0000000001112588

AUTHOR

Pablo P. Boix

Working Principles of Perovskite Solar Cells

research product

Influence of hole transport material ionization energy on the performance of perovskite solar cells

Halide perovskites have shown excellent photophysical properties for solar cell applications which led to a rapid increase of the device efficiency. Understanding the charge carrier dynamics within the active perovskite absorber and at its interfaces will be key to further progress in their development. Here we present a series of fully evaporated devices employing hole transport materials with different ionization energies. The open circuit voltage of the devices, along with their ideality factors, confirm that the former is mainly determined by the bulk and surface recombination in the perovskite, rather than by the energetic offset between the valence band of the perovskite and the highe…

research product

Interfacial Modification for High-Efficiency Vapor-Phase-Deposited Perovskite Solar Cells Based on a Metal Oxide Buffer Layer.

Vacuum deposition is one of the most technologically relevant techniques for the fabrication of perovskite solar cells. The most efficient vacuum-based devices rely on doped organic contacts, compromising the long-term stability of the system. Here, we introduce an inorganic electron-transporting material to obtain power conversion efficiencies matching the best performing vacuum-deposited devices, with open-circuit potential close to the thermodynamic limit. We analyze the leakage current reduction and the interfacial recombination improvement upon use of a thin (<10 nm) interlayer of C60, as well as a more favorable band alignment after a bias/ultraviolet light activation process. This wo…

research product

Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization.

Hole transport layers HTLs are of fundamental importance in perovskite solar cells PSCs , as they must ensure an efficient and selective hole extraction, and ohmic charge transfer to the corresponding electrodes. In p i n solar cells, the ITO HTL is usually not ohmic, and an additional interlayer such as MoO3 is usually placed in between the two materials by vacuum sublimation. In this work, we evaluated the properties of the MoO3 TaTm TaTm is the HTL N4,N4,N4 amp; 8243;,N4 amp; 8243; tetra [1,1 amp; 8242; biphenyl] 4 yl [1,1 amp; 8242; 4 amp; 8242;,1 amp; 8243; terphenyl] 4,4 amp; 8243; diamine hole extraction interface by selectively annealing either MoO3 prior to the deposition of TaTm o…

research product

Charge injection and trapping at perovskite interfaces with organic hole transporting materials of different ionization energies

The extraction of photogenerated holes from CH3NH3PbI3 is crucial in perovskite solar cells. Understanding the main parameters that influence this process is essential to design materials and devices with improved efficiency. A series of vacuum deposited hole transporting materials (HTMs) of different ionization energies, used in efficient photovoltaic devices, are studied here by means of femtosecond transient absorption spectroscopy. We find that ultrafast charge injection from the perovskite into the different HTMs (<100 fs) competes with carrier thermalization and occurs independently of their ionization energy. Our results prove that injection takes place from hot states in the valence…

research product

Enhanced operational stability through interfacial modification by active encapsulation of perovskite solar cells

Encapsulates are, in general, the passive components of any photovoltaic device that provides the required shielding from the externally stimulated degradation. Here we provide comprehensive physical insight depicting a rather non-trivial active nature, in contrast to the supposedly passive, atomic layer deposition (ALD) grown Al2O3 encapsulate layer on the hybrid perovskite [(FA0.83MA0.17)0.95Cs0.05PbI2.5Br0.5] photovoltaic device having the configuration: glass/FTO/SnO2/perovskite/spiro-OMeTAD/Au/(±) Al2O3. By combining various electrical characterization techniques, our experimental observations indicate that the ALD chemistry produces considerable enhancement of the electronic conductiv…

research product

Temperature dependence of Photoluminescence and Amplified Spontaneous Emission in thin films of quasi-2D BA3MA3Pb5Br16 perovskites

research product

Amplified Spontaneous Emission Properties of Solution Processed CsPbBr3 Perovskite Thin Films

