0000000001299588
AUTHOR
Isabel Castro
A solution study of complex formation between iron(III) and oxalate in dimethylsulphoxide
The complex formation between iron(III) and oxalic acid (ethanedioic acid, H2ox) has been studied by potentiometry in dimethylsulphoxide (dmso) solution. H2ox behaves as a weak diprotic acid in such a solvent, with overall association constants: log βj1=8.551(3) and log βj2=14.242(3) at 25°C and 0.1 Mn-Bu4NClO4. A reliable set of overall stability constants for the iron(III)-oxalato complexes, log β11=13.16(4), log β12=23.66(4) and log β13=30.75(4), have been obtained for the first time under identical conditions. The electrochemical behaviour of such complexes was studied in dmso at a platinum electrode. The coordination ability of oxalate towards iron(III) in dmso and water media is compa…
Magnetic coupling and spin topology in linear oxalato-bridged tetranuclear chromium(III)–copper(II) complexes with aromatic diimine ligands
Abstract A novel heterotetranuclear chromium(III)–copper(II) complex of formula {[CrIII(bpy)(ox)2]2CuII2(bpy)2(ox)}·6H2O (1) has been synthesized by the ligand exchange reaction between Ph4P[CrIII(bpy)(ox)2]·H2O and [CuII(bpy)2(NO3)]NO3·MeOH in methanol (bpy = 2,2′-bipyridine; ox2− = oxalate dianion). The X-ray crystal structure of 1 consists of neutral oxalato-bridged CrIII2Cu2II zigzag entities which are formed by the monodentate coordination of two [CrIII(bpy)(ox)2]− mononuclear anionic units through one of its two oxalato groups toward a [CuII2(bpy)2(ox)]2+ dinuclear cationic moiety featuring relatively long axial bonds at the square pyramidal CuII ions. Variable temperature (2.0–300 K)…
ChemInform Abstract: Formation in Solution, Synthesis and Crystal Structure of μ-Oxalatobis(bis(2-pyridylcarbonyl)amido)dicopper(II).
Abstract The compound μ-oxalatobis[bis(2-pyridylcarbonyl)amido] dicopper(II), [Cu 2 {(NCsH 5 CO) 2 N} 2 - (C 2 O 4 )] was synthesized and characterized by spectroscopy, EPR and diffraction methods. It crystallizes in the triclinic space group P 1 with cell constants: a =7.6793(6), b =9.238(2), c =10.007(2) A, α=83.80(1), β=68.37(1) and γ=69.44(1)°; V =617.7(3) A 3 , D (calc., Z =2)=1.80 g cm −3 , M r =667.6, F (000)=336, λ, (Mo Kα)=0.71069 A, μ (Mo Kα)=17.895 cm −1 and T =295 K. A total of 3587 data were collected over the range of 1 ⩽ θ ⩽ 30°; of these, 2391 (independent and with I⩾2σ( I )) were used in the structural analysis. The final R and R w residuals were 0.049 and 0.053, respective…
Dithiosquarate (dtsq) complexes of nickel(II). Syntheses and crystal structures of [Ni(phen)2(1,2-dtsq)]·3.5H2O, [Ni(phen)2(1,3-dtsq)] and [Ni(tren)(1,2-dtsq)] [phen=1,10-phenanthroline; tren=tris(2-aminoethyl)amine]
Abstract The new nickel(II) complexes [Ni(phen)2(1,2-dtsq)]·3.5H2O (1), [Ni(phen)2(1,3-dtsq)] (2) and [Ni(tren)(1,2-dtsq)] (3) [1,2-dtsq=dianion of 3,4-dimercapto-3-cyclobutene-1,2-dione, 1,3-dtsq=dianion of 3-hydroxy-4-mercapto-2-thioxo-3-cyclobuten-1-one, phen=1,10-phenanthroline and tren=tris(2-aminoethyl)amine] have been synthesized and characterized by single-crystal X-ray diffraction. Their structures are made up of neutral [Ni(phen)2(1,n-dtsq)] [1 (n=2) and 2 n=3)] and [Ni(tren)(1,2-dtsq)] (3) mononuclear units. The nickel atom is six-coordinated in all three cases: four nitrogen atoms from two bidentate phen (1 and 2) or a tetradentate tren (3) groups and either two sulfur (1 and 3)…
Synthesis and magnetic properties of bis(μ-hydroxo)bis[(2,2 ′-bipyridyl)copper(II)] squarate. Crystal structure of bis(μ-hydroxo)bis[(2,2′-bipyridyl)copper(II)] squarate tetrahydrate
Abstract The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state. Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P 1 , with a = 9.022(2), b = 9.040(2), c = 8.409(2) A, α = 103.51(2…
Field-induced slow magnetic relaxation and magnetocaloric effects in an oxalato-bridged gadolinium(iii)-based 2D MOF
The coexistence of field-induced slow magnetic relaxation and moderately large magnetocaloric efficiency in the supra-Kelvin temperature region occurs in the 2D compound [GdIII2(ox)3(H2O)6]n·4nH2O (1), a feature that can be exploited in the proof-of-concept design of a new class of slow-relaxing magnetic materials for cryogenic magnetic refrigeration.
