0000000001247568

AUTHOR

Andrea Maio

showing 85 related works from this author

Poly(lactic acid)/carvacrol-based materials: preparation, physicochemical properties, and antimicrobial activity

2020

The current demand for new antimicrobial systems has stimulated research for the development of poly(lactic acid)/carvacrol (PLA/CAR)-based materials able to hinder the growth and spread of microorganisms. The eco-friendly characteristics of PLA and cytocompatibility make it very promising in the perspective of green chemistry applications as material for food and biomedical employments. The broad-spectrum biological and pharmacological properties of CAR, including antimicrobial activity, make it an interesting bioactive molecule that can be easily compounded with PLA by adopting the same techniques as those commonly used for PLA manufacturing. This review critically discusses the most comm…

PolymersPolyestersNanotechnologyAntimicrobial activityApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundstomatognathic systemCarvacrolAntimicrobial activity; Carvacrol; Drug delivery; Food and biomedical application; PLACarvacrolHigh potential030304 developmental biology0303 health sciencesMaterials preparation030306 microbiologyFood PackagingFood and biomedical applicationGeneral MedicineAntimicrobialAnti-Bacterial AgentsLactic acidFood packagingchemistryDrug deliveryDrug deliveryPLACymenesBiotechnologyApplied Microbiology and Biotechnology
researchProduct

Functionalization of Graphene with Molecules and/or Nanoparticles for Advanced Applications

2019

Graphene is considered the material of the third millennium, due to its extraordinary electronic and mechanical properties, and due to the possibility to modulate its conductivity, flexibility, elasticity, transparency, and biocompatibility by bottom-up approach. The possibility to gather the proper- ties of graphene and graphene oxide with those of functional moieties or nanoparticles is herein reviewed. The synthetic approaches proposed, either covalent or noncovalent, are aimed to tune appropriately graphene’s properties for the realization of materials for advanced uses, such as bio- medical applications, sensors, catalysis, and energy devices. In particular, methods based on covalent l…

Covalent functionalizationMaterials scienceCovalent functionalizationsupramolecular functionalizationgraphene oxidecomposite materials biomedical applications sensors catalysis energy devicesGraphenelawSurface modificationNanoparticleMoleculeNanotechnologySettore CHIM/06 - Chimica Organicalaw.inventionCatalysisHandbook of Graphene
researchProduct

Wet electrospinning-aided self-assembly of multifunctional GO-CNT@PCL core-shell nanocomposites with spider leg bioinspired hierarchical architectures

2022

We report a fast route enabling the multiscale design of nanohybrid structures comprising a 3D fibrous network of polycaprolactone (PCL) wrapped by graphene oxide (GO) sheets onto which carbon nanotube (CNT) brushes are anchored. The method relies on electrospinning PCL solutions onto a suspension of GO and CNTs in ethanol. Self-assembly is due to electrostatic wrapping of GO sheets around PCL fibers and 7C-7C stacking between GO and CNTs. Hierarchical architecture and nanopatterned surface allow gathering the starting properties of PCL, GO and CNTs into lightweight (99% porosity) yet robust (1575% stiffness improvement), amphiphilic monoliths that can remove methylene blue and/or methyl or…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiCarbon nanotubes Graphene and other 2D-materials Hybrid composites Multifunctional properties Electro-spinningGeneral EngineeringCeramics and CompositesComposites Science and Technology
researchProduct

Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

2016

In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the t…

BiocideMaterials scienceScanning electron microscopeKineticsAntimicrobial activity; Ciprofloxacin; Drug release; Graphene nanoplatelets (GnPs); Nanocomposites; Poly(lactic acid) (PLA); Materials Science (all)02 engineering and technologyengineering.material010402 general chemistry01 natural scienceslcsh:TechnologyArticlepoly(lactic acid) (PLA)ciprofloxacinnanocompositesGeneral Materials ScienceComposite materiallcsh:Microscopydrug releaselcsh:QC120-168.85NanocompositeNanocompositeantimicrobial activitylcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologyAntimicrobialBiodegradable polymerCopolyestergraphene nanoplatelets (GnPs)0104 chemical sciencesChemical engineeringnanocomposites; graphene nanoplatelets (GnPs); poly(lactic acid) (PLA); antimicrobial activity; drug release; ciprofloxacinlcsh:TA1-2040engineeringlcsh:Descriptive and experimental mechanicsMaterials Science (all)Biopolymerlcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials; Volume 9; Issue 5; Pages: 351
researchProduct

Rapid One-Step Fabrication of Graphene Oxide-Decorated Polycaprolactone Three-Dimensional Templates for Water Treatment

2020

Coating of flexible substrates is crucial to prepare versatile, multifunctional materials. However, exploration of effective fabrication approaches is still a challenging issue, because the pathways generally proposed require time-consuming, multistep protocols. Here, we developed a one-pot process for decorating either pearl necklace-like or fibrous fluffy-like structures of polycaprolactone (PCL) with graphene oxide (GO) skin. PCL solutions were dry jet-wet electrosprayed or electrospun into a stirred liquid collector constituted by ethanol-containing GO nanoparticles. The stirred liquid collector enables the formation of 3D-structures, whose microarchitecture can be designed by controlli…

Materials scienceFabricationPolymers and PlasticsOxideNanotechnologyOne-Stepengineering.materialfiberslaw.inventionchemistry.chemical_compoundCoatinglawdry jet-wet-electrospinning3D electrospinningGrapheneProcess Chemistry and TechnologyOrganic Chemistrybeadsgraphene coatingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiTemplatechemistryphenol removalhierarchical structurePolycaprolactoneengineeringWater treatment
researchProduct

ECOCOMPOSITI MATER-BI®/FARINA DI LEGNO: OTTIMIZZAZIONE DELLE PROPRIETA’ ATTRAVERSO ANALISI STATISTICA E BIODEGRADAZIONE

2009

ecocompositi analisi statistica full factorial biodegradabilitybiodegradable polymers biodegradable composites melt blending
researchProduct

Enhancing the mechanical performance of polymer based nanocomposites by plasma-modification of nanoparticles

2012

Abstract The possibility of enhancing the mechanical performance of two different polymer-based nanocomposites using polyamide 6 (PA6) and poly[ethylene-co-(vinyl acetate)] (EVA) as matrices was investigated. The nanofillers used were, respectively, either carbon nanotubes (CNTs) or an organically modified montmorillonite (Cloisite 15A), both previously modified by plasma treatment to introduce polar moieties. The nanofillers were fully characterized by Raman spectroscopy, XPS, FT-IR and XRD, demonstrating their effective modification with oxygenated groups. The nanocomposites were prepared by melt processing in order to obtain films and fibres. The mechanical tests carried out on the nanoc…

chemistry.chemical_classificationNanocompositeMaterials scienceNanocompositePolymers and PlasticsOrganic ChemistryNanoparticlePolymerCarbon nanotubeCarbon nanotubelaw.inventionCarbon nanotubes; Functionalization; Nanocomposite; Nanoclay; Nanoparticle; Plasma.chemistry.chemical_compoundNanoparticlechemistrylawPolyamideVinyl acetateNanoclaySurface modificationComposite materialFunctionalizationElastic modulusPlasma.
researchProduct

Facile and novel synthesis of Graphene oxide/Silica nanohybrids with tunable properties

2013

graphene oxide silica nanohybrids PL
researchProduct

Integrated ternary bionanocomposites with superior mechanical performance via the synergistic role of graphene and plasma treated carbon nanotubes

2019

Abstract Herein, we prepared an integrated ternary bionanocomposite based on polylactic acid (PLA) as a host polymer and two different forms of carbon fillers, i.e. graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs), used simultaneously at extremely low concentrations, relying on the synergistic effect of CNT and graphene nanoreinforcement and a novel, multi-step procedure to achieve a high level dispersion. The results indicated that this multi-step approach allows stiffness increments up to +66%, with simultaneous enhancement of tensile strength (up to +44%), and elongation at break (up to +36%) with respect to neat PLA, by adding an extremely low content (0.5 wt%) of a hybrid comb…

Materials scienceCNTchemistry.chemical_elementMechanical properties02 engineering and technologyCarbon nanotube010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundPolylactic acidlawUltimate tensile strengthComposite materialchemistry.chemical_classificationNanocompositeNanocompositeGrapheneMechanical EngineeringPolymer021001 nanoscience & nanotechnology0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringMechanics of MaterialsCeramics and CompositesGraphene0210 nano-technologyTernary operationCarbon
researchProduct

An innovative route to prepare in situ graded crosslinked PVA graphene electrospun mats for drug release

2022

We present a fast, one step method to obtain PVA/graphene/chlorhexidine nanofibrous membranes, with a crosslinking gradient along their cross-section. Briefly, polymeric solutions were electrospun onto a heated plate, enabling the in situ crosslinking of PVA macromolecules. Of course, the crosslinking degree of such structures was found to decrease upon the distance from the plate during deposition. The outcomes reveal the crucial role of graphene, capable of promoting heat transfer throughout the entire structure, thus leading to 70-80% crosslinking degrees and preventing delamination issues. Such membranes were compared to untreated and oven thermally treated ones, and a robust relationsh…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiElectrospinningMechanics of MaterialsCeramics and CompositesGrapheneHeat treatmentMultifunctional composite
researchProduct

Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes

2021

Electrospun nanofibers based on polysaccharides represent a consolidated approach in Tissue Engineering and Regenerative Medicine (TERM) and nanomedicine as a drug delivery system (DDS). In this work, two chemical derivatives of a low molecular weight gellan gum (96.7 kDa) with aliphatic pendant tails were processed by electrospinning technique into non-woven nanofibrous mats. In order to generate spinnable blends, it was necessary to associate poly vinyl alcohol (PVA). The relationships between the physicochemical properties and the processability via electrospinning technique of gellan gum alkyl derivatives (GG-C8 and GG-C12 having a degree of alkyl chain derivatization of 17 mol % and 1…

Materials sciencePolymers and PlasticsMaterials Science (miscellaneous)02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringchemistry.chemical_compoundTissue engineeringelectrospinning; gellan gum; nanofibers; PVAnanofibersChemical Engineering (miscellaneous)DerivatizationAlkylchemistry.chemical_classificationElectrospinning021001 nanoscience & nanotechnologyGellan gumElectrospinning0104 chemical scienceschemistryChemical engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoNanofiberDrug deliveryPVANanomedicine0210 nano-technologygellan gum
researchProduct

Plasma Functionalization of Multiwalled Carbon Nanotubes and Their Use in the Preparation of Nylon 6-Based Nanohybrids

2012

The possibility to obtain carbon nanotubes (CNT)/polyamide 6 composites with excellent mechanical properties in a simple, industrially scalable way is investigated. Commercial CNTs are treated by plasma while changing some key parameters (exposure time, plasma power, type of gas) in order to optimize the process and to achieve a sufficient degree of functionalization. The treated samples are characterized by Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The most interesting samples are selected to be used as reinforcing fillers, in different concentrations, in a polyamide 6 matrix. The mechanical tests show a dramatic increase of both tens…

Plasma etchingMaterials sciencePolymers and PlasticsSelective chemistry of single-walled nanotubesCarbon nanotubeCondensed Matter Physicslaw.inventionsymbols.namesakechemistry.chemical_compoundNylon 6chemistrylawPolyamidesymbolsSurface modificationFourier transform infrared spectroscopyComposite materialRaman spectroscopyPlasma Processes and Polymers
researchProduct

PREPARAZIONE DI MATERIALI POLIMERICI MULTIFUNZIONALI A BASE DI NANOTUBI DI CARBONIO

2012

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiCARBONIONANOTUBIPOLIMERICI
researchProduct

Structure-property relationship of PLA-Opuntia Ficus Indica biocomposites

2019

Abstract In this work, a lignocellulosic flour was achieved by grinding the cladodes of Opuntia Ficus Indica and then added to a poly-lactic acid (PLA) in order to prepare biocomposites by melt processing. The influence of filler content and size on the morphological, rheological, and mechanical properties of the green composites was assessed. Moreover, solvent-aided filler extraction enabled to evaluate the homogeneity of filler dispersion, as well as the effect of processing on the geometrical features of the fillers. The experimental data obtained by tensile tests proved to be remarkably higher than those predicted by Halpin–Tsai model, presumably due to the capability of the polymer to …

Materials scienceOpuntia ficusCeramics and Composite02 engineering and technology010402 general chemistryHalpin-Tsai01 natural sciencesIndustrial and Manufacturing EngineeringOpuntia Ficus IndicaRheologyUltimate tensile strengthCladodesMechanics of MaterialComposite materialLignocellulosic fillerchemistry.chemical_classificationbiologyMechanical EngineeringStructure propertyPolymer021001 nanoscience & nanotechnologybiology.organism_classification0104 chemical sciencesGrindingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsCeramics and CompositesPLAGreen composite0210 nano-technologyComposites Part B: Engineering
researchProduct

A Novel Graphene Oxide-Silica Nanohybrid, Highly Functionalized by Organic Fluorotails

2015

GO-based composites have attracted increasing attention due to their improved properties: in this context Silica-GO nanohybrids are currently used in many fields, ranging from biomedicine to optoelectronics. In recent years growing interest of the materials community has been posed on the functionalization of graphene materials with fluorine: Fluorinated graphene oxide has been proven to be the first carbon material for Magnetic Resonance Imaging without the addition of magnetic nanoparticles,1 moreover, has proven to absorb NIR-laser energy and efficiently transform it into heat, so that fluorinated graphene oxide has been suggested as a contrast agent for MRI, ultrasound and photoacoustic…

Fluorinated materialSilica nanohybridGraphene oxide
researchProduct

GREEN COMPOSITES BASED ON BIODEGRADABLE POLYMERS AND WOOD FLOUR

2010

green composites ecocomposites melt blending biodegradable polymers biodegradable composites
researchProduct

Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid

2019

Abstract Porous membranes and thin films containing poly-lactic acid (PLA), carvacrol (CRV) and graphene nanoplatelets (GNP) were fabricated by electrospinning and solvent casting at different formulations. The systems were characterized from a mechanical, morphological, calorimetric and spectroscopic point of view. CRV release as a function of time was studied and a mathematical model was used to fit and interpret the data in order to investigate the release mechanism. The results indicate that the incorporation of GNP generally determined a simultaneous strengthening, stiffening and toughening effect, while preserving a good ductility. Furthermore, integrating GNP allowed tuning the amoun…

Materials scienceKinetics02 engineering and technology010402 general chemistry01 natural sciencesEssential oillaw.inventionchemistry.chemical_compoundPolylactic acidlawControlled releaseThin filmComposite materialDuctilityElectrospinningGrapheneGeneral EngineeringSettore ING-IND/34 - Bioingegneria Industriale021001 nanoscience & nanotechnologyCastingElectrospinningSolvent casting0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryCeramics and CompositesGraphene0210 nano-technology
researchProduct

Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

2014

Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H2SO4/H3PO4 and KMnO4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectrosco…

Materials scienceNanocompositeScanning electron microscopeGrapheneOxideAnalytical chemistryNanoparticleCastinglaw.inventionchemistry.chemical_compoundChemical engineeringX-ray photoelectron spectroscopychemistrylawgraphene oxide silica nanohybrids PA6GraphiteAIP Conference Proceedings
researchProduct

A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids

2016

International audience; In the present study, the possibility to synthesize graphene oxide (GO)-based nanohybrids with pure and O2-doped silica nanoparticles by a rapid and easy hydrothermal process has been explored. The nanohybrids were prepared by varying the type of silica nanoparticles (average diameter 7 nm or 40 nm) and the silica/GO weight ratio. All the materials were fully characterized by spectroscopic and morphological techniques.The experimental results revealed that it is possible to tune the characteristics of the obtained nanohybrids, such as morphology and amount of ester/ether linkages upon varying the preparation parameters, together with the nanosilica's typology and the…

Morphology (linguistics)Materials scienceOxideNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesHydrothermal circulation[SPI.MAT]Engineering Sciences [physics]/Materialslaw.inventionchemistry.chemical_compoundlawXPSMaterials ChemistryNanosilicaThermal stabilityGraphene oxideGrapheneMechanical EngineeringDopingMetals and Alloys021001 nanoscience & nanotechnology0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsAgglomerateRaman spectroscopyNanohybridSurface modification0210 nano-technologyJournal of Alloys and Compounds
researchProduct

A novel approach to prevent graphene oxide re-aggregation during the melt compounding with polymers

2015

Abstract The technology for the preparation of polymer-GO nanocomposites was investigated by studying the structure-properties relationships of two different systems, based on PA6 and EVA, fabricated by using different preparation methods, i.e. melt mixing, wet phase inversion, and the combination of the two. The morphology of nanocomposites resulted dramatically influenced by the technique adopted and showed to be the critical variable affecting the physical properties of the materials. Finally, the mechanical and dynamic-mechanical of the nanocomposites were improved by using the hybrid technique combining the two procedures.