Metal halide perovskites are currently emerging as highly promising optoelectronic materials. It has been recently demonstrated that fully inorganic solution processed CsPbBr3 perovskite thin films show good electroluminescence properties combined with high thermal stability. In this work, we investigate in details the amplified spontaneous emission (ASE) properties of CsPbBr3 perovskite thin films, as a function of the temperature and the trap density, modified by changing the CsBr-PbBr2 precursor concentration. ASE is observed in samples from both CsBr-rich solution (low trap density) and equimolar solution (higher trap density), up to about 150 K, with a minimum threshold of 26 and 29 mu…

research product

Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectroscopy

We report new insights into recombination kinetics in poly(3-hexylthiophene):methanofullerene (P3HT:PCBM) bulk heterojunction (BHJ) solar cells, based on simultaneous determination of the density of states (DOS), internal recombination resistance, and carrier lifetime, at different steady states, by impedance spectroscopy. A set of measurements at open circuit under illumination was performed aiming to better understand the limitations to the photovoltage, which in this class of solar cells remains far below the theoretical limit which is the difference between the LUMO level of PCBM and the HOMO of P3HT (∼1.1 eV). Recombination kinetics follows a bimolecular law, being the recombination ti…

research product

Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?

Summary High-quality semiconducting perovskites can be easily synthesized through several methods. The ease of fabrication has favored the adoption of lab-scale solution-processing techniques, which have yielded the highest performing devices. Most of these processes, however, are not directly applicable to larger scale and volume preparations, hindering the consolidation and market entry of this technology. Vapor-based methods, a mature technology widely adopted in the coating and semiconductor industry, could change this trend. Their application to perovskite solar cells includes a large amount of fabrication approaches, offering versatility in the employed materials as well as in the cha…

research product

Use of Hydrogen Molybdenum Bronze in Vacuum‐Deposited Perovskite Solar Cells

Herein, the dehydration of a hydrogen molybdenum bronze (HYMoO3), converting it to molybdenum oxide (MoOX), is explored toward the development of perovskite solar cells (PSCs) for the first time. H0.11MoO3 bronze is synthesized, characterized, and deposited on indium tin oxide (ITO) under different concentrations and annealing conditions for in situ conversion into MoOX with appropriate oxygen vacancies. Vacuum‐deposited PSCs are fabricated using the as‐produced MoOX hole injection layers, achieving a power conversion efficiency of 17.3% (average) for the optimal device. The latter has its stability and reproducibility tested, proving the robustness and affordability of the developed hole t…

research product

Short photoluminescence lifetimes in vacuum-deposited ch3nh3pbI3 perovskite thin films as a result of fast diffusion of photogenerated charge carriers

It is widely accepted that a long photoluminescence (PL) lifetime in metal halide perovskite films is a crucial and favorable factor, as it ensures a large charge diffusion length leading to a high power conversion efficiency (PCE) in solar cells. It has been recently found that vacuumevaporated CH3NH3PbI3 (eMAPI) films show very short PL lifetimes of several nanoseconds. The corresponding solar cells, however, have high photovoltage (>1.1 V) and PCEs (up to 20%). We rationalize this apparent contradiction and show that eMAPI films are characterized by a very high diffusion coefficient D, estimated from modeling the PL kinetics to exceed 1 cm2/s. Such high D values are favorable for long di…

research product

Room-Temperature Cubic Phase Crystallization and High Stability of Vacuum-Deposited Methylammonium Lead Triiodide Thin Films for High-Efficiency Solar Cells