Ligand Effects on the Structure and Magnetic Properties of Alternating Copper(II) Chains with 2,2′-Bipyrimidine- and Polymethyl-Substituted Pyrazolates as Bridging Ligands
A novel series of heteroleptic copper(II) compounds of formulas {[Cu2(μ-H2O)(μ-pz)2(μ-bpm)(ClO4)(H2O)]ClO4·2H2O}n (1), {[Cu2(μ-H2O)(μ-3-Mepz)2(μ-bpm)](ClO4)2·2H2O}n (2), and {[Cu2(μ-OH)(μ-3,5-Me2pz)(μ-bpm)(H-3,5-Me2pz)2](ClO4)2}n (3) [bpm = 2,2'-bipyrimidine, Hpz = pyrazole, H-3-Mepz = 3-methylpyrazole, and H-3,5-Me2pz = 3,5-dimethylpyrazole] have been synthesized and structurally characterized by X-ray diffraction methods. The crystal structures of 1 and 2 consist of copper(II) chains with regular alternating bpm and bis(pyrazolate)(aqua) bridges, whereas that of 3 is made up of copper(II) chains with regular alternating bpm and (pyrazolate)(hydroxo) bridges. The copper centers are six- (1…
Magneto-structural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands
Two oxalato-bridged dinuclear copper(II) complexes, [{Cu(Hdmpz)3}2(μ-ox)](ClO4)2·2H2O (1) and [{Cu(Htmpz)3}2(μ-ox)](ClO4)2·2H2O (2) (Hdmpz = 3,5-dimethyl-1H-pyrazole and Htmpz = 3,4,5-trimethyl-1H-pyrazole), have been synthesized and structurally and magnetically characterized. The crystal structures of 1 and 2 consist of asymmetric bis-bidentate μ-oxalatodicopper(II) complex cations with two short [Cu–O = 1.976(2) (1) and 1.973(2) Å (2)] and two long copper–oxygen bonds [Cu–O = 2.122(2) (1) and 2.110(2) Å (2)]. The environment at each CuII ion in 1 and 2 is closer to the trigonal bipyramidal geometry than to the square pyramidal [τ = 0.633 (1) and 0.711 (2)]. The magnetic properties of 1 a…
Molecular Self-Assembly in a Family of Oxo-Bridged Dinuclear Ruthenium(IV) Systems
A series of six novel RuIV compounds of formula (H2bpy)2[{RuCl5}2(μ-O)] (1), (PPh4)2[{RuCl4(H2O)}2(μ-O)]·4H2O (2), (PPh4)2[{RuCl4(MeCN)}2(μ-O)] (3), (PPh4)2[{RuCl4(dmf)}2(μ-O)] (4), (PPh4)2[{RuCl4(...
Coligand Effects on the Field-Induced Double Slow Magnetic Relaxation in Six-Coordinate Cobalt(II) Single-Ion Magnets (SIMs) with Positive Magnetic Anisotropy.