Dynamic mechanical thermal analysis (DMTA); Graphene; Interphase; Polymer-matrix composites (PMCs); Raman spectroscopy; Engineering (all); Ceramics and CompositesPolymer-matrix composites (PMCs)Materials scienceOxidelaw.inventionchemistry.chemical_compoundsymbols.namesakeEngineering (all)lawComposite materialInterphasechemistry.chemical_classificationDynamic mechanical thermal analysis (DMTA)NanocompositeMelt mixingGrapheneGeneral EngineeringPolymerSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryCompoundingRaman spectroscopyCeramics and CompositessymbolsGrapheneRaman spectroscopyPhase inversionComposites Science and Technology
researchProduct

Tunable release of Chlorhexidine from Polycaprolactone-based filaments containing graphene nanoplatelets

2019

Abstract Graphene nanoplatelets (GNP) as fillers and Chlorhexidine (CHX), as an antibacterial agent, were incorporated in a polycaprolactone (PCL) matrix and processed into filaments by melt spinning. The influence of both drawing and formulation on the processability, spinnability, mechanical properties and release behaviour of these materials were deeply investigated by performing rheological, morphological analysis, tensile tests, and by measuring the cumulative release of CHX in PBS at 37 °C. Furthermore, Korsmeyer–Peppas model was adopted to study the kinetics release mechanism. The results showed that adding GNP did not alter the processability and spinnability of the systems. Further…

Materials sciencePolymers and PlasticsGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundRheologylawUltimate tensile strengthMaterials ChemistryControlled releaseComposite materialAntibacterial agentNanocompositeNanocompositeGrapheneOrganic Chemistry021001 nanoscience & nanotechnologyControlled release0104 chemical sciencesMelt spinningSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryPCLPolycaprolactoneMelt spinningGraphene0210 nano-technologyMechanical propertie
researchProduct

Nanocarbons in electrospun polymeric nanomats for tissue engineering: A review

2017

Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity an…

Materials scienceantimicrobial propertiesPolymers and PlasticsBiocompatibilityCNTgraphene; CNTs; nanodiamonds; fullerene; biopolymer; tissue engineering; electrospinning; mechanical properties; electrical properties; antimicrobial propertiesnanodiamondNanotechnology02 engineering and technologyCarbon nanotubeReviewengineering.materialmechanical properties010402 general chemistry01 natural scienceslaw.inventionlcsh:QD241-441Tissue engineeringlcsh:Organic chemistrylawbiopolymerNano-mechanical propertieelectrospinningelectrical propertiechemistry.chemical_classificationCNTsGraphenefullerenegrapheneGeneral ChemistryPolymer021001 nanoscience & nanotechnologyElectrospinning0104 chemical scienceschemistrynanodiamondstissue engineeringelectrical propertiesengineeringBiopolymer0210 nano-technology
researchProduct

The Effects of Nanoclay on the Mechanical Properties, Carvacrol Release and Degradation of a PLA/PBAT Blend

2020

The formulation of polymeric films endowed with the abilities of controlled release of antimicrobials and biodegradability is the latest trend of food packaging. Biodegradable polymer (Bio-Flex&reg

Biodegradable polymer blends Drug release Essential oil Film blowing Green composites Hydrolytic degradation Mechanical properties Montmorillonite PBAT PLAFiller (packaging)Materials science02 engineering and technologymontmorillonitemechanical properties010402 general chemistry01 natural scienceslcsh:TechnologyArticleessential oilchemistry.chemical_compoundbiodegradable polymer blendsGeneral Materials ScienceCarvacrolplahydrolytic degradationlcsh:Microscopydrug releaselcsh:QC120-168.85Nanocompositelcsh:QH201-278.5green compositeslcsh:TpbatBiodegradation021001 nanoscience & nanotechnologyControlled releaseBiodegradable polymer0104 chemical sciencesFood packagingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMontmorilloniteChemical engineeringchemistryfilm blowinglcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

PLA graphene nanoplatelets nanocomposites: Physical properties and release kinetics of an antimicrobial agent

2017

Abstract Graphene nanoplatelets (GnP) as filler and ciprofloxacin (CFX) as biocide were incorporated via melt-compounding into poly(lactic acid) (PLA) to obtain biopolymer-based nanocomposites with antimicrobial properties. GnP were added with the aim of improving the mechanical properties of the antimicrobial system and tuning the drug release. The obtained systems were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. Furthermore, rheological measurements were performed. The morphology of the samples was analyzed through scanning electron microscopy (SEM). Moreover, a mathematical model, i.e. power law model, was used to fit the release data in order…

BiocideMaterials scienceScanning electron microscopeKinetics02 engineering and technologyAntimicrobial activityengineering.material010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringpoly(lactic acid) (PLA)RheologyUltimate tensile strengthGraphene nanoplatelets (GnP)Composite materialNanocompositeNanocompositeMechanical EngineeringDrug release021001 nanoscience & nanotechnologyAntimicrobial0104 chemical sciencesMechanics of MaterialsCeramics and CompositesengineeringBiopolymer0210 nano-technologyMechanical propertieComposites Part B: Engineering
researchProduct

Polyamide 6/Graphene Oxide Nanohybrids

2013

graphene oxide polyamide functionalizazion nanocomposites
researchProduct

IMPROVED STABILITY OF GRAPHENE OXIDE-SILICA NANOHYBRIDS AND RELATED POLYMER-BASED NANOCOMPOSITES

2014

Although its promising properties make the graphene oxide (GO) very interesting as filler for polymer matrices, some problems related to its thermal stability in the region which ranges from 80 to 200 °C, are crucial for the possibility to melt process GO together with practically all the polymers [1,2]. Moreover, above 100 °C GO lamellae were found to become stacked. In this work, two different ways to preserve the GO structure and ensure its dispersion within different polymer matrices have been investigated and schematized in Fig. 1. Exfoliation plays a key-role in the achievement of good mechanical properties since it preserves the GO from both stacking phenomena. The capability of sili…

graphene oxide nanosilica nanohybrids thermal treatment melt processing.
researchProduct

Plasma Modification of CNTs and Their Use in the Preparation of PA6/CNT Nanocomposites

2011

Carbon nanotubes plasma modification nanocomposites
researchProduct

Structural and thermal stability of graphene oxide-silica nanoparticles nanocomposites

2017

Abstract The investigation of the thermal stability up to 400 °C of Graphene Oxide (GO) and GO-silica nanoparticles (n-SiO2) composites prepared by direct mixture of GO and n-SiO2 is reported. Using Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Energy Dispersive X-ray analysis, Atomic Force Microscopy, Raman and Infrared absorption measurements a thorough characterization of the prepared materials is carried out. By deepening the changes induced in the 2D Raman spectral region of GO at about 2900 cm−1 the comprehension of an interplay, driven by the thermally induced changes of the material, between inter-valley and intra-valley vibrational transitions is elucidated. This …

Materials scienceOxideNanoparticleInfrared spectroscopyNanotechnology02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundsymbols.namesakeX-ray photoelectron spectroscopylawMaterials ChemistryNanosilicaThermal stabilityGraphene oxideNanocompositeGrapheneMechanical EngineeringMetals and AlloysThermal stability021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of MaterialsRaman spectroscopysymbolsNanohybrid0210 nano-technologyRaman spectroscopy
researchProduct

Polysaccharide nanocrystals as fillers for PLA based nanocomposites

2016

The development of green nanocomposites based on biopolymers and bio-based nanofillers has attracted over the recent years the attention of academic and industrial research. Indeed, these nanocomposites could replace some oil-derived polymers and thus helping to overcome environmental problems. In this regard, PLA as matrix and polysaccharide nanocrystals as fillers are the most promising components to obtain high-performance green bio-nanocomposites suitable for different applications, particularly for packaging and biomedical applications. Indeed, at present, due to its processability, mechanical and biological properties, as well as its commercial availability, poly(lactic acid) (PLA) po…

Cellulose nanocrystals (CNCs)Materials sciencePolymers and PlasticsStarchNanotechnologyChitin nanocrystals (ChNCs)02 engineering and technology010402 general chemistryPolysaccharide01 natural sciencesPoly(lactic acid) (PLA)chemistry.chemical_compoundChitinCellulosePolysaccharide nanocrystalchemistry.chemical_classificationNanocompositeNanocompositePolymerBiodegradation021001 nanoscience & nanotechnologyStarch nanocrystals (SNCs)0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiNanocrystalchemistry0210 nano-technology
researchProduct

Hybrid biocomposites based on polylactic acid and natural fillers from Chamaerops humilis dwarf palm and Posidonia oceanica leaves

2022

AbstractPlatelet-like and fibrous lignocellulosic fillers were achieved from the leaves of Chamaerops humilis (CHL) and Posidonia oceanica (POL) and used as a hybrid reinforcement for a polylactic acid (PLA) matrix at three different loading levels (from 5 to 20%). The materials were fully characterized from a morphological, physicochemical, mechanical, and dynamic-thermomechanical point of view. When compared to their counterpart containing either CHL or POL only, the resulting hybrid biocomposites showed the highest mechanical properties, with strengthening and stiffening effects respectively up to 120% and 50% higher than those expected from the linear combination of the two, and higher …

Dwarf palmPolymers and PlasticsMaterials Science (miscellaneous)Materials ChemistryCeramics and CompositesLignocellulosic fillersDMAHybrid biocompositesInterphase
researchProduct

Scaffold con gradiente della dimensione dei pori per la migrazione selettiva di cellule eterotipiche

2014

Scaffold PLA gradiente funzionale
researchProduct

Polymer-based 'green' composites

2009

Settore ING-IND/22 - Scienza E Tecnologia Dei Materialiecocomposites biodegradable polymers mater-bi melt processing thermoplastics biocomposites
researchProduct

Effetto della preparativa sulle proprietà di nanocompositi a base di ossido di grafene

2014

Nanocompositi ossido di grafene poliammide 6
researchProduct

Carbon nanotubes modification by plasma treatment

2011

Carbon nanotubes plasma treatment
researchProduct

Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends

2018

This work focuses on the preparation of a piezoresistive sensor device, by exploiting an amphiphilic sample of graphene oxide (GO) as a compatibilizer for poly (lactic acid) (PLA)-Poly (ethylene-glycol) (PEG) blends. The presence of GO determined a high stiffening and strengthening effect, without affecting toughness, and allowed a good stability of mechanical properties up to 40 days. Moreover, GO endowed the materials with electrical properties highly sensitive to pressure and strain variations: the biodegradable pressure sensor showed a responsivity of 35 μA/MPa from 0.6 to 8.5 MPa, a responsivity around 19 μA/MPa from 8.5 to 25 MPa. For lower pressure values (around 0.16–0.45 MPa), inst…

