0000000001207399

AUTHOR

Arne Wickenbrock

showing 53 related works from this author

Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study

2021

Physical review / B 103(3), 035307 (2021). doi:10.1103/PhysRevB.103.035307

PhysicsPhotoluminescenceSpinsBand gapCenter (category theory)Diamond02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics53001 natural sciences3. Good health0103 physical sciencesengineeringddc:530Atomic physics010306 general physics0210 nano-technologyNitrogen-vacancy centerGround stateSpin (physics)Den kondenserade materiens fysik
researchProduct

Search for axionlike dark matter with a liquid-state nuclear spin comagnetometer

2019

Physical review letters 122(19), 191302 (2019). doi:10.1103/PhysRevLett.122.191302

PhysicsParticle physicsField (physics)SpinsDark matterGeneral Physics and AstronomyOrder (ring theory)FOS: Physical sciencesCoupling (probability)01 natural sciences530High Energy Physics - ExperimentHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530010306 general physicsNucleonSpin (physics)Axion
researchProduct

Infrared laser threshold magnetometry with a NV doped diamond intracavity etalon

2019

International audience; We propose a hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be less than 1 pT/ √ Hz. Unlike usual NV center infrared magnetometry, this method would not require an external f…

Materials scienceAbsorption spectroscopyMagnetometerInfraredPhysics::Optics02 engineering and technologyengineering.material01 natural scienceslaw.invention010309 opticsOptics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesPhysics::Atomic PhysicsAbsorption (electromagnetic radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFar-infrared laserDiamond021001 nanoscience & nanotechnologyLaserAtomic and Molecular Physics and Optics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetismengineering[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic0210 nano-technologybusinessFabry–Pérot interferometer
researchProduct

Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment

2018

The Cosmic Axion Spin Precession Experiment (CASPEr) seeks to measure oscillating torques on nuclear spins caused by axion or axion-like-particle (ALP) dark matter via nuclear magnetic resonance (NMR) techniques. A sample spin-polarized along a leading magnetic field experiences a resonance when the Larmor frequency matches the axion/ALP Compton frequency, generating precessing transverse nuclear magnetization. Here we demonstrate a Spin-Exchange Relaxation-Free (SERF) magnetometer with sensitivity $\approx 1~{\rm fT/\sqrt{Hz}}$ and an effective sensing volume of 0.1 $\rm{cm^3}$ that may be useful for NMR detection in CASPEr. A potential drawback of SERF-magnetometer-based NMR detection is …

Physics - Instrumentation and DetectorsMagnetometerAtomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciences7. Clean energylaw.inventionPhysics - Atomic Physics010309 opticsMagnetizationPhysics - Space Physicslaw0103 physical sciences010306 general physicsAxionLarmor precessionPhysicsSpinsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Magnetic fluxSpace Physics (physics.space-ph)Magnetic fieldSpace and Planetary SciencePrecessionAtomic physicsPhysics of the Dark Universe
researchProduct

Overview of the Cosmic Axion Spin Precession Experiment (CASPEr)

2020

An overview of our experimental program to search for axion and axion-like-particle (ALP) dark matter using nuclear magnetic resonance (NMR) techniques is presented. An oscillating axion field can exert a time-varying torque on nuclear spins either directly or via generation of an oscillating nuclear electric dipole moment (EDM). Magnetic resonance techniques can be used to detect such an effect. The first-generation experiments explore many decades of ALP parameter space beyond the current astrophysical and laboratory bounds. It is anticipated that future versions of the experiments will be sensitive to the axions associated with quantum chromodynamics (QCD) having masses \({\lesssim }10^{…

Quantum chromodynamicsPhysicsParticle physicsElectric dipole momentSpinsField (physics)High Energy Physics::PhenomenologyDark matterPrecessionSpin (physics)Axion
researchProduct

Quantum sensor networks as exotic field telescopes for multi-messenger astronomy

2020

Multi-messenger astronomy, the coordinated observation of different classes of signals originating from the same astrophysical event, provides a wealth of information about astrophysical processes with far-reaching implications. So far, the focus of multi-messenger astronomy has been the search for conventional signals from known fundamental forces and standard model particles, like gravitational waves (GW). In addition to these known effects, quantum sensor networks could be used to search for astrophysical signals predicted by beyond-standard-model (BSM) theories. Exotic bosonic fields are ubiquitous features of BSM theories and appear while seeking to understand the nature of dark matter…

PhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)010504 meteorology & atmospheric sciencesField (physics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesQuantum metrology010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesAstroparticle physicsPhysicsQuantum PhysicsGravitational waveQuantum sensorAstronomyAstronomy and AstrophysicsFundamental interactionQuantum Physics (quant-ph)Astrophysics - Instrumentation and Methods for AstrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Analysis method for detecting topological defect dark matter with a global magnetometer network

2019

Abstract The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be d…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)Spins010308 nuclear & particles physicsMagnetometerDark matterFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesTopological defectlaw.inventionDomain wall (string theory)Space and Planetary Sciencelaw0103 physical sciencesAstrophysics - Instrumentation and Methods for Astrophysics010303 astronomy & astrophysicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)GnomeAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

High homogeneity permanent magnet for diamond magnetometry

2020

Abstract Halbach magnets are a source of homogeneous magnetic field in an enclosed volume while keeping stray fields at a minimum. Here, we present the design, construction, and characterization for a stack of two Halbach rings with 10 cm inner diameter providing a homogeneous ( 100 ppm over 1.0 × 1.0 × 0.5 cm 3 ) magnetic field of around 105 mT, which will be used for a diamond based microwave-free widefield imaging setup. The final characterization is performed with a novel fiberized diamond-based sensor on a 3D translation stage documenting the high homogeneity of the constructed Halbach array and its suitability for the proposed use.