Two mononuclear cobalt(II) compounds of formula [Co(dmphen)2(OOCPh)]ClO4·1/2H2O·1/2CH3OH (1) and [Co(dmbipy)2(OOCPh)]ClO4 (2) (dmphen = 2,9-dimethyl-1,10-phenanthroline, dmbipy = 6,6'-dimethyl-2,2'-bipyridine and HOOCPh = benzoic acid) are prepared and magnetostructurally investigated. Each cobalt(II) ion is six-coordinate with a distorted octahedral CoN4O2 environment. The complex cations are interlinked leading to supramolecular chains (1) and pairs (2) that grow along the crystallographic c-axis with racemic mixtures of (Δ,Λ)-Co units. FIRMS allowed us to directly measure the zero-field splitting between the two lowest Kramers doublets, which led to axial anisotropy values of 58.3 cm-1 ≤…
Squarate and croconate in designing one- and two-dimensional oxamidato-bridged copper(II) complexes: synthesis, crystal structures and magnetic properties of 〚Cu 2 (apox)(C 4 O 4 )(H 2 O) 2 〛 n · n H 2 O and 〚Cu 4 (apox) 2 (C 5 O 5 ) 2 〛·6 H 2 O
Abstract The reaction of squarate (C4O42–, dianion of 3,4-dihydroxycyclobut-3-ene-1,2-dione) and croconate (C5O52–, dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione) with the dinuclear 〚Cu2(apox)〛2+ copper(II) complex 〚H2apox = N,N’-bis(3-aminopropyl)oxamide〛 in aqueous solution affords the compounds of formula 〚Cu2(apox)(C4O4)(H2O)2〛n·n H2O (1) and 〚Cu4(apox)2(C5O5)2〛·6 H2O (2). Crystals of 1 are monoclinic, space group C2/c, with a = 12.5527(9), b = 7.4161(6), c = 18.5198(12) A, β = 100.578(6)° and Z = 4. Crystals of 2 are triclinic, space group P 1 with a = 9.732(5), b = 9.795(2), c = 10.285(3) A, α = 84.95(2), β = 77.30(3), γ = 85.61(3)° and Z = 1. The structure of complex 1 consist…
ChemInform Abstract: Synthesis and Magnetic Properties of Bis(μ-hydroxo)bis((2,2′-bipyridyl)copper(II)) Squarate. Crystal Structure of Bis(μ-hydroxo)bis((2,2′-bipyridyl)copper(II)) Squarate Tetrahydrate.
Abstract The compound [Cu2(bipy)2(OH)2](C4O4)·5.5H2O, where bipy and C4O42− correspond to 2,2′-bipyridyl and squarate (dianion of 3,4-dihydroxy-3-cyclo- butene-1,3-dione) respectively, has been synthesized. Its magnetic properties have been investigated in the 2–300 K temperature range. The ground state is a spin-triplet state, with a singlet-triplet separation of 145 cm−1. The EPR powder spectrum confirms the nature of the ground state. Well-formed single crystals of the tetrahydrate, [Cu2(bipy)2(OH)2](C4O4)·4H2O, were grown from aqueous solutions and characterized by X-ray diffraction. The system is triclinic, space group P 1 , with a = 9.022(2), b = 9.040(2), c = 8.409(2) A, α = 103.51(2…
Reversible solvatomagnetic switching in a single-ion magnet from an entatic state
We have developed a new strategy for the design and synthesis of multifunctional molecular materials showing reversible magnetic and optical switching.
Field-induced slow relaxation of magnetisation in two one-dimensional homometallic dysprosium(iii) complexes based on alpha- and beta-amino acids.
Two one-dimensional dysprosium(III) complexes based on α-glycine (gly) and β-alanine (β-ala) amino acids, with the formula {[Dy2(gly)6(H2O)4](ClO4)6·5H2O}n (1) and {[Dy2(β-ala)6(H2O)4](ClO4)6·H2O}n (2), have been synthesised and characterised structurally and magnetically. Both compounds crystallise in the triclinic system with the space group P. In 1, two DyIII ions are eight-coordinate and bound to six oxygen atoms from six gly ligands and two oxygen atoms from two water molecules, showing different geometries (bicapped trigonal prism and square antiprism). In 2, two DyIII ions are nine-coordinate and bound to seven oxygen atoms from six β-ala ligands and two oxygen atoms from two water m…
Field-Induced Hysteresis and Quantum Tunneling of the Magnetization in a Mononuclear Manganese(III) Complex
International audience
Reversible Solvatomagnetic Switching in a Spongelike Manganese(II)-Copper(II) 3D Open Framework with a Pillared Square/Octagonal Layer Architecture