Polymer-matrix composites (PMCs)Materials scienceOxideNanotechnologyCeramics and Composite02 engineering and technology010402 general chemistry01 natural sciencesSettore ING-INF/01 - Elettronicalaw.inventionchemistry.chemical_compoundEngineering (all)lawAmphiphileComposite materialInterphaseDynamic mechanical thermal analysis (DMTA)GrapheneGeneral Engineering021001 nanoscience & nanotechnologyPiezoresistive effectBiodegradable polymer0104 chemical sciencesLactic acidSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryRaman spectroscopyCeramics and CompositesGraphene0210 nano-technology
researchProduct

EFFETTO DI TIPOLOGIA E FUNZIONALIZZAZIONE DI NANOTUBI DI CARBONIO SULLE PROPRIETA’ DI FIBRE A MATRICE POLIAMMIDICA

2012

Si riportano i risultati relativi all'utilizzo di due campioni di CNT: uno commerciale (purezza 90%, L/D ≈ 50) ed uno sintetizzato e purificato ad hoc (purezza 99%, L/D ≈ 500) come filler per la realizzazione di fibre a matrice poliammidica. In particolare, si è investigato l’effetto della funzionalizzazione mediante plasma sulle proprietà reologiche, meccaniche ed elettriche delle fibre ottenute. La quantità di carica (2%) e le condizioni operative di trattamento al plasma sono state ricavate da studi precedenti. Le misure di viscosità elongazionale condotte sui campioni a base di CNT tal quali e funzionalizzati hanno messo in luce come l’introduzione della carica comporti un netto increme…

CNT fibre funzionalizzazione PA6
researchProduct

Mechanical behavior of polylactic acid/polycaprolactone porous layered functional composites

2016

Abstract Biopolymeric porous devices exhibiting graded properties can play a crucial role in several fields, such as tissue engineering or controlled drugs release. In this context, the gradient of a specific property can be achieved by developing porous laminates composed by different types of materials. This work presents for the first time a multi-phasic porous laminate based on polycaprolactone (PCL) and polylactic acid (PLA) prepared by combining melt mixing, compression molding and particle leaching. All the materials were characterized from a morphological and a mechanical point of view. The results put into evidence the possibility to tune and to predict the mechanical properties by…

Materials scienceCompression moldingCompression moldingFunctionally graded materialCeramics and Composite02 engineering and technology010402 general chemistry01 natural sciencesControlled drugsIndustrial and Manufacturing Engineeringchemistry.chemical_compoundLayered structurePolylactic acidTissue engineeringAdhesion; Compression molding; Functionally graded materials; Layered structures; Mechanical properties; Ceramics and Composites; Mechanics of Materials; Industrial and Manufacturing Engineering; Mechanical EngineeringMechanics of MaterialComposite materialPorosityMelt mixingMechanical Engineering021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of MaterialsPolycaprolactoneCeramics and CompositesAdhesionLeaching (metallurgy)0210 nano-technologyMechanical propertie
researchProduct

Statistical analysis of mechanical and dynamic-mechanical properties of PC/CNTs nanocomposites.

2013

full factorial design polycarbonate CNTs DMTA
researchProduct

Rapid and eco-friendly synthesis of graphene oxide-silica nanohybrids

2014

The increasing interest in Graphene oxide (GO) is due to many issues: the presence of both sp2-conjugated atoms and oxygen-containing functional groups provides a strong hydrophilicity and the possibility to further functionalize it with other molecules (i.e. π-π interactions covalent attachment etc.) [1]. Furthermore since the GO is biocompatible and noncytotoxic many studies have been recently focused on the development of GO-based nanodevices for bioimaging DNA detection drug delivery. Due to their low cytotoxicity and large internal surface area silica nanoparticles have been taken into account as promising material for biolabeling and drug loading/delivery. Particular consideration has recently been demonstrated for GO-silica composites because of the potentialities for electrical applications their chemical inertia and stability toward ions exposure. The possibility to combine the extraordinary properties of GO and silica offers several advantages for the realization of nanoprobes for biological applications and of biosensor [12]. The strategy for the fabrication of GO-nanosilica nanohybrids can be schematized as follows: (i) synthesis of GO by oxidizing graphite powder with the method described by Marcano et al. [3] (ii) Preparation of oxygen-loaded silica nanoparticles by thermal treatments in controlled atmosphere in order to induce high NIR emission at 1272 nm from high purity silica nanoparticles. (iii) preparation of GrO-silica nanohybrid films via rapid solvent casting in water. The nanohybrids were tested by XPS FTIR Raman analysis UV photoluminescence analysis TGA Zeta potential measurements electrical tests AFM and SEM. Several nanohybrids were prepared by combining two different typologies of GO and two different samples of silica.
researchProduct

Modelling the structure-property relationships of high performance PBAT-based biocomposites with natural fibers obtained from Chamaerops humilis dwar…

2022

Two fibrous fillers were achieved from stalks and leaves of Chamaerops humilis dwarf palm and tested as reinforcing agents for poly(butylene adipate co-terephthalate) (PBAT)-based composites. The influence of filler type and content on the morphomechanical properties of the green composites was assessed. The outcomes of tensile tests pointed out that both fillers are strong candidates to overcome the two main limiting aspects of PBAT, that is, the lack of both stiffness and cost-effectiveness, while preserving its stretchability and environmental sustainability. The remarkable stiffness increments (up to 300%), combined with fair retention of stretchability (33%) and doubled resistance, led…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymer-matrix composites (PMCs) Bio composites Natural fibre composites Mechanical properties InterphaseGeneral EngineeringCeramics and CompositesComposites Science and Technology
researchProduct

Physical properties of green composites based on poly-lactic acid or Mater-Bi® filled with Posidonia Oceanica leaves

2018

Abstract This work focuses on the evaluation of Posidonia Oceanica leaves as effective reinforcing agent for ecofriendly, fully biodegradable polymer composites. Posidonia leaves were washed, ground and sieved in order to achieve two different size distributions and aspect ratios. They were then added to either a stiff or a ductile biodegradable polymer matrix, respectively poly-lactic acid (PLA) and MaterBi® (MB), at two different filler contents (10 wt% and 20 wt%). The materials were fully characterized from a spectroscopic, morphological, rheological, and mechanical point of view. In particular, the outcomes of tensile tests were statistically analyzed by using a Full Factorial Design i…

MaterBiToughnessFiller (packaging)Materials scienceCeramics and Composite02 engineering and technology010402 general chemistry01 natural sciencesPosidonia OceanicaUltimate tensile strengthComposite materialElastic moduluschemistry.chemical_classificationbiologyFull factorialPolymerFactorial experiment021001 nanoscience & nanotechnologybiology.organism_classificationBiodegradable polymer0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsPosidonia oceanicaCeramics and CompositesPLAGreen composite0210 nano-technologyComposites Part A: Applied Science and Manufacturing
researchProduct

High performance PA6/CNTs nanohybrid fibers prepared in the melt

2012

Commercial and home-made carbon nanotubes (CNTs) were plasma treated under oxygen atmosphere and then added to polyamide 6 (PA6) in order to prepare fibres by melt spinning. For comparison, pristine nanofillers were used too. The effect of functionalization and of filler characteristics on the morphological, rheological, mechanical and electrical properties of the fibres was studied by TEM and SEM, rheological measurements, tensile and electrical conductivity tests. The results demonstrated that the functionalization led to a better mechanical performance and the morphological analysis confirmed that the adhesion, the dispersion and the alignment of the nanotubes within the polymer matrix w…

chemistry.chemical_classificationCarbon nanotubes; Electrical properties; Elastic properties; Raman spectroscopy; Melt-spinningElectrical propertieMaterials scienceElastic propertieGeneral EngineeringMechanical properties of carbon nanotubesPolymerCarbon nanotubeConductivityMelt-spinningCarbon nanotubelaw.inventionchemistrylawRaman spectroscopyPolyamideUltimate tensile strengthCeramics and CompositesSurface modificationComposite materialMelt spinningComposites Science and Technology
researchProduct

Processing-structure-property relationships of electrospun PLA-PEO membranes reinforced with enzymatic cellulose nanofibers

2020

Abstract Three different solvent mixtures were used to prepare electrospun membranes based on polylactic acid (PLA), polyethylene oxide (PEO) and enzymatic cellulose nanofibers (CNF). The materials were characterized from a morphological, spectroscopic, mechanical and rheological point of view. Furthermore, swelling test were performed in order to assess the water uptake of each sample. The results put into evidence that the choice of the solvents affects the structure and the properties of the membranes. Among the protocols tested, using chloroform/acetone/ethanol mixture was found to allow a high degree of CNF dispersion and a good electrospinnability of polymer solutions. These features …

