0000000001044825
AUTHOR
Marek Turowski
Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence
International audience; Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved.
Incident angle effect on heavy ion induced reverse leakage current in SiC Schottky diodes
Heavy-ion induced degradation in the reverse leakage current of SiC Schottky power diodes shows distinct dependence on the angle of incidence. TCAD simulations have been used to study the physical mechanisms involved.
Molecular dynamics simulations of heavy ion induced defects in SiC Schottky diodes
Heavy ion irradiation increases the leakage current in reverse-biased SiC Schottky diodes. This letter demonstrates, via molecular dynamics simulations, that a combination of bias and ion-deposited energy is required to produce the degradation. Peer reviewed
Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence
Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved. peerReviewed
Molecular dynamics simulations of heavy ion induced defects in SiC Schottky diodes
Heavy ion irradiation increases the leakage current in reverse-biased SiC Schottky diodes. This work demonstrates, via molecular dynamics simulations, that a combination of bias and ion-deposited energy is required to produce the degradation peerReviewed