The concept of "molecular magnetic sponges" was introduced for the first time in 1999 by the creative imagination of the late Olivier Kahn. It refers to the exotic spongelike behavior of certain molecule-based materials that undergo a dramatic change of their magnetic properties upon reversible dehydration/rehydration processes. Here we report a unique example of a manganese(II)-copper(II) mixed-metal-organic framework of formula [Na(H(2)O)(4)](4)[Mn(4){Cu(2)(mpba)(2)(H(2)O)(4)}(3)]·56.5H(2)O (1) (mpba=N,N'-1,3-phenylenebis(oxamate)). Compound 1 possesses a 3D Mn(II)(4)Cu(II)(6) pillared layer structure with mixed square and octagonal pores of approximate dimensions 1.2×1.2 nm and 2.1×3.0 n…
Manganese(iv) oxamato-catalyzed oxidation of secondary alcohols to ketones by dioxygen and pivalaldehyde
A new manganese(IV) oxamato complex possessing a bis(moxo) dimanganese core has been synthesized, magnetically and structurally characterized, and found to catalyze the aerobic oxidation of secondary alcohols to ketones with cooxidation of pivalaldehyde to pivalic acid with good yields and high selectivities. Ruiz Garcia, Rafael, Rafael.Ruiz@uv.es ; Fernandez Picot, Isabel, Isabel.Fernandez@uv.es ; Pedro Llinares, Jose Ramon, Jose.R.Pedro@uv.es ; Rosello Arce, Antonio Luis, Antonio.L.Rosello@uv.es ; Castro Bleda, Isabel, Isabel.Castro@uv.es
Synyhesis, structure, spectroscopy and redox chemistry of square-planar nickel(II) complexes with tetradentate o-phenylenedioxamidates and related ligands
[EN] A series of four-coordinate square-planar nickel(II) complexes of o-phenylenebis(N¿-methyloxamidate) (L1) and related o-phenylene(N¿-methyloxamidate)oxamate (L2) and o-phenylenebis(oxamate) (L3) tetradentate ligands have been synthesized and characterized structurally, spectroscopically and electrochemically. The parent nickel(II)¿L1 complex presents an intense MLCT band in the UV region (¿max = 357 nm) and a distinctive 1 s ¿ 4p CT satellite in the Ni K-edge XANES spectrum (E = 8339.2 eV). These features together with the short Ni¿N(amidate) bond lengths (1.85¿1.93 Å) as revealed by the analysis of the Ni K-edge EXAFS spectrum and confirmed by single-crystal X-ray diffraction are typi…
Formation in solution, synthesis and crystal structure of μ-oxalatobis[bis(2-pyridylcarbonyl)amido] dicopper(II)
Abstract The compound μ-oxalatobis[bis(2-pyridylcarbonyl)amido] dicopper(II), [Cu 2 {(NCsH 5 CO) 2 N} 2 - (C 2 O 4 )] was synthesized and characterized by spectroscopy, EPR and diffraction methods. It crystallizes in the triclinic space group P 1 with cell constants: a =7.6793(6), b =9.238(2), c =10.007(2) A, α=83.80(1), β=68.37(1) and γ=69.44(1)°; V =617.7(3) A 3 , D (calc., Z =2)=1.80 g cm −3 , M r =667.6, F (000)=336, λ, (Mo Kα)=0.71069 A, μ (Mo Kα)=17.895 cm −1 and T =295 K. A total of 3587 data were collected over the range of 1 ⩽ θ ⩽ 30°; of these, 2391 (independent and with I⩾2σ( I )) were used in the structural analysis. The final R and R w residuals were 0.049 and 0.053, respective…
Synthesis, crystal structure and magnetic properties of the first structurally characterized 1,2-dithiocroconato-containing Cu(II) complex, [Cu(bpca)(H2O)]2[Cu(1,2-dtcr)2]·2H2O
Abstract The first crystal and molecular structure of a transition metal complex containing 1,2-dithiocroconate (1,2-dtcr, dianion of 1,2-dimercaptocylopent-1-ene-3,4,5-trione), [Cu(bpca)(H2O)]2[Cu(1,2-dtcr)2]·2H2O (where bpca is the bis(2-pyrdidylcarbonyl)amide anion), has been determined by single crystal X-ray diffraction methods. The compound crystallizesin the monoclinic syste, space group P21/c, with a = 11.661(3), b = 20.255(6), c = 8.265(3) A , s = 107.26(2)° and Z = 2. The structure is formally built of [Cu(1,2-dtcr)2]2− and [Cu(bpca)(H2O)]+ ions and water of hydration. The copper atom of the anion is situated at a crystallographic inversion centre, bonded to four sulfur atoms in a…
Ferromagnetic coupling and magnetic anisotropy in oxalato-bridged trinuclear chromium(iii)-cobalt(ii) complexes with aromatic diimine ligands
Two novel heterotrinuclear chromium(III)-cobalt(II) complexes of formula {[Cr(III)(bpy)(ox)(2)](2)Co(II)(Me(2)bpy)}.2H(2)O (1) and {[Cr(III)(phen)(ox)(2)](2)Co(II)(Me(2)bpy)}.1.5H(2)O (2) [ox = oxalato, bpy = 2,2'-bipyridine, Me(2)bpy = 6,6'-dimethyl-2,2'-bipyridine, and phen = 1,10-phenanthroline] have been synthesized using the "complex-as-ligand/complex-as-metal" strategy. The X-ray crystal structure of 2 consists of neutral oxalato-bridged Cr(III)(2)Co(II) bent entities formed by the coordination of two anionic [Cr(III)(phen)(ox)(2)](-) complexes through one of their oxalato groups toward a cationic cis-[Co(II)(Me(2)bpy)](2+) complex. The three tris(chelated), six-coordinated metal atom…