Materials sciencePolymers and Plastics02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundPolylactic acidUltimate tensile strengthmedicineCellulosechemistry.chemical_classificationBionanocomposites Electrospinning Nanocellulose Polyethylene oxide Polylactic acid Raman spectroscopyOrganic Chemistrytechnology industry and agriculturePolymer021001 nanoscience & nanotechnology0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMembranechemistryChemical engineeringNanofiberSwellingmedicine.symptom0210 nano-technologyPolymer Testing
researchProduct

Preparation and mechanical characterization of polycaprolactone/graphene oxide biocomposite nanofibers

2016

Biocomposite nanofiber scaffolds of polycaprolactone (PCL) filled with graphene oxide (GO) were prepared using electrospinning technology. Morphological and mechanical properties of the scaffolds were characterized in dry and wet environment. The results showed that the successful incorporation of GO nanosheets into PCL polymer nanofibers improved their mechanical properties. Furthermore it was demonstrated the higher performance achieved when GO is filled at low concentration in the nanofibers.

chemistry.chemical_classificationMaterials scienceElectrospinningGrapheneOxidePolymerElectrospinninglaw.inventionPolycaprolactoneTissue engineering.chemistry.chemical_compoundchemistryChemical engineeringTissue engineeringlawNanofiberPolycaprolactoneBiocompositeComposite materialGraphene oxideAIP Conference Proceedings
researchProduct

Optimization of two-step techniques engineered for the preparation of polyamide 6 graphene oxide nanocomposites

2019

Abstract Different processing conditions to achieve polyamide 6 (PA6)-graphene oxide (GO) nanocomposites were investigated. GO was pre-dispersed in PA6 by three different solvent-based methods and, further, melt processed to prepare nanocomposites at two different loading levels, namely 2 and 5 wt.%. The evolution of rheological and mechanical properties was analyzed by investigating eventual changes in the microstructure and polymer crystallinity, aiming at providing a detailed processing-structure-properties relationship for these systems.

Materials scienceCrystallization of polymersOxidegraphene PA6 Two-step processing Wet phase inversion Rheology02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundRheologylawComposite materialNanocompositeGrapheneMechanical Engineering021001 nanoscience & nanotechnologyMicrostructure0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsPolyamideCeramics and Composites0210 nano-technology
researchProduct

MULTIFUNCTIONAL FIBERS BASED ON POLYAMIDE 6 AND PLASMA FUNCTIONALIZED CARBON NANOTUBES MoDeSt 2012 Conference, Praga, 2-6 Settembre 2012.

2012

Commercial (CNT 1) and ad hoc synthesized carbon nanotubes (CNT 2) were plasma treated under oxygen atmosphere and then added to polyamide 6 (PA 6) in order to prepare multifunctional fibres by melt spinning. For comparison, pristine nanofillers were used too. The effect of functionalization and of filler characteristics on the morphological, rheological, mechanical and electrical properties of the fibers was studied by TEM and SEM, rheological measurements, tensile tests and electrical conductivity tests. The amalysis of Raman spectra put into evidence that the intensity of D-band (correlated with the degree of functionalization by the different vibration mode of carbon atoms in the presen…

CNTs melt spinning plasma functionalizationelectrical conductivity.
researchProduct

PLA-based functionally graded laminates for tunable controlled release of carvacrol obtained by combining electrospinning with solvent casting

2020

Abstract A novel approach was designed to fabricate high-added value manufacts, starting from cost-effective materials and combining well-known processing techniques. Bi- and three-layered, functionally graded laminates were achieved by direct electrospinning onto dense substrates. The architecture of each multilayer comprises a dense layer formed by solvent casting, which is constituted by polylactic acid (PLA) and carvacrol, and one or two electrospun fibrous skin layers, consisting of PLA only. Processing-structure-properties relationships of such materials were investigated. As regards mechanical behavior, the amount of fibrous PLA layers determined an increase of stiffness from 20 to 3…

Materials sciencePolymers and PlasticsGeneral Chemical Engineering02 engineering and technology010402 general chemistry01 natural sciencesBiochemistrychemistry.chemical_compoundPolylactic acidUltimate tensile strengthMaterials ChemistryEnvironmental ChemistryComposite materialControlled drug release Electrospinning onto film Functionally graded Multilayer Peppas model Solvent castingGeneral Chemistry021001 nanoscience & nanotechnologyControlled releaseCastingElectrospinning0104 chemical sciencesSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryElongation0210 nano-technologyLayer (electronics)Reactive and Functional Polymers
researchProduct

Statistical analysis of the performances of PC/CNTs nanocomposites

2013

full factorial design PC CNTs electrical properties nanocomposites
researchProduct

Incorporation of an antibiotic in poly(lactic acid) and polypropylene by melt processing

2016

Purpose In this work an antibiotic, ciprofloxacin (CFX), was incorporated into 2 different polymeric matrices, poly(lactic acid) (PLA) and polypropylene (PP), to provide them with antimicrobial properties. The influence of CFX content on release kinetics and on antimicrobial and mechanical properties was evaluated. Methods CFX was incorporated into both the polymers by melt mixing. Results The effect of CFX incorporation was found to strongly depend on which polymer matrix was used. In particular, the antimicrobial tests revealed that PLA samples containing CFX produced no inhibition zone and only a slight antibacterial activity was observed when the highest concentration of CFX was added t…

Materials sciencemedicine.drug_classPolyestersAntibioticsPolypropylene (PP)BiophysicsBiomedical EngineeringBioengineering02 engineering and technologyPolypropylenes010402 general chemistry01 natural sciencesPoly(lactic acid) (PLA)Biomaterialschemistry.chemical_compoundDegradationCiprofloxacinPolymer chemistrymedicinePolypropylenePolymeric matrixGeneral Medicine021001 nanoscience & nanotechnologyAntimicrobialAnti-Bacterial Agents0104 chemical sciencesLactic acidCiprofloxacinAntimicrobial propertiechemistryBiophysicDelayed-Action Preparations0210 nano-technologyNuclear chemistrymedicine.drug
researchProduct

Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships

2017

Abstract Polycaprolactone (PCL) biocomposite nanofiber scaffolds with different concentrations of graphene oxide (GO) and GO surface grafted with poly(ethylene glycol) (GO-g-PEG) were prepared by electrospinning. Morphological, mechanical as well as wettability characterizations of electrospun nanofibers were carried out. Results showed that the average diameter of PLA/GO electrospun nanofibers decreased upon increasing the filler content. Differently, the diameter increased while using GO-g-PEG. Both nanofillers enhanced the electrospun PCL hydrophilicity even if PCL/GO-g-PEG samples exhibited improved wettability. The Young moduli of the composite nanofiber mats were improved by adding GO…

Materials scienceComposite numbermacromolecular substances02 engineering and technology010402 general chemistry01 natural sciencesMultifunctional compositechemistry.chemical_compoundPEG ratioComposite materialtechnology industry and agriculturePEGylated graphene oxideequipment and supplies021001 nanoscience & nanotechnologyGraftingElectrospinning0104 chemical scienceschemistryMechanics of MaterialsNanofiberPolycaprolactoneCeramics and CompositesBiocomposite0210 nano-technologyBiocompositeMechanical propertieEthylene glycolComposites Part A: Applied Science and Manufacturing
researchProduct

PEGylated graphene oxide (GO-PEG) as new carrier for chemotherapeutic agent delivery

2015

Graphene, a single layer of sp2 -hybridized carbon atoms arranged in a honeycomb two-dimensional (2-D) crystal lattice, has evoked enormous interest throughout the scientific community since its first appearance in 2004. Due to its unique structure and geometry, graphene possesses remarkable physical–chemical properties (including large specific surface area and biocompatibility) that enable it to be an ideal material for several of applications, ranging from quantum physics, nanoelectronics, energy research, catalysis and engineering of nanocomposites and biomaterials. In the area of nanomedicine, graphene and its derivatives can be exploited for a broad range of applications, including a …

Settore ING-IND/22 - Scienza E Tecnologia Dei Materialicarrier chemotherapeutic agent
researchProduct

Mechanical behaviour of Mater-Bi/wood flour composites: a statistical approach

2008

Interest in biocomposites (lignocellulosic filled biopolymers) started in the 90s, due to environmental advantages, related to the full biodegradability of both matrix and filler, economical issues (organic fillers usually come from sawmill or agriculture wastes) and aesthetical issues (wood filled biopolymers could be particularly pleasant if used for indoor furnishing and automotive interior). In this work, a method for a systematic study of the properties of Mater-Bi®/wood flour composites is presented. A two-level full factorial model was built. It allows investigating the effects of multiple operative variables on the observed properties, their contributions, their optimal combinations…

chemistry.chemical_classificationFiller (packaging)Materials sciencestatistical properties/methodelectron microscopyMixing (process engineering)polymer-matrix composites (PMCs)Izod impact strength testWood flourPolymerAspect ratio (image)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsCeramics and CompositesHeat deflection temperaturemechanical propertieComposite materialElastic modulus
researchProduct

An Overview of Functionalized Graphene Nanomaterials for Advanced Applications

2021

Interest in the development of graphene-based materials for advanced applications is growing, because of the unique features of such nanomaterials and, above all, of their outstanding versatility, which enables several functionalization pathways that lead to materials with extremely tunable properties and architectures. This review is focused on the careful examination of relationships between synthetic approaches currently used to derivatize graphene, main properties achieved, and target applications proposed. Use of functionalized graphene nanomaterials in six engineering areas (materials with enhanced mechanical and thermal performance, energy, sensors, biomedical, water treatment, and c…

graphene quantum dotsComputer scienceGrapheneGeneral Chemical EngineeringgrapheneFunctionalized grapheneNanotechnologyReviewDrug releasefuel cellssensorsCatalysisNanomaterialslaw.inventionChemistrylawDrug releaseFuel cellsgraphene oxideTissue engineeringWater treatmentGeneral Materials ScienceQD1-999energyNanomaterials
researchProduct

Multifunctional fibers based on polyamide 6 and plasma functionalized carbon nanotubes.