Methylammonium lead triiodide (MAPI) has emerged as a high-performance photovoltaic material. Common understanding is that at room temperature it adopts a tetragonal phase and it only converts to the perfect cubic phase around 50-60 ºC. Most MAPI films are prepared using a solution-based coating process, yet they can also be obtained by vapor phase deposition methods. Vapor phase processed MAPI films have significantly different characteristics compared to their solvent processed analogous, such as a relatively small crystal grain sizes and short excited state lifetimes. Yet solar cells based on vapor phase processed MAPI films exhibit high power conversion efficiencies. Surprisingly, after…

research product

Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells

Hybrid lead halide perovskites are promising materials for future photovoltaics applications. Their spectral response can be readily tuned by controlling the halide composition, while their stability is strongly dependent on the film morphology and on the type of organic cation used. Mixed cation and mixed halide systems have led to the most efficient and stable perovskite solar cells reported, so far they are prepared exclusively by solution-processing. This might be due to the technical difficulties associated with the vacuum deposition from multiple thermal sources, requiring a high level of control over the deposition rate of each precursor during the film formation. In this report, the…

research product

Working mechanisms of vacuum-deposited perovskite solar cells

research product

Molecular Passivation of MoO3: Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells

Vacuum-deposition of perovskite solar cells can achieve efficiencies rivalling solution-based methods and it allows for more complex device stacks. MoO3 has been used to enhance carrier extraction to the transparent bottom electrode in a p-i-n configuration, here we show that by inserting an organic charge transport molecule it can also be used on the top of a perovskite absorber in a n-i-p configuration. This strategy enables the first vacuum-deposited perovskite solar cells with metal oxides as charge transporting layers for both electrons and holes leading to power conversion efficiency > 19 %.

research product

Effects of Frequency Dependence of the External Quantum Efficiency of Perovskite Solar Cells

Perovskite solar cells are known to show very long response time scales, on the order of milliseconds to seconds. This generates considerable doubt over the validity of the measured external quantum efficiency (EQE) and consequently the estimation of the short-circuit current density. We observe a variation as high as 10% in the values of the EQE of perovskite solar cells for different optical chopper frequencies between 10 and 500 Hz, indicating a need to establish well-defined protocols of EQE measurement. We also corroborate these values and obtain new insights regarding the working mechanisms of perovskite solar cells from intensity-modulated photocurrent spectroscopy measurements, iden…

research product

Vacuum-Deposited Multication Tin-Lead Perovskite Solar Cells

The use of a combination of tin and lead is the most promising approach to fabricate narrow bandgap metal halide perovskites. This work presents the development of reproducible tin and lead perovskites by vacuum co-deposition of the precursors, a solvent-free technique which can be easily implemented to form complex stacks. Crystallographic and optical characterization reveal the optimal film composition based on cesium and methylammonium monovalent cations. Device optimization makes use of the intrinsically additive nature of vacuum deposition, resulting in solar cells with 8.89% photovoltaic efficiency. The study of the devices by impedance spectroscopy identifies bulk recombination as on…

research product

Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells

Abstract For successful commercialization of perovskite solar cells, straightforward solutions in terms of environmental impact and economic feasibility are still required. Flash Infrared Annealing (FIRA) is a rapid method to fabricate perovskite solar cells with efficiencies >18% on simple, planar architecture, which allows a film synthesis in only 1.2 s, faster than the previous report based in a meso architecture and all of them without the usage of antisolvent. In this work, through a comparative study with the common lab-scale method, the so-called antisolvent (AS), the main photovoltaic parameters and working mechanisms obtained from impedance spectroscopy (IS) measurements show simil…

research product

Influence of the intermediate density-of-states occupancy on open-circuit voltage of bulk heterojunction solar cells with different fullerene acceptors

Electron density of states (DOS) and recombination kinetics of bulk heterojunction solar cells consisting of a poly(3-hexylthiophene) (P3HT) donor and two fullerene acceptors, either [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or 4,4′-dihexyloxydiphenylmethano[60]fullerene (DPM6), have been determined by means of impedance spectroscopy. The observed difference of 125 mV in the output open-circuit voltage is attributed to significant differences of the occupancy of the DOS in both fullerenes. Whereas DPM6 exhibits a full occupation of the electronic band, occupancy is restricted to the tail of the DOS in the case of PCBM-based devices, implying a higher rise of the Fermi level in the D…

research product

Interfacial engineering for single and multijunction vacuum-deposited perovskite solar cells

research product

Perovskite nanoparticles : synthesis, properties, and novel applications in photovoltaics and LEDs

