENTBinding domainIUCrJ
researchProduct

Ultrafast structural changes within a photosynthetic reaction centre

2021

Nature <London> / Physical science 589, 310 - 314 (2021). doi:10.1038/s41586-020-3000-7

0301 basic medicinePhotosynthetic reaction centreChlorophyllModels MolecularklorofylliCytoplasmUbiquinonePhotosynthetic Reaction Center Complex ProteinsElectrons02 engineering and technologyPhotochemistrymedicine.disease_cause530yhteyttäminenbakteeritElectron Transport03 medical and health sciencesElectron transfermedicineMoleculeddc:530BacteriochlorophyllsbioenergetiikkaComputingMilieux_MISCELLANEOUSHyphomicrobiaceaeMultidisciplinaryBinding SitesCrystallography[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]ChemistryBlastochloris viridisLaserskalvot (biologia)PheophytinsBiological membraneVitamin K 2021001 nanoscience & nanotechnologyAcceptor030104 developmental biologyPicosecondFemtosecondsense organsProtons0210 nano-technologyOxidation-Reductionröntgenkristallografia
researchProduct

Coordination of the biliverdin D-ring in bacteriophytochromes.

2018

Phytochrome proteins translate light into biochemical signals in plants, fungi and microorganisms. Light cues are absorbed by a bilin chromophore, leading to an isomerization and a rotation of the D-ring. This relays the signal to the protein matrix. A set of amino acids, which is conserved across the phytochrome superfamily, holds the chromophore in the binding pocket. However, the functional role of many of these amino acids is not yet understood. Here, we investigate the hydrogen bonding network which surrounds the D-ring of the chromophore in the resting (Pr) state. We use UV/vis spectroscopy, infrared absorption spectroscopy and X-ray crystallography to compare the photosensory domains…

0301 basic medicineModels MolecularStereochemistryProtein ConformationProtein Data Bank (RCSB PDB)General Physics and Astronomyphytochrome proteinsbakteerit03 medical and health scienceschemistry.chemical_compoundProtein structureBacterial ProteinsProteobacteriabiochemical signalsDeinococcusPhysical and Theoretical ChemistryStigmatella aurantiacaBiliverdinBinding SitesbiologyPhytochromeBiliverdineta1182Deinococcus radioduransHydrogen BondingChromophorebiology.organism_classificationPhotochemical ProcessesD-ring030104 developmental biologychemistryproteiinitvalokemiaDeinococcusPhytochromeProtein BindingPhysical chemistry chemical physics : PCCP
researchProduct

Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions

2019

Time-resolved x-ray scattering reveals light-induced signal transduction in insect cryptochromes.

LightProtein ConformationSpectrum AnalysisbanaanikärpänenSciAdv r-articlesfotobiologiaHydrogen BondingHydrogen-Ion ConcentrationMolecular Dynamics SimulationBiochemistryModels BiologicalCryptochromesStructure-Activity RelationshipDrosophila melanogasterCatalytic DomainAnimalsproteiinitResearch ArticlesvuorokausirytmiResearch ArticleSignal TransductionScience Advances
researchProduct

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

2017

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a t…

Models MolecularkinaasitentsyymitHistidine KinaseLightProtein ConformationScienceQCrystallography X-RayArticleProtein Structure SecondaryaktivointiBacterial ProteinsProtein DomainsX-Ray DiffractionphotoactivationScattering Small AngleNanotechnologysensor histidine kinasesNature Communications
researchProduct