2013

melt-spinning PA 6 CNTs plasma functionalization
researchProduct

Flexible mats as promising antimicrobial systems via integration of Thymus capitatus (L.) essential oil into PLA

2020

Aim: To develop electrospun mats loaded with Thymus capitatus (L.) essential oil ( ThymEO) and to study their morpho-mechanical and antimicrobial properties. Materials & methods: Poly(lactic acid) (PLA) mats containing ThymEO were prepared by electrospinning. The effect of ThymEO on the morpho-mechanical properties of fibers was assayed by scanning electron microscopy and dynamometer measurements. The antimicrobial activity of ThymEO delivered either in liquid or vapor phase was assessed through killing curves and invert Petri dishes method. The cytotoxicity was also investigated. Results: The mechanical properties were enhanced by integrating ThymEO into PLA. Both liquid and vapors of…

Microbiology (medical)Scanning electron microscope02 engineering and technology010402 general chemistry01 natural sciencesMicrobiologylaw.inventionchemistry.chemical_compoundfoodlawCytotoxicityEssential oilChromatographyantimicrobial activity; electrospun mats; essential oil; mechanical properties; vapor efficacyPetri dishtechnology industry and agricultureequipment and supplies021001 nanoscience & nanotechnologyAntimicrobialfood.foodElectrospinning0104 chemical sciencesLactic acidantimicrobial activity electrospun mats essential oil mechanical properties vapor efficacychemistryThymus capitatus0210 nano-technologyFuture Microbiology
researchProduct

Synthesis and self-assembly of a PEGylated-graphene aerogel

2016

Abstract In the frame of this work, we present, for the first time, the synthesis and self-assembly of an aerogel built by graphene oxide-polyethylene glycol. The synthetic route involves at first the coupling of GO with an amino-terminated polyethylene glycol sample by carbodiimide in aqueous environment, and the subsequent conversion of the hydrogel achieved into an aerogel via freeze-drying. The 3D PEGylated graphene-based aerogel, characterized by spectroscopic, morphological, structural and mechanical analyses, displays an ultralight and highly porous (99.7%) network and possesses high mechanical properties together with a good biocompatibility.

del-assemblyMaterials sciencesynthesisBiocompatibility02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundEngineering (all)lawHighly porousB.Stress/strain curveD.Raman spectroscopycharacterizationComposite materialGraphene oxideCarbodiimidePEGylated-grapheneAqueous solutionGraphenetechnology industry and agricultureGeneral EngineeringAerogel021001 nanoscience & nanotechnologyB.Porosity/void0104 chemical scienceschemistryCeramics and CompositesSelf-assembly0210 nano-technologyA.Functional compositeComposites Science and Technology
researchProduct

Nanopiattaforme di Ossido di Grafene perfluorurate: materiali biocompatibili con affinità per l'ossigeno

L’attacco covalente di molecule perfluorurate su ossido di graphene (GO) via sostituzione nucleofila aromatica ha consentito una facile funzionalizzazione delle lamelle di GO.1,2 La performance delle nanopiattaforme perluorurate (GOF) nell’uptake e rilascio di ossigeno è stata valutata in condizioni di pH fisiologico a differenti concentrazioni e temperature, dimostrando una maggiore affinità del materiale perfluorurato GOF rispetto al GO pristino. Anche a basse concentrazioni GOF ha mostrato valori di uptake di ossigeno a saturazione e velocità di diffusione superiori ad altri materiali proposti in letteratura per ingegneria tissutale, per l’ossigenazione cellulare durante la rigenerazione…

ossido di grafene catene perfluorurate materiali biocompatibili affinità per ossigeno
researchProduct

A green method to prepare nanosilica modified graphene oxide to inhibit nanoparticles re-aggregation during melt processing

2017

Abstract A graphene oxide-silica nanohybrid (GOS), self-assembled into a lasagna -like structure, was prepared in water and used as a filler for the melt preparation of polyamide 6 (PA6)-based nanocomposites. For sake of comparison, PA6-based materials were prepared under the same processing conditions by adding GO only or a physical mixture of GO and silica (GO+S). All the materials were characterized from a morphological, spectroscopic, thermal, dynamic-mechanical (DMA) and mechanical point of view. For all the nanocomposites, the interphase was studied either by analyzing loss factor plots coming from DMA measurements and by implementing a novel approach, i.e. combining solvent extractio…

Materials scienceGeneral Chemical EngineeringOxideNanoparticle02 engineering and technologyGraphene-ceramics010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundlawEnvironmental ChemistryInterphasechemistry.chemical_classificationGreen processing; SEM; Dynamic mechanical thermal analysis (DMTA); Mechanical properties; Interphase; Graphene-ceramicsDynamic mechanical thermal analysis (DMTA)NanocompositeGrapheneGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringchemistrySEMPolyamide0210 nano-technologyDispersion (chemistry)Ternary operationMechanical propertieGreen processingChemical Engineering Journal
researchProduct

Green Nanocomposites-Based on PLA and Natural Organic Fillers

2017

Over the past decades, many efforts have been carried out for the development of novel green nanocomposites based on biopolymers and natural organic nanofillers. Indeed, these nanocomposites could replace some oil-derived polymers and thus helping to overcome environmental problems. In this regard, poly (lactic acid) (PLA) as matrix and polysaccharide nanocrystals (cellulose, chitin, and starch) as bio-based nanoreinforcements are the most promising components to obtain high-performance green nanocomposites. This chapter covers the basic features of PLA and polysaccharide nanocrystals derived from biomass-based raw materials such as cellulose, chitin, and starch. In particular, this chapter…

Materials scienceNanocompositeChemical engineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesNatural (archaeology)Poly (lactic acid) (PLA) nanocomposites polysaccharide nanocrystals cellulose nanocrystals (CNCs) chitin nanocrystals (ChNCs) starch nanocrystals (SNCs)0104 chemical sciences
researchProduct

Perfluorocarbons–graphene oxide nanoplatforms as biocompatible oxygen reservoirs

2018

Abstract 3-Pentadecafluoroheptyl,5-perfluorophenyl-1,2,4-oxadiazole (FOX) molecules were attached onto a graphene oxide (GO) via a facile aromatic substitution in alkaline environment. This approach allows achieving high degree of functionalization under mild conditions. The covalent attachment of perfluoromoieties onto GO lamellae was confirmed by spectroscopic analyses. The performance of these nanoplatforms (GOF) as oxygen reservoirs was assessed at different concentrations and temperature. The results revealed that under physiologic conditions GO and FOX synergistically operate for increasing oxygen uptake and release, either from a thermodynamic and a kinetic point of view. Even at low…

General Chemical EngineeringOxidechemistry.chemical_elementNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesOxygenIndustrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundTissue engineeringlawXPSEnvironmental ChemistryMoleculeChemical Engineering (all)RamanGraphene oxideGrapheneChemistryChemistry (all)Settore CHIM/06 - Chimica OrganicaGeneral Chemistry021001 nanoscience & nanotechnologyOxygen exchangePerfluorocarbon0104 chemical sciencesSettore BIO/18 - GeneticaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiChemical engineeringCovalent bondSurface modificationAFM0210 nano-technologySaturation (chemistry)Chemical Engineering Journal
researchProduct

Influence of oxidation level of graphene oxide on the mechanical performance and photo-oxidation resistance of a polyamide 6

2019

The aim of this work is to study the relationship between the chemical-physical properties of graphene oxide (GO) and the performance of a polyamide 6 (PA6) in terms of mechanical reinforcement and resistance to UV-exposure. For this purpose, two samples of GO possessing different oxidation degrees were added (0.75 wt.%) to PA6 by way of a two-step technique and the materials achieved were carefully analysed from a morphological, chemical-physical, mechanical point of view. Photo-oxidation tests were carried out to assess the performance of this class of nanohybrids after 240 h of UV-exposure. The results reveal that both nanocomposites exhibit enhanced mechanical performance and durability…

Materials scienceantioxidantPolymers and Plasticsphoto-stabilityOxidereactive mixingArticleDurabilitylaw.inventionlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistrylawnanocompositesUV-shieldingPhotodegradationATR/FTIRradical scavengingNanocompositeNanocompositeUV-shielding.GrapheneUV irradiationGeneral ChemistryDurabilityChemical engineeringchemistryCovalent bondPolyamideInterphasephoto-degradation
researchProduct

CORRELATION BETWEEN THE CHEMICAL-PHYSICAL PROPERTIES OF CNT AND MACROSCOPIC PROPERTIES OF RELATED NANOCOMPOSITES: A STATISTICAL APPROACH