Nuclear and High Energy PhysicsMaterials sciencePhysics - Instrumentation and DetectorsMagnetometerBiophysicsFOS: Physical sciencesApplied Physics (physics.app-ph)engineering.material010402 general chemistry01 natural sciencesBiochemistryHomogeneous magnetic field030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences0302 clinical medicineOpticslawHomogeneity (physics)Quantum Physicsbusiness.industryDiamondPhysics - Applied PhysicsInstrumentation and Detectors (physics.ins-det)Condensed Matter Physics0104 chemical sciencesMagnetic fieldDipoleHalbach arrayMagnetengineeringbusinessQuantum Physics (quant-ph)
researchProduct

Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)

2018

The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network's operation (e.g., data acquisition, format, storage, and diagnostics) are described. Charac…

PhysicsQuantum PhysicsPhysics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)010308 nuclear & particles physicsMagnetometerBandwidth (signal processing)FOS: Physical sciencesAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)01 natural sciencesPhysics - Atomic Physicslaw.inventionStarsData acquisitionSpace and Planetary Sciencelaw0103 physical sciencesGlobal networkQuantum Physics (quant-ph)010306 general physicsAxionTransient signalGnomeRemote sensingPhysics of the Dark Universe
researchProduct

Determination of local defect density in diamond by double electron-electron resonance

2021

Magnetic impurities in diamond influence the relaxation properties and thus limit the sensitivity of magnetic, electric, strain, and temperature sensors based on nitrogen-vacancy color centers. Diamond samples may exhibit significant spatial variations in the impurity concentrations hindering the quantitative analysis of relaxation pathways. Here, we present a local measurement technique which can be used to determine the concentration of various species of defects by utilizing double electron-electron resonance. This method will help to improve the understanding of the physics underlying spin relaxation and guide the development of diamond samples, as well as offering protocols for optimiz…

Quantum PhysicsMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsRelaxation (NMR)FOS: Physical sciencesResonanceDiamond02 engineering and technologyElectronengineering.material021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsElectron resonanceImpurityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesengineeringddc:530Quantum Physics (quant-ph)010306 general physics0210 nano-technologySpin relaxationPhysical Review B
researchProduct

A machine learning algorithm for direct detection of axion-like particle domain walls

2021

The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) conducts an experimental search for certain forms of dark matter based on their spatiotemporal signatures imprinted on a global array of synchronized atomic magnetometers. The experiment described here looks for a gradient coupling of axion-like particles (ALPs) with proton spins as a signature of locally dense dark matter objects such as domain walls. In this work, stochastic optimization with machine learning is proposed for use in a search for ALP domain walls based on GNOME data. The validity and reliability of this method were verified using binary classification. The projected sensitivity of this new analy…

Space and Planetary SciencePhysics - Data Analysis Statistics and ProbabilityFOS: Physical sciencesddc:530Astronomy and AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Data Analysis Statistics and Probability (physics.data-an)Physics::Geophysics
researchProduct

Wu et al. Reply:

2019

PhysicsMEDLINECalculusGeneral Physics and AstronomyMathematical physicsPhysical Review Letters
researchProduct

The cosmic axion spin precession experiment (CASPEr): a dark-matter search with nuclear magnetic resonance

2017

The Cosmic Axion Spin Precession Experiment (CASPEr) is a nuclear magnetic resonance experiment (NMR) seeking to detect axion and axion-like particles which could make up the dark matter present in the universe. We review the predicted couplings of axions and axion-like particles with baryonic matter that enable their detection via NMR. We then describe two measurement schemes being implemented in CASPEr. The first method, presented in the original CASPEr proposal, consists of a resonant search via continuous-wave NMR spectroscopy. This method offers the highest sensitivity for frequencies ranging from a few Hz to hundreds of MHz, corresponding to masses $ m_{\rm a} \sim 10^{-14}$--$10^{-6}…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsMagnetometerMaterials Science (miscellaneous)Dark matterFOS: Physical sciencesApplied Physics (physics.app-ph)7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)Nuclear magnetic resonancelaw0103 physical sciencesElectrical and Electronic Engineering010306 general physicsAxionPhysicsQuantum PhysicsCOSMIC cancer database010308 nuclear & particles physicsBandwidth (signal processing)RangingInstrumentation and Detectors (physics.ins-det)Physics - Applied PhysicsNuclear magnetic resonance spectroscopyAtomic and Molecular Physics and OpticsBaryonHigh Energy Physics - PhenomenologyPhysics - Data Analysis Statistics and ProbabilityQuantum Physics (quant-ph)Data Analysis Statistics and Probability (physics.data-an)Quantum Science and Technology
researchProduct

Suppression of nonlinear Zeeman effect and heading error in earth-field-range alkali-vapor magnetometers

2018

The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in-phase with the precessing magnetization. In an earth-range field, a multi-component asymmetric magnetic-resonance line with ? 60 Hz width collapses into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of th…

MagnetometerAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences02 engineering and technology01 natural scienceslaw.inventionPhysics - Atomic Physicssymbols.namesakeMagnetizationOpticslaw0103 physical sciences010306 general physicsPhysicsZeeman effectbusiness.industryLimiting021001 nanoscience & nanotechnologyAlkali metalComputational physicsNonlinear systemAmplitudesymbols0210 nano-technologybusiness
researchProduct

Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing

2019

Energy levels of nitrogen-vacancy centers in diamond were investigated using optically detected magnetic-resonance spectroscopy near the electronic ground-state level anticrossing (GSLAC) at an axial magnetic field around 102.4~mT in diamond samples with a nitrogen concentration of 1~ppm and 200~ppm. By applying radiowaves in the frequency ranges from 0 to 40 MHz and from 5.6 to 5.9 GHz, we observed transitions that involve energy levels mixed by the hyperfine interaction. We developed a theoretical model that describes the level mixing, transition energies, and transition strengths between the ground-state sublevels, including the coupling to the nuclear spin of the NV center\textquotesing…

PhysicsQuantum PhysicsSpinsCondensed Matter - Mesoscale and Nanoscale PhysicsDiamondFOS: Physical sciences02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyPolarization (waves)7. Clean energy01 natural sciencesSpectral line3. Good healthVacancy defect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)engineeringAtomic physics010306 general physics0210 nano-technologySpectroscopyGround stateQuantum Physics (quant-ph)Hyperfine structure
researchProduct

Atomic and molecular transitions induced by axions via oscillating nuclear moments

2020

The interaction of standard model's particles with the axionic Dark Matter field may generate oscillating nuclear electric dipole moments (EDMs), oscillating nuclear Schiff moments and oscillating nuclear magnetic quadrupole moments (MQMs) with a frequency corresponding to the axion's Compton frequency. Within an atom or a molecule an oscillating EDM, Schiff moment or MQM can drive transitions between atomic or molecular states. The excitation events can be detected, for example, via subsequent fluorescence or photoionization. Here we calculate the rates of such transitions. If the nucleus has octupole deformation or quadrupole deformation then the transition rate due to Schiff moment and M…

PhysicsPhoton010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Nuclear TheoryFOS: Physical sciencesPhotoionization01 natural sciences530Physics - Atomic PhysicsDipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesQuadrupoleMoment (physics)Atomddc:530Physics::Atomic PhysicsAtomic physics010306 general physicsAxionExcitation
researchProduct

Fundaments of photoelectric readout of spin states in diamond

2021

Abstract The chapter “Fundaments of photoelectric readout of spin states in diamond” deals with the detection of NV centre spins in diamond using the photoelectric detection of magnetic resonances (PDMR) method, introduced in a series of recent publications. It provides in particular insights into the physics of electronic transitions of the NV center, leading to the free carrier generation, and discusses methodologies how to implement the photocurrent detection principles in the dynamically evolving field of quantum technologies. Recent results on the single electron and the single nuclear spin qubits photoelectric readout are presented, along with a microwave-free NV magnetometry techniqu…

PhysicsSpin statesSpinsPhysics::Instrumentation and DetectorsMagnetometerbusiness.industryDiamondPhotoelectric effectengineering.materiallaw.inventionQuantum technologylawQubitengineeringOptoelectronicsbusinessSpin (physics)
researchProduct

Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond

2018

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …

Materials scienceMagnetometerGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciences010305 fluids & plasmaslaw.inventionCrystalsymbols.namesakeZero fieldlawAmbient fieldVacancy defectElectric field0103 physical sciences010306 general physicsQuantum PhysicsZeeman effectCondensed matter physicsZero (complex analysis)DiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyNitrogenMagnetic fieldchemistryengineeringsymbols0210 nano-technologyQuantum Physics (quant-ph)Ground stateMicrowaveExcitationSymposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications
researchProduct

Eddy current imaging with an atomic radio-frequency magnetometer

2016

We use a radio-frequency $^{85}$Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

Frequency responseTechnologyMaterials sciencePhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Atomic Physics (physics.atom-ph)MagnetometerAcousticsFOS: Physical sciences02 engineering and technology01 natural sciencesphysics.atom-phlaw.inventionPhysics - Atomic PhysicsEngineeringlaw0103 physical sciencesEddy currentInductive sensorElectrical conductorphysics.ins-detApplied Physics010302 applied physicsInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologyElectromagnetic coilPhysical SciencesRadio frequencyElectric current0210 nano-technology
researchProduct

Search for Axionlike Dark Matter Using Solid-State Nuclear Magnetic Resonance.

2021

Physical review letters 126(14), 141802 (2021). doi:10.1103/PhysRevLett.126.141802

Quantum chromodynamicsPhysicsPhysics - Instrumentation and DetectorsNeutron electric dipole momentRelaxation (NMR)FOS: Physical sciencesGeneral Physics and AstronomyInstrumentation and Detectors (physics.ins-det)Coupling (probability)01 natural sciences530High Energy Physics - ExperimentCondensed Matter - Other Condensed MatterHigh Energy Physics - Experiment (hep-ex)Electric dipole moment0103 physical sciencesddc:530Atomic physics010306 general physicsSpin (physics)AxionExcitationOther Condensed Matter (cond-mat.other)Physical review letters
researchProduct

Quantum sensitivity limits of nuclear magnetic resonance experiments searching for new fundamental physics