Solar cells and light-emitting diodes (LEDs) based on metal-halide perovskites are transitioning from promising performers to direct competitors to well-established technologies, with cost-effectiveness as a strong advantage. Nanostructured perovskites have yielded record LEDs due to their higher versatility in the local management of charge carriers, which has enabled photoluminescence quantum yields (PLQYs) close to 100%. However, these perovskite nanostructures are yet to be fully exploited in other applications such as photovoltaics, where they can also present competitive advantages as they enable feasible routes to surpass the Shockley–Queisser limit by means of multiexciton generatio…

research product

Impedance analysis of perovskite solar cells: a case study

Metal halide perovskites are mixed electronic-ionic semiconductors with an extraordinary rich optoelectronic behavior and the capability to function very efficiently as active layers in solar cells, with a record efficiency surpassing 23% nowadays. In this work, we carry out an impedance spectroscopy analysis of two perovskite solar cells with quite distinct optical and electrical characteristics, i.e. MAPbI3 and CsPbBr3-based devices. The main aim of the analysis is to establish how, regardless the inherent complexity of the impedance spectrum due to ionic effects, information like ideality factors, recombination losses and the collection efficiency can be qualitative and quantitatively as…

research product

Radiative and non-radiative losses by voltage-dependent in-situ photoluminescence in perovskite solar cell current-voltage curves

Abstract The rapid development of perovskite solar cells has been based on improvements in materials and device architectures, yet further progress towards their theoretical limit will require a detailed study of the main physical processes determining the photovoltaic performance. Luminescence can be a key parameter for this purpose, as it directly assesses radiative recombination. We present steady-state absolute photoluminescence of an operating device at varying voltages as a tool to study the loss mechanisms in perovskite devices. The calibration to absolute photon numbers gives access to the variation of the relative radiative/non-radiative recombination weighted along the measured po…

research product

ZnS Ultrathin interfacial layers for optimizing carrier management in Sb2S3-based photovoltaics

Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over th…

research product

Fully Evaporated High Efficiency Single Junction and Tandem Perovskite based Solar Cells.

research product

Amplified spontaneous emission in thin films of quasi-2D BA3MA3Pb5Br16 lead halide perovskites

Quasi-2D (two-dimensional) hybrid perovskites are emerging as a new class of materials with high photoluminescence yield and improved stability compared to their three-dimensional (3D) counterparts. Nevertheless, despite their outstanding emission properties, few studies have been reported on amplified spontaneous emission (ASE) and a thorough understanding of the photophysics of these layered materials is still lacking. In this work, we investigate the ASE properties of multilayered quasi-2D BA3MA3Pb5Br16 films through the dependence of the photoluminescence on temperature and provide a novel insight into the emission processes of quasi-2D lead bromide perovskites. We demonstrate that the …

research product

Pragmatic analysis of perovskite solar cells through a rationalized impedance spectroscopy equivalent circuit.

research product

Hybrid Vapor-Solution Sequentially Deposited Mixed-Halide Perovskite Solar Cells

The recent sky-rocketing performance of perovskite solar cells has triggered a strong interest in further upgrading the fabrication techniques to meet the scalability requirements of the photovoltaic industry. The integration of vapor-deposition into the solution process in a sequential fashion can boost the uniformity and reproducibility of the perovskite solar cells. Besides, mixed-halide perovskites have exhibited outstanding crystallinity as well as higher stability compared with iodide-only perovskite. An extensive study was carried out to identify a reproducible process leading to highly crystalline perovskite films that when integrated into solar cells exhibited high power conversion…