2014

In the frame of this work, two different samples of CNTs, namely CNT 1 and CNT 2, were synthesized [1] with different degree of purity and aspect ratio and used as fillers either without any treatment or after a plasma-oxidation, to prepare polycarbonate (PC)-based nanocomposites by melt mixing. The influence of plasma treatment, filler content and type of CNTs on the mechanical, dynamic-mechanical, and electrical properties of the materials was assessed by a two level full factorial design. The morphological analysis carried out by SEM and TEM evidenced the formation of a nanohybrid structure when oxidized CNTs were used as filler. Generally speaking, CNT 2 showed the best dispersion and t…

CNTs PC nanocomposites statistical analysis full factorial design DMTA
researchProduct

Realizzazione di nanocompositi a base di PA6 e CNT funzionalizzato al plasma

2011

nanocompositi nanotubi di carbonio plasma
researchProduct

Ecocompositi MaterBi (R)/Farina di legno: ottimizzazione delle proprietà attraverso analisi statistica

2009

polimeri biodegradabili analisi statistica ecocompositi farina di legnoSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali
researchProduct

Ionic tactile sensors as promising biomaterials for artificial skin: Review of latest advances and future perspectives

2021

Abstract Ionic tactile sensors (ITS) are an emerging subfield of wearable electronics, capable of mimicking the human skin, including not only the typical anisotropic structure, mechanical behaviour, and tactile functions but even the mechanosensitive ionic channels that are crucial for the human sense of touch. With the rapid development of intelligent technology, such bioinspired materials constitute the core foundation of intelligent systems and are a candidate to be the next generation e-skins, offering a more accurate and evolved biointerface. In the latest years, a wealth of novel ultra-stretchable ITS was proposed, progressively refining the choice of soft materials, including ion ge…

Polymers and PlasticsComputer sciencebusiness.industryOrganic ChemistryIntelligent decision support systemGeneral Physics and AstronomyIonic bondingRoboticsNanotechnologyBiointerface02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesHydrogel Ion gel Ionic liquid Pressure sensor Strain sensor Stretchable sensor Tactile sensorArtificial skin0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSelf-healing hydrogelsMaterials ChemistryArtificial intelligence0210 nano-technologybusinessTactile sensorWearable technology
researchProduct

Synthesis of a fluorinated graphene oxide-silica nanohybrid: Improving oxygen affinity

2016

An easy method to achieve a fluorinated graphene oxide–silica nanohybrid (GOSF) is presented. Graphene oxide (GO) was synthesized by Hummer's modified method, the GO–silica nanohybrid (GOS) was obtained via Fischer esterification, the fluorinated moiety (3-pentadecafluoroheptyl-5-perfluorophenyl-1,2,4-oxadiazole) was introduced by nucleophilic substitution operated by the hydroxyl functionalities onto the GOS surface. Full characterization of the new materials confirmed the formation of covalent bonds between the graphene oxide/silica hybrid matrix and the fluorinated moieties. The proposed methodology offers an easy way to get fluorinated carbon/silica hybrid nanomaterials avoiding the har…

Materials scienceGeneral Chemical EngineeringOxidechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesNanomaterialslaw.inventionchemistry.chemical_compoundlawPolymer chemistryNucleophilic substitutionMoietyChemical Engineering (all)GrapheneChemistry (all)General ChemistrySettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnology0104 chemical sciencesMembraneSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringCovalent bond0210 nano-technologyChemical Engineering (all); Chemistry (all)Carbon
researchProduct

A facile and eco-friendly route to fabricate poly(Lactic acid) scaffolds with graded pore size

2016

Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distr…

Pore sizeMaterials sciencePolymersGeneral Chemical EngineeringParticulate leachingBiocompatible MaterialsBioengineeringContext (language use)02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyPolyethylene Glycolschemistry.chemical_compoundTissue engineeringMelt mixingPEG ratioHumansLactic AcidPorosityTissue EngineeringTissue ScaffoldsGeneral Immunology and MicrobiologyGeneral NeuroscienceInterface tissue engineeringPore size gradientFunctionally graded scaffold021001 nanoscience & nanotechnologyEnvironmentally friendlyPEG0104 chemical sciencesLactic acidchemistryChemical engineeringPLA0210 nano-technologyPorosity
researchProduct

Green Composites Based on Hedysarum coronarium with Outstanding FDM Printability and Mechanical Performance

2022

The addition of natural scraps to biodegradable polymers has gained particular interest in recent years, allowing reducing environmental pollution related to traditional plastic. In this work, new composites were fabricated by adding 10% or 20% of Hedysarum coronarium (HC) flour to Poly (lactic acid) (PLA). The two formulations were first produced by twin screw extrusion and the obtained filaments were then employed for the fabrication of composites, either for compression molding (CM) or by fused deposition modeling (FDM), and characterized from a morphological and mechanical point of view. Through FDM it was possible to achieve dense structures with good wettability of the filler that, on…

biocompositesFDMPolymers and Plastics<i>Hedysarum coronarium</i>; sulla; polylactic acid; FDM; 3D printing; biocomposites; composites; mechanical properties; biopolymers; natural fillerbiopolymers3D printingnatural fillerGeneral Chemistrymechanical propertiesHedysarum coronariumpolylactic acidcompositessullaPolymers; Volume 14; Issue 6; Pages: 1198
researchProduct

Bilayer biodegradable films prepared by co-extrusion film blowing: Mechanical performance, release kinetics of an antimicrobial agent and hydrolytic …

2020

Abstract Bilayer biodegradable, eco-friendly films were prepared by co-extrusion film blowing, coupling polylactic acid (PLA) and Bio-flex ® (BIO). Furthermore, in the PLA layer, carvacrol (CRV) was added as a natural antimicrobial additive, whereas a nanoclay (D72T) was integrated to protect CRV from volatilization and to modulate release. The materials were analyzed by morphological, chemical-physical, mechanical testing. Furthermore, CRV release and degradation tests were performed. The results pointed out that coupling the two matrices allows gathering the stiffness of PLA with the ductility of BIO. Furthermore, the interlayer adhesion is promoted by CRV. D72T exerts a key-role in avoid…

D. Mechanical testingMaterials scienceKinetics02 engineering and technology010402 general chemistry01 natural sciencesE. Extrusion.law.inventionchemistry.chemical_compoundMagazinePolylactic acidlawMonolayerB. Environmental degradationComposite materialBilayerAdhesion021001 nanoscience & nanotechnology0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiChemical engineeringchemistryMechanics of MaterialsA. Multifunctional compositeCeramics and CompositesDegradation (geology)0210 nano-technologyLayer (electronics)Composites Part A: Applied Science and Manufacturing
researchProduct

Green Composites Based on PLA and Agricultural or Marine Waste Prepared by FDM

2021

Three dimensional-printability of green composites is recently growing in importance and interest, especially in the view of feasibility to valorize agricultural and marine waste to attain green fillers capable of reducing bioplastic costs, without compromising their processability and performance from an environmental and mechanical standpoint. In this work, two lignocellulosic fillers, obtained from Opuntia ficus indica and Posidonia oceanica, were added to PLA and processed by FDM. Among the 3D printed biocomposites investigated, slight differences could be found in terms of PLA molecular weight and filler aspect ratio. It was shown that it is possible to replace up to 20% of bioplastic …

3D printing Additive manufacturing Aspect ratio Biocomposites Degradation Mechanical properties Opuntia ficus indica Polylactic acid Posidonia oceanica Water contact angle3d printed<i>Opuntia ficus indica</i>Materials sciencePolymers and PlasticsOpuntia ficusOrganic chemistry<i>Posidonia oceanica</i>mechanical propertiesengineering.materialBioplasticArticlechemistry.chemical_compoundQD241-441Polylactic acidFiller (materials)Composite materialpolylactic acidOpuntia ficus indicadegradationbiocompositeswater contact anglePosidonia oceanica3D printingGeneral ChemistryBiodegradationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryengineeringDegradation (geology)aspect ratioadditive manufacturingPolymers
researchProduct

PHOTO-OXIDATION OF PA6/GRAPHENE OXIDE FILMS

2014

Graphene oxide (GrO) was synthesized with Marcano’s method [1] and added at 0.5 and 1 wt% loading content to a polyamide 6 (PA6). In particular, three different techniques have been used for the preparation of the nanocomposites: (i) melt blending in a batch mixer, (ii) solvent casting in formic acid, (iii) preparation of a masterbatch by solvent casting and further melt processing. The films (80 m) were photo-oxidized in a QU-V chamber up to about 100 hours. The effect of filler content and preparation technique on the photo-stability of the nanocomposites has been followed by monitoring the change of the mechanical and spectroscopic properties undergone upon artificial exposure to UV-B l…

Photo-oxidation nanocomposites graphene oxide PA6
researchProduct

Development of polymeric functionally graded scaffolds: a brief review.