2021

Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter. Searches such as the cosmic axion spin-precession experiments (CASPEr) are ultimately limited by quantum-mechanical noise sources, in particular, spin-projection noise. We discuss how such fundamental limits can potentially be reached. We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise. Calculation of the total noise spectrum takes into account the modification of the circuit impedance by the presence of nuclear spins, as well as the circuit back-action on the spin ensemble. S…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Materials Science (miscellaneous)Dark matterFOS: Physical sciences01 natural sciencesNoise (electronics)010305 fluids & plasmasNuclear magnetic resonanceHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesddc:530Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAxionQuantumElectrical impedanceSpin-½PhysicsQuantum PhysicsSpinsInstrumentation and Detectors (physics.ins-det)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterHigh Energy Physics - PhenomenologyQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance

2019

The nature of dark matter, the invisible substance making up over $80\%$ of the matter in the Universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: as nuclear spins move through the galactic dark-matter halo, they couple to dark-matter and behave as if they were in an oscillating magnetic field, generating a dark-matter-driven NMR signal. As part of the Cosmic Axion Spin Precession Experiment (CASPEr), an NMR-based dark-matter search, w…

Particle physicsPhotonField (physics)Atomic Physics (physics.atom-ph)Dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)Computer Science::Emerging TechnologiesNuclear magnetic resonancePhysics - Chemical Physics0103 physical sciences010306 general physicsSpin (physics)AxionResearch ArticlesBosonPhysicsChemical Physics (physics.chem-ph)MultidisciplinarySpins010308 nuclear & particles physicsPhysicsSciAdv r-articlesHaloddc:500Research Article
researchProduct

Eddy-Current Imaging with Nitrogen-Vacancy Centers in Diamond

2018

We demonstrate microwave-free eddy-current imaging using nitrogen-vacancy centers in diamond. By detecting the eddy-current induced magnetic field of conductive samples, we can distinguish between different materials and shapes and identify structural defects. Our technique allows for the discrimination of different materials according to their conductivity. The sensitivity of the measurements is calculated as 8$\times 10 ^{5}$\,S/m\,$\sqrt[]{\textrm{Hz}}$ at 3.5\,MHz, for a cylindrical sample with radius $r_0$\,=\,1\,mm and height $h$\,=\,0.1\,mm (volume $\sim$\,0.3\,mm$^3$), at a distance of 0.5\,mm. In comparison with existing technologies, the diamond-based device exhibits a superior ba…

Materials scienceFOS: Physical sciencesGeneral Physics and AstronomyApplied Physics (physics.app-ph)02 engineering and technologyengineering.material01 natural scienceslaw.inventionlawVacancy defectNondestructive testing0103 physical sciencesEddy current010306 general physicsImage resolutionQuantum Physicsbusiness.industryBandwidth (signal processing)DiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyEngineering physicsengineeringQuantum Physics (quant-ph)0210 nano-technologybusinessPhysical Review Applied
researchProduct

Sensitive magnetometry in challenging environments

2020

State-of-the-art magnetic field measurements performed in shielded environments under carefully controlled conditions rarely reflect the realities of those applications envisioned in the introductions of peer-reviewed publications. Nevertheless, significant advances in magnetometer sensitivity have been accompanied by serious attempts to bring these magnetometers into the challenging working environments in which they are often required. This review discusses the ways in which various (predominantly optically pumped) magnetometer technologies have been adapted for use in a wide range of noisy and physically demanding environments.

Quantum PhysicsComputer Networks and CommunicationsMagnetometerComputer scienceAtomic Physics (physics.atom-ph)FOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasElectronic Optical and Magnetic Materialslaw.inventionPhysics - Atomic PhysicsComputational Theory and Mathematicslaw0103 physical sciencesSystems engineeringddc:530Electrical and Electronic EngineeringPhysical and Theoretical Chemistry010306 general physicsQuantum Physics (quant-ph)
researchProduct

Microwave-free magnetometry with nitrogen-vacancy centers in diamond

2016

We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$\sqrt{\text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical acces…

TechnologyPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)MagnetometerFOS: Physical sciences02 engineering and technologyengineering.material01 natural scienceslaw.inventionEngineeringlaw0103 physical sciencescond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsphysics.ins-detApplied PhysicsPhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologyNoise floorMagnetic fieldPhysical SciencesengineeringOptoelectronicsMagnetic induction tomographyphysics.optics0210 nano-technologybusinessGround stateNoise (radio)MicrowavePhysics - OpticsOptics (physics.optics)
researchProduct

Battery characterization via eddy-current imaging with nitrogen-vacancy centers in diamond

2021

Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries in a noninvasive detection. We demonstrate a microwave-free AC magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between NV centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructive solid-state battery imaging. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolut…

Battery (electricity)Materials scienceMagnetometerFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)engineering.materiallcsh:Technology01 natural scienceslaw.inventionlcsh:ChemistrylawVacancy defecteddy current imaging0103 physical sciencesEddy currentGeneral Materials Science010306 general physicsNV-centers in diamondlcsh:QH301-705.5Instrumentationnondestructive evaluationFluid Flow and Transfer Processeslcsh:Tbusiness.industryProcess Chemistry and TechnologyGeneral EngineeringDiamond600Physics - Applied Physics021001 nanoscience & nanotechnologylcsh:QC1-999Computer Science ApplicationsMagnetic fieldlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Electrodebattery diagnosticsengineeringOptoelectronicslcsh:Engineering (General). Civil engineering (General)0210 nano-technologyAlternating currentbusinessddc:600lcsh:Physics
researchProduct

Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating

2017

© 2017 Author(s). Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.

inorganic chemicalsAtomic Physics (physics.atom-ph)MagnetometerAnalytical chemistryFOS: Physical sciencesGeneral Physics and Astronomyengineering.material01 natural sciences7. Clean energyphysics.atom-phMathematical Scienceslaw.inventionPhysics - Atomic Physics010309 opticsEngineeringCoatinglaw0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin relaxationApplied PhysicsPhysicsVapour densitySpin polarizationRelaxation (NMR)Cesium vaporCharacterization (materials science)Physical SciencesengineeringAtomic physics
researchProduct

Spectral signatures of axionlike dark matter

2022

We derive spectral line shapes of the expected signal for a haloscope experiment searching for axionlike dark matter. The knowledge of these line shapes is needed to optimize an experimental design and data analysis procedure. We extend the previously known results for the axion-photon and axion-gluon couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which leads to the directional sensitivity of the corresponding haloscope. We also discuss the daily and annual modulations of the gradient signal caused by the Earth's rotational and o…

High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)FOS: Physical sciencesddc:530530Astrophysics - Cosmology and Nongalactic AstrophysicsHigh Energy Physics - ExperimentPhysics - Atomic PhysicsPhysical Review
researchProduct

Miniature Cavity-Enhanced Diamond Magnetometer

2017

We present a highly sensitive miniaturized cavity-enhanced room-temperature magnetic-field sensor based on nitrogen-vacancy (NV) centers in diamond. The magnetic resonance signal is detected by probing absorption on the 1042\,nm spin-singlet transition. To improve the absorptive signal the diamond is placed in an optical resonator. The device has a magnetic-field sensitivity of 28 pT/$\sqrt{\rm{Hz}}$, a projected photon shot-noise-limited sensitivity of 22 pT/$\sqrt{\rm{Hz}}$ and an estimated quantum projection-noise-limited sensitivity of 0.43 pT/$\sqrt{\rm{Hz}}$ with the sensing volume of $\sim$ 390 $\mu$m $\times$ 4500 $\mu$m$^{2}$. The presented miniaturized device is the basis for an e…

Physics - Instrumentation and DetectorsPhotonMaterials scienceMagnetometerGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesSignallaw.inventionlaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAbsorption (electromagnetic radiation)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Quantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnology[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Highly sensitiveOptical cavityengineeringOptoelectronics0210 nano-technologybusinessQuantum Physics (quant-ph)Sensitivity (electronics)
researchProduct

Stand-Off Magnetometry with Directional Emission from Sodium Vapors

2021

International audience; Stand-off magnetometry allows measuring magnetic field at a distance, and can be employed in geophysical research, hazardous environment monitoring, and security applications. Stand-off magnetometry based on resonant scattering from atoms or molecules is often limited by the scarce amounts of detected light. The situation would be dramatically improved if the light emitted by excited atoms were to propagate towards the excitation light source in a directional manner. Here, we demonstrate that this is possible by means of mirrorless lasing. In a tabletop experiment, we detect free-precession signals of ground-state sodium spins under the influence of an external magne…

Materials scienceField (physics)MagnetometerAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmaslaw.inventionPhysics - Atomic Physics03 medical and health sciencesOpticslaw0103 physical sciencesddc:530030304 developmental biology0303 health sciencesSpins[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]business.industryScalar (physics)Magnetic field[SDU]Sciences of the Universe [physics]Excited statebusinessLasing thresholdExcitation
researchProduct

Level anti-crossing magnetometry with color centers in diamond

2017

Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4\,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042\,nm laser beam. This leads to an …

PhotoluminescenceMaterials scienceMagnetometerMagnetismchemistry.chemical_elementFOS: Physical sciences02 engineering and technologyengineering.material01 natural scienceslaw.inventionNuclear magnetic resonancelaw0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsAbsorption (electromagnetic radiation)Quantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamond021001 nanoscience & nanotechnologyMeitneriumLaserchemistryengineeringOptoelectronics0210 nano-technologybusinessQuantum Physics (quant-ph)MicrowaveSlow Light, Fast Light, and Opto-Atomic Precision Metrology X
researchProduct

Investigation of antirelaxation wall coatings beyond melting temperatures

2017

We investigate vapor cells with antirelaxation wall coatings by measuring their relaxation properties beyond the melting temperatures and compare with the melting behavior of the coating material as observed with differential scanning calorimetry.

0301 basic medicineMaterials scienceMaterials processingCondensed matter physicsDepolarizationCalorimetryengineering.materialMagnetic field03 medical and health sciences030104 developmental biologyDifferential scanning calorimetryCoatingengineeringPolarization (electrochemistry)Conference on Lasers and Electro-Optics
researchProduct

Heading-Error-Free Optical Atomic Magnetometry in the Earth-Field Range

2023

Alkali-metal atomic magnetometry is widely used due to its high sensitivity and cryogen-free operation. However, when operating in geomagnetic field, it suffers from heading errors originating from nonlinear Zeeman (NLZ) splittings and magnetic resonance asymmetries, which lead to difficulties in mobile-platform measurements. We demonstrate an alignment based $^{87}$Rb magnetometer, which, with only a single magnetic resonance peak and well-separated hyperfine transition frequencies, is insensitive or even immune to NLZ-related heading errors. It is shown that the magnetometer can be implemented for practical measurements in the geomagnetic environments and the photon-shot-noise-limited sen…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyPhysics::Atomic PhysicsPhysics - Atomic PhysicsPhysical Review Letters
researchProduct

Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells

2020

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materia…

LI-IONBattery (electricity)MultidisciplinaryMaterials sciencebusiness.industryMagnetometer//purl.org/becyt/ford/1.3 [https]Characterization (materials science)law.inventionIonMagnetic field//purl.org/becyt/ford/1 [https]State of chargeFAILURESlawPhysical SciencesOptoelectronicsTransient (oscillation)BATTERIESbusinessCapacity lossProceedings of the National Academy of Sciences
researchProduct

Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids

2018

AbstractOver the last decades, the use of magnetic nanoparticles in research and commercial applications has increased dramatically. However, direct detection of trace quantities remains a challenge in terms of equipment cost, operating conditions and data acquisition times, especially in flowing conditions within complex media. Here we present the in-line, non-destructive detection of magnetic nanoparticles using high performance atomic magnetometers at ambient conditions in flowing media. We achieve sub-picomolar sensitivities measuring ~30 nm ferromagnetic iron and cobalt nanoparticles that are suitable for biomedical and industrial applications, under flowing conditions in water and who…

Materials scienceMagnetometerScienceMagnetic separationchemistry.chemical_elementNanoparticleFOS: Physical sciencesNanotechnology02 engineering and technologyApplied Physics (physics.app-ph)010402 general chemistryNanoparticles; Other nanotechnology; Techniques and instrumentation01 natural sciencesArticlelaw.inventionData acquisitionlawComplex fluidMultidisciplinaryQRPhysics - Applied Physics021001 nanoscience & nanotechnology0104 chemical sciences3. Good healthchemistryFerromagnetismMedicineMagnetic nanoparticles0210 nano-technologyCobaltScientific Reports
researchProduct

Is light narrowing possible with dense-vapor paraffin coated cells for atomic magnetometers?

2017

We investigated the operation of an all-optical rubidium-87 atomic magnetometer with amplitude-modulated light. To study the suppression of spin-exchange relaxation, three schemes of pumping were implemented with room-temperature and heated paraffin coated vacuum cells. Efficient pumping and accumulation of atoms in the F=2 ground state were obtained. However, the sought-for narrowing of the resonance lines has not been achieved. A theoretical analysis of the polarization degree is presented to illustrate the absence of light narrowing due to radiation trapping at high temperature.

Materials scienceMagnetometerGeneral Physics and AstronomyPolarization (waves)01 natural sciencesMolecular physicslcsh:QC1-999law.invention010309 opticslaw0103 physical sciencesRadiation trappingPhysics::Atomic Physics010306 general physicsGround stateAtomic magnetometerlcsh:PhysicsAIP Advances
researchProduct

Rapid online solid-state battery diagnostics with optically pumped magnetometers

2020

Applied Sciences 10(21), 7864 (2020). doi:10.3390/app10217864

Battery (electricity)Physics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Power storageComputer scienceMagnetometerFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistrymagnetization01 natural scienceslcsh:Technologylaw.inventionPhysics - Atomic Physicslcsh:Chemistrylawrapid online diagnosticsGeneral Materials ScienceInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processesatomic magnetometerbusiness.industrylcsh:TProcess Chemistry and TechnologyGeneral EngineeringElectrical engineering600Instrumentation and Detectors (physics.ins-det)Physics - Applied Physics021001 nanoscience & nanotechnologylcsh:QC1-9990104 chemical sciencesComputer Science ApplicationsState of chargelcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Solid-state batterysolid-state battery0210 nano-technologybusinesslcsh:Engineering (General). Civil engineering (General)ddc:600Atomic magnetometerlcsh:Physicsmagnetic susceptibility
researchProduct

Microwave-free vector magnetometry with nitrogen-vacancy centers along a single axis in diamond

2019

Sensing vector magnetic fields is critical to many applications in fundamental physics, bioimaging, and material science. Magnetic-field sensors exploiting nitrogen-vacancy (NV) centers are particularly compelling as they offer high sensitivity and spatial resolution even at nanoscale. Achieving vector magnetometry has, however, often required applying microwaves sequentially or simultaneously, limiting the sensors' applications under cryogenic temperature. Here we propose and demonstrate a microwave-free vector magnetometer that simultaneously measures all Cartesian components of a magnetic field using NV ensembles in diamond. In particular, the present magnetometer leverages the level ant…

MagnetometerGeneral Physics and AstronomyFOS: Physical sciencesField (mathematics)02 engineering and technologyApplied Physics (physics.app-ph)engineering.material01 natural sciencesImaging phantomlaw.inventionlawVacancy defect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Sensitivity (control systems)010306 general physicsPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsDiamondPhysics - Applied Physics021001 nanoscience & nanotechnologyMagnetic fieldengineeringAtomic physics0210 nano-technologyGround state
researchProduct

Evidence for degenerate mirrorless lasing in alkali metal vapor: forward beam magneto-optical experiment