research product

From Dye Sensitized to Perovskite Solar Cells, The Missing Link

Fundamental working mechanisms of perovskite solar cells remain an elusive topic of research. Impedance Spectroscopy (IS) application to perovskite-based devices generates uncommon features and misleading outputs, mainly due to the lack of a stablished model for the interpretation of the results. In this work we control the perovskite precursor concentration to fabricate a series of perovskite-based solar cells with different amounts of perovskite absorber. Low concentration devices present the well-known dye sensitized solar cell (DSSCs) impedance pattern. As the amount of perovskite is increased, the characteristic impedance spectra of thin-film perovskite solar cells (PSCs) arises. This …

research product

High voltage vacuum-deposited CH3NH3PbI3-CH3NH3PbI3 tandem solar cells

The recent success of perovskite solar cells is based on two solid pillars: the rapid progress of their power conversion efficiency and their flexibility in terms of optoelectrical properties and processing methods. That versatility makes these devices ideal candidates for multi-junction photovoltaics. We report an optically optimized double junction CH3NH3PbI3–CH3NH3PbI3 tandem solar cell where the matched short-circuit current is maximized while parasitic absorption is minimized. The use of an additive vacuum-deposition protocol allows us to reproduce calculated stack designs, which comprise several charge selective materials that ensure appropriate band alignment and charge recombination…

research product

Perovskite-Perovskite Homojunctions via Compositional Doping.

One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite–perovskite homojunctions have not been reported. Here we present a perovskite–perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI2, obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is…

research product

Influence of doped charge transport layers on efficient perovskite solar cells

Planar vacuum deposited p–i–n methyl ammonium lead tri-iodide perovskite solar cells are prepared with different electron and hole transporting layers, either doped or undoped. The effect of these layers on the solar cells performance (efficiency and stability) is studied. The main benefit of using doped layers lies in the formation of barrier free charge extraction contacts to the electrodes. However, this comes at the cost of increased residual absorption (reducing the current density and efficiency of the cells) and a decreased stability. A generic solar cell structure using undoped charge extraction layers is presented, containing a thin layer of a strong electron acceptor in between th…

research product

FAPb0.5Sn0.5I3: A Narrow Bandgap Perovskite Synthesized through Evaporation Methods for Solar Cell Applications

The tunability of the optoelectrical properties upon compositional modification is a key characteristic of metal halide perovskites. In particular, bandgaps narrower than those in conventional lead‐based perovskites are essential to achieve the theoretical efficiency limit of single‐absorber solar cells, as well as develop multijunction tandem devices. Herein, the solvent‐free vacuum deposition of a narrow bandgap perovskite based on tin-lead metal and formamidinium cation is reported. Pinhole‐free films with 1.28 eV bandgap are obtained by thermal codeposition of precursors. The optoelectrical quality of these films is demonstrated by their use in solar cells with a power conversion effici…

research product

Ligand-Length Modification in CsPbBr3 Perovskite Nanocrystals and Bilayers with PbS Quantum Dots for Improved Photodetection Performance

Nanocrystals surface chemistry engineering offers a direct approach to tune charge carrier dynamics in nanocrystals-based photodetectors. For this purpose, we have investigated the effects of altering the surface chemistry of thin films of CsPbBr3 perovskite nanocrystals produced by the doctor blading technique, via solid state ligand-exchange using 3-mercaptopropionic acid (MPA). The electrical and electro-optical properties of photovoltaic and photoconductor devices were improved after the MPA ligand exchange, mainly because of a mobility increase up to 5 &times

research product

Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles

Methylammonium lead bromide nanoparticles are synthetized with a new ligand (11-aminoundecanoic acid hydrobromide) by a non-template method. Upon dispersion in toluene they show a remarkable photoluminescence quantum yield of 80%. In addition, the bifunctional ligand allows anchoring of the nanoparticles on a variety of conducting and semiconducting surfaces, showing bright photoluminescence with a quantum yield exceeding 50%. This opens a path for the simple and inexpensive preparation of multilayer light-emitting devices. NRF (Natl Research Foundation, S’pore) ASTAR (Agency for Sci., Tech. and Research, S’pore) Accepted version

research product