2016

Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance. In general, FGSs can be categorized as bilayered or multilayered, depending on the number…

Materials scienceTissue EngineeringTissue ScaffoldsPolymers0206 medical engineeringBiomedical EngineeringBiophysicsBioengineeringNanotechnologyFunctionally graded scaffoldBiocompatible Materials02 engineering and technologyGeneral Medicine021001 nanoscience & nanotechnology020601 biomedical engineeringBiomaterialsTissue engineeringMultilayerBilayer0210 nano-technologyJournal of applied biomaterialsfunctional materials
researchProduct

Orientation and exfoliation of clay nanoparticles in the spinning of a nanobiocomposite sample

2016

Polymer nanobiocomposites represent a new group of materials filled with inert nanosized particles that show very interesting properties with respect to the matrix and the same biodegradability of the matrix. In this work we have studied the effect of the elongational flow on the morphology and dynamic-mechanical properties of a new nanobiocomposite made by a matrix of biodegradable PLA and a filler of organomodified montmorillonite.

nanocompositemelt spinningbiopolymerclay
researchProduct

Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review

2019

The environmental performance of biodegradable materials has attracted attention from the academic and the industrial research over the recent years. Currently, degradation behavior and possible recyclability features, as well as actual recycling paths of such systems, are crucial to give them both durability and eco-sustainability. This paper presents a review of the degradation behaviour of biodegradable polymers and related composites, with particular concern for multi-layer films. The processing of biodegradable polymeric films and the manufacturing and properties of multilayer films based on biodegradable polymers will be discussed. The results and data collected show that: poly-lactic…

Materials sciencePolymers and PlasticsMoistureIndustrial researchbiodegradable polymerGeneral ChemistryTransesterificationReviewcoextrusionrecyclingfilmDurabilityBiodegradable polymerHydrolytic degradationlcsh:QD241-441multi-layerChemical engineeringlcsh:Organic chemistrybiodegradable polymersDegradation (geology)filmsMulti layerdegradationPolymers
researchProduct

Melt-spun conductive fibers containing functionalized CNTs

2013

melt spinning electrical properties PA6 CNTs
researchProduct

Plasma Modification of MWCNTs and Their Use in the Preparation of PA6/MWCNT Nanocomposites

2011

CNTs nanocomposites plasma functionalization
researchProduct

Synthesis and characterization of PEGylated graphene oxide for sorafenib modified release

2015

Concept Graphene, a single layer of sp2-hybridized carbon atoms arranged in a honeycomb two-dimensional (2-D) crystal lattice, has evoked enormous interest throughout the scientific community since its first appearance in 2004. Due to its unique structure and geometry, graphene possesses remarkable physical-chemical properties (including large specific surface area and biocompatibility) that enable it to be an ideal material for several applications, ranging from quantum physics, nanoelectronics, energy research, catalysis and engineering of nanocomposites and biomaterials. In the area of nanomedicine, graphene and its derivatives can be exploited for a broad range of applications, includin…

GRAPHENESORAFENIBDRUG RELEASEGO-PEGgraphene sorafenib release
researchProduct

Pore size graded scaffold for selective cellular permeation

2014

tissue engineering pore size graded scaffold PLA PEG
researchProduct

Hydrolytic degradation of PLA/Posidonia Oceanica green composites: A simple model based on starting morpho-chemical properties

2021

Abstract In this work, we studied the degradability of PLA-based biocomposites containing Posidonia Oceanica flour at different loading levels and aspect ratios. Hydrolytic tests were carried out in neutral (pH = 7.4) and alkaline (pH = 10) environment. Time-dependent evolution of some key features, including residual mass and solution uptake, was monitored, and correlated with the changes observed in both morphology and chemical structure of the matrix. The results pointed out that biocomposites degraded much faster than neat PLA in both conditions, up to lose 70% of their initial weight after 1000 h immersion. A complex mechanism was unveiled, evidencing the crucial role of the fillers, c…

chemistry.chemical_classificationBio composites Durability Environmental degradation Hydrolytic degradation Natural fibre compositesMorphology (linguistics)Materials sciencebiologyChemical structureGeneral Engineering02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnologybiology.organism_classification01 natural sciences0104 chemical sciencesMatrix (chemical analysis)HydrolysisSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryPosidonia oceanicaCeramics and CompositesDegradation (geology)Chemical stabilityComposite material0210 nano-technology
researchProduct

Lignocellulosic fillers and graphene nanoplatelets as hybrid reinforcement for polylactic acid: Effect on mechanical properties and degradability

2020

Abstract This work investigates the effect of adding relatively low amounts of graphene nanoplatelets (GNP) to a biocomposite based on polylactic acid (PLA) and a lignocellulosic filler achieved by grinding Posidonia Oceanica leaves (Posidonia flour, PF). The ternary composites were prepared by melt extrusion and characterized from a morphological and mechanical point of view. Furthermore, hydrolytic degradation tests were performed under acidic, neutral and alkaline environment up to 900 h. Density measurements enabled to assess the degree of intraphase, i.e. the capability of polymer macromolecules to enter the voids of PF and a modified Halpin-Tsai model was presented and used to fit exp…

Materials scienceHydrolytic degradationHybrid composite02 engineering and technologyengineering.material010402 general chemistry01 natural scienceschemistry.chemical_compoundPolylactic acidFiller (materials)Ultimate tensile strengthComposite materialchemistry.chemical_classificationGeneral EngineeringPosidonia oceanicaPolymer021001 nanoscience & nanotechnology0104 chemical sciencesGrindingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryCeramics and CompositesengineeringBiocompositeGrapheneHalpin-tsai0210 nano-technologyTernary operationMacromolecule
researchProduct

Effect of adding wood flour to the physical properties of a biodegradable polymer

2008

Wood flour/polymer composites (WPC) gained a significant interest during the last decades, due to several advantages related to the use of a natural-organic filler rather than an inorganic-mineral one. However, most of the studies have been performed on composites based on polyolefin matrices. A further step is the use of biodegradable polymers instead of traditional ones. In this work, wood flour (WF), under the form of short fibers, with two different sizes (coarse and fine) was added to a corn starch based biodegradable polymer of the Mater-Bi family. The effect of WF size, WF content, thermal treatment on the mechanical properties was investigated. The tensile mechanical tests showed an…

Materials sciencefood and beveragesWood flourIzod impact strength testBiodegradable polymerPolyolefinchemistry.chemical_compoundchemistryMechanics of MaterialsUltimate tensile strengthCeramics and CompositesHeat deflection temperaturePolymer blendComposite materialElastic modulus
researchProduct

Use of carbon nanotubes functionalized via plasma for the preparation of PA6-based nanohybrids

2011

CNT nanocomposites plasma functionalization
researchProduct

Effect of an organoclay on the photochemical transformations of a PBAT/PLA blend and morpho-chemical features of crosslinked networks

2021

Abstract In this work, we report the effect of an organoclay on the photochemical weathering of nanocomposites based on a poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) (PLA) blend. The evolution of physicochemical properties was monitored by integrating spectroscopic, mechanical, and morphological analyses. A robust relationship was found between the molecular transformations of the polymer macromolecules and the morpho-mechanical properties of irradiated films. Moreover, the analysis of insoluble fractions extracted from nanocomposites pointed out that free-standing, porous structures, displaying an unprecedented thickness as great as 100 µm, were formed, thus unambiguou…

chemistry.chemical_classificationMaterials scienceNanocompositePolymers and Plasticsbiologybioplastic Cloisite crosslinking nanocomposites PBAT Photo-oxidation PLAChemical structureMorphoPolymerCondensed Matter Physicsbiology.organism_classificationPhotochemistrySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsMaterials ChemistryOrganoclayPorosityMacromoleculePolymer Degradation and Stability
researchProduct

Comportamento di nanocompositi PA6/CNT in flusso elongazionale non isotermo

2012

Si sono preparate fibre a matrice poliammidica caricate con CNT. Sono state utilizzate due diverse tipologie di CNT a differente fattore di forma e grado di purezza, ossidate mediante plasma di ossigeno. Le misure di viscosità elongazionale hanno evidenziato che l’introduzione della carica comporta un incremento della MS a fronte di una diminuzione della BSR per tutti i materiali caricati. La tipologia e la funzionalizzazione dei CNT hanno delle notevoli ricadute sul diverso comportamento reologico. Studi morfologici hanno evidenziato che dopo la funzionalizzazione si registrano livelli di dispersione, allineamento e adesione interfacciale più alti. La natura delle interazioni matrice-caric…

Flusso elongazionale plasma nanotubi di carbonio fibre melt spinning.
researchProduct

Synthesis of a biocompatible aerogel based on graphene oxide and a modified polyethylene glycol

2016

The synthesis and self-assembly of a 3D aerogel built by graphene oxide (GO) and a modified polyethylene glycol (PEG) was achieved by a multi-step synthetic procedure, involving the preparation of an amino-terminated PEG (PEG-NH2) and the subsequent coupling with GO by carbodiimide in water, exploiting the carboxyl and epoxy moieties of GO and –NH2 terminations of the biopolymer. The resulting nanohybrid hydrogel was successively converted into an aerogel via dialysis plus freeze-drying [1] and fully characterized. FTIR, Raman, XPS, XRD and BET measurements were performed to confirm the successful modification for each reaction step, while morphological, mechanical and hemolytic tests were …

graphene oxide PEG aerogel graphene
researchProduct