2018

We report an experimental observation of degenerate mirrorless lasing in forward direction under excitation of a dilute atomic Rb vapor with a single linearly polarized cw laser light resonant with cycling Fe > Fg atomic D2 transitions. Light polarized orthogonally to the laser light is generated for the input light intensity exceeding a threshold value of about 3 mW/cm^2. Application of a transverse magnetic field directed along the input light polarization reveals a sharp about 20 mG wide magnetic resonance centered at B = 0. Increasing the incident light intensity from 3 to 300 mW/cm^2, the generated light undergoes rapid amplitude increase followed by a decline and resonance broadeni…

PhysicsAtomic Physics (physics.atom-ph)Linear polarizationFOS: Physical sciencesResonanceCondensed Matter PhysicsPopulation inversionLaserPolarization (waves)01 natural sciencesRayAtomic and Molecular Physics and OpticsPhysics - Atomic Physicslaw.invention010309 opticsLight intensitylaw0103 physical sciencesAtomic physics010306 general physicsLasing thresholdJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Searching for axion stars and $Q$-balls with a terrestrial magnetometer network

2018

Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudos…

Atomic Physics (physics.atom-ph)media_common.quotation_subjectScalar (mathematics)Dark matterFOS: Physical sciencesAstrophysicsParameter space01 natural sciencesPhysics - Atomic PhysicsQ-ballHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)media_commonPhysicsQuantum Physics010308 nuclear & particles physicsAstronomyUniversePseudoscalarStarsHigh Energy Physics - PhenomenologyAstrophysics - Instrumentation and Methods for AstrophysicsQuantum Physics (quant-ph)
researchProduct

On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries

2018

Micromachines 9(6), 276 (2018). doi:10.3390/mi9060276

Materials scienceMagnetometerInfraredlcsh:Mechanical engineering and machineryPhysics::Optics02 engineering and technologyengineering.material01 natural sciencesWaveguide (optics)Articlelaw.inventioncompact sensorlawNV-centers0103 physical sciencesMiniaturizationlcsh:TJ1-1570Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAbsorption (electromagnetic radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMechanical EngineeringDiamond021001 nanoscience & nanotechnology620Magnetic fielddiamond-based magnetometerControl and Systems EngineeringengineeringOptoelectronicsdiamond-based magnetometer; NV-centers; compact sensorddc:6200210 nano-technologybusinessMicromachines
researchProduct

Search for topological defect dark matter with a global network of optical magnetometers

2021

Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsAtomic Physics (physics.atom-ph)Particle physicsGeneral Physics and AstronomyFOS: Physical sciences53001 natural sciencesArticleHigh Energy Physics - ExperimentPhysics - Atomic PhysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesDark energy and dark matterddc:530Atomic and molecular physics010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Alkali-vapor magnetic resonance driven by fictitious radiofrequency fields

2014

We demonstrate an all-optical 133Cs scalar magnetometer, operating in nonzero magnetic field, in which the magnetic resonance is driven by an effective oscillating magnetic field provided by the AC Stark shift of an intensity-modulated laser beam. We achieve a projected shot-noise-limited sensitivity of 1.7fT/Hz and measure a technical noise floor of 40fT/Hz. These results are essentially identical to a coil-driven scalar magnetometer using the same setup. This all-optical scheme offers advantages over traditional coil-driven magnetometers for use in arrays and in magnetically sensitive fundamental physics experiments, e.g., searches for a permanent electric dipole moment of the neutron.

PhysicsPhysics and Astronomy (miscellaneous)Magnetic energyNeutron magnetic momentCondensed matter physicsMagnetometerElectron magnetic dipole momentMagnetic fieldComputational physicslaw.inventionDipolelawSpin echoPhysics::Atomic PhysicsMagnetic dipoleApplied Physics Letters
researchProduct

Imaging Topological Spin Structures Using Light-Polarization and Magnetic Microscopy

2020

We present an imaging modality that enables detection of magnetic moments and their resulting stray magnetic fields. We use wide-field magnetic imaging that employs a diamond-based magnetometer and has combined magneto-optic detection (e.g. magneto-optic Kerr effect) capabilities. We employ such an instrument to image magnetic (stripe) domains in multilayered ferromagnetic structures.

Materials scienceKerr effectMagnetometer530 PhysicsGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Optics02 engineering and technologyApplied Physics (physics.app-ph)01 natural scienceslaw.inventionOpticslawMagnetic imaging0103 physical sciencesMicroscopyddc:530Physics::Atomic Physics010306 general physicsSpin (physics)Condensed Matter - Materials ScienceMagnetic momentbusiness.industryMaterials Science (cond-mat.mtrl-sci)Physics - Applied Physics021001 nanoscience & nanotechnology530 PhysikMagnetic fieldFerromagnetism0210 nano-technologybusiness
researchProduct

Stochastic fluctuations of bosonic dark matter

2021

Numerous theories extending beyond the standard model of particle physics predict the existence of bosons that could constitute the dark matter (DM) permeating the universe. In the standard halo model (SHM) of galactic dark matter the velocity distribution of the bosonic DM field defines a characteristic coherence time $\tau_c$. Until recently, laboratory experiments searching for bosonic DM fields have been in the regime where the measurement time $T$ significantly exceeds $\tau_c$, so null results have been interpreted as constraints on the coupling of bosonic DM to standard model particles with a bosonic DM field amplitude $\Phi_0$ fixed by the average local DM density. However, motivate…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)530 PhysicsScienceQFOS: Physical sciences500Astrophysics::Cosmology and Extragalactic Astrophysics530 PhysikCharacterization and analytical techniquesArticlePhysics - Atomic PhysicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energy and dark matterddc:500Astrophysics - Cosmology and Nongalactic AstrophysicsNature Communications
researchProduct

Intensity interferometry for ultralight bosonic dark matter detection

2023

Ultralight bosonic dark matter (UBDM) can be described by a classical wave-like field oscillating near the Compton frequency of the bosons. If a measurement scheme for the direct detection of UBDM interactions is sensitive to a signature quadratic in the field, then there is a near-zero-frequency (dc) component of the signal. Thus, a detector with a given finite bandwidth can be used to search for bosons with Compton frequencies many orders of magnitude larger than its bandwidth. This opens the possibility of a detection scheme analogous to Hanbury Brown and Twiss intensity interferometry. Assuming that the UBDM is virialized in the galactic gravitational potential, the random velocities pr…

High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)FOS: Physical sciencesAstrophysics - Cosmology and Nongalactic AstrophysicsHigh Energy Physics - ExperimentPhysics - Atomic PhysicsPhysical Review
researchProduct

Fiberized diamond-based vector magnetometers

2021

Frontiers 2, 732748 (2021). doi:10.3389/fphot.2021.732748

Quantum Physics530 PhysicsComputer Science::Networking and Internet Architectureddc:300FOS: Physical sciencesGeneral MedicineQuantum Physics (quant-ph)530 Physik300
researchProduct

All-Optical Spin Locking in Alkali-Vapor Magnetometers

2018

The nonlinear Zeeman effect can induce splittings and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. We demonstrate a scheme to suppress the nonlinear Zeeman effect all optically based on spin locking. Spin locking is achieved with an effective oscillating magnetic field provided by the AC Stark-shift of an intensity-modulated and polarization-modulated laser beam. This results in the collapse of the multi-component asymmetric magnetic-resonance line with about 100 Hz width in the Earth-field range into a peak with a central component width of 25Hz. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensit…

Atomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics - Atomic Physics
researchProduct

Battery Diagnostics with Sensitive Magnetometry

2019

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, or for sensing capacity loss mechanisms. Here, we demonstrate the use of atomic magnetometry to map the weak induced magnetic fields around a Li-ion battery cell as a function of state of charge and upon introducing mechanical defects. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In addition, the measurements reveal hitherto unknown long time-scale transient inte…

Chemical Physics (physics.chem-ph)Physics - Instrumentation and DetectorsAtomic Physics (physics.atom-ph)Physics - Chemical PhysicsFOS: Physical sciencesApplied Physics (physics.app-ph)Instrumentation and Detectors (physics.ins-det)Physics - Applied PhysicsPhysics - Atomic Physics
researchProduct

Oscillating nuclear electric dipole moments inside atoms

2019

Interaction with the axion dark matter (DM) field generates an oscillating nuclear electric dipole moment (EDM) with a frequency corresponding to the axion's Compton frequency. Within an atom, an oscillating EDM can drive electric dipole transitions in the electronic shell. In the absence of radiation, and if the axion frequency matches a dipole transition, it can promote the electron into the excited state. The excitation events can be detected, for example, via subsequent uorescence or photoionization. Here we calculate the rates of such transitions. For a single light atom and an axion Compton frequency resonant with a transition energy corresponding to 1 eV, the rate is on the order of …

Nuclear Theory (nucl-th)Nuclear TheoryAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::Atomic PhysicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics - Atomic Physics
researchProduct

Electrical readout microwave-free sensing with diamond

2022

While nitrogen-vacancy (NV-) centers have been extensively investigated in the context of spin-based quantum technologies, the spin-state readout is conventionally performed optically, which may limit miniaturization and scalability. Here, we report photoelectric readout of ground-state cross-relaxation features, which serves as a method for measuring electron spin resonance spectra of nanoscale electronic environments and also for microwave-free sensing. As a proof of concept, by systematically tuning NV centers into resonance with the target electronic system, we extracted the spectra for the P1 electronic spin bath in diamond. Such detection may enable probing optically inactive defects …

Quantum PhysicsFOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsQuantum Physics (quant-ph)
researchProduct

Infrared laser magnetometry with a NV doped diamond intracavity etalon

2018

We propose an hybrid laser system consisting of a semiconductor external cavity laser associated to an intra-cavity diamond etalon doped with nitrogen-vacancy color centers. We consider laser emission tuned to the infrared absorption line that is enhanced under the magnetic field dependent nitrogen-vacancy electron spin resonance and show that this architecture leads to a compact solid-state magnetometer that can be operated at room-temperature. The sensitivity to the magnetic field limited by the photon shot-noise of the output laser beam is estimated to be around $250~\mathrm{fT/\sqrt{Hz}}$. Unlike usual NV center infrared magnetometry, this method would not require an external frequency …

Quantum PhysicsFOS: Physical sciencesPhysics::OpticsPhysics::Atomic PhysicsQuantum Physics (quant-ph)Optics (physics.optics)Physics - Optics
researchProduct

Photoluminescence at the ground state level anticrossing of the nitrogen-vacancy center in diamond

2020

The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables to have an effect on the NV center's luminescence for a broad variety of environmental couplings. In this article we report on the GSLAC photoluminescence signature of NV ensembles in different spin environments at various external fields. We investigate the effects of transverse electric and magnetic fields, P1 centers, NV centers, and the $^{13}$C nuclear spins, each of which gives rise to a unique PL signature at the GSLAC. …

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciences
researchProduct