Biomimetic Mn-catalases based on dimeric manganese complexes in mesoporous silica for potential antioxidant agent
Two new structural and functional models of the Mn-catalase with formula [{Mn(III)(bpy)(H2O)}(μ-2-MeOC6H4CO2)2(μ-O){Mn(III)(bpy)(X)}]X, where X = NO3 (1) and ClO4 (2) and bpy = 2,2'-bipyridine, were synthesized and characterized by X-ray diffraction. In both cases, a water molecule and an X ion occupy the monodentate positions. The magnetic properties of these compounds reveal a weak antiferromagnetic behavior (2J = -2.2 cm(-1) for 1 and -0.7 cm(-1) for 2, using the spin Hamiltonian H = -2J S1·S2) and negative zero-field splitting parameter DMn (-4.6 cm(-1) and -3.0 cm(-1) for 1 and 2, respectively). This fact, together with the nearly orthogonal orientation of the Jahn-Teller axes of the M…
Alcohol oxidation by dioxygen and aldehydes catalysed by square-planar cobalt(III) complexes of disubstituted oxamides and related ligands
The square-planar cobalt(III) complexes of o-phenylenebis(N′-methyloxamidate) (Me2opba) and related oxamate (Meopba) and bis(oxamate) (opba) ligands catalyse the selective oxidation, by dioxygen and pivalaldehyde, of a wide range of secondary alcohols to the corresponding ketones, in good yields and under mild conditions in acetonitrile at room temperature. Thus, the oxidation of the series of α-alkylbenzyl alcohols PhCH(OH)R (R = Me, Et, iPr, tBu) results in the exclusive formation of ketones as a product of C−H bond cleavage, and no C−C bond cleavage products are observed in any case. The modulation of catalytic activity by ligand substituents among this series of cobalt catalysts highlig…
Iron(iii) oxamato-catalyzed epoxidation of alkenes by dioxygen and pivalaldehyde
A new iron(III)–carbonato monomeric complex of orthophenylenebis( oxamato) (opba) 1 is synthesized, and spectroscopically and structurally characterized; it is a moderately efficient non-heme catalyst for the aerobic epoxidation of alkenes with co-oxidation of pivalaldehyde. Ruiz Garcia, Rafael, Rafael.Ruiz@uv.es ; Fernandez Picot, Isabel, Isabel.Fernandez@uv.es ; Pedro Llinares, Jose Ramon, Jose.R.Pedro@uv.es
Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(iii) complexes with 2,3-quinoxalinediolate ligands
The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(iii) ions in basic media in air affords a new family of carbonato-bridged M 2 III compounds (M = Pr, Gd and Dy), the Dy 2 III analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets. This journal is © 2012 The Royal Society of Chemistry.
Detection of Hypoxanthine from Inosine and Unusual Hydrolysis of Immunosuppressive Drug Azathioprine through the Formation of a Diruthenium(III) System
Hypoxanthine (hpx) is an important molecule for both biochemistry research and biomedical applications. It is involved in several biological processes associated to energy and purine metabolism and has been proposed as a biomarker for a variety of disease states. Consequently, the discovery and development of systems suitable for the detection of hypoxanthine is pretty appealing in this research field. Thus, we have obtained a stable diruthenium (III) compound in its dehydrated and hydrated forms with formula [{Ru(µ
Crystal structures and magnetic properties of the squarate-O1,On-bridged dinuclear copper(II) complexes [Cu2(phen)4(C4O4)](CF3SO3)2 · 3H2O (n=2) and [Cu2(bipy)4(C4O4)](CF3SO3)2 · 6H2O (n=3)
Abstract Two dinuclear copper(II) complexes of the formula [Cu2(phen)4(C4O4)](CF3SO3)2 · 3H2O (1) and [Cu2(bipy)4(C4O4)](CF3SO3)2 · 6H2O (2) [phen=1,10-phenanthroline, bipy=2,2′-bipyridine and C4O4 2−=dianion of 3,4-dihydroxy-3-cyclobuten-1,2-dione (squaric acid)] have been synthesized and characterized by single-crystal X-ray diffraction. Their structures consist of [Cu2(phen)4(C4O4)]2+ (1) and [Cu2(bipy)4(C4O4)]2+ (2) dinuclear copper(II) cations, uncoordinated CF3SO3 − anions and crystallization water molecules. The copper is in a distorted square pyramidal environment: one squarate-oxygen atom and three phen- (1) or bipy- (2) nitrogen atoms of two phen (1) or bipy (2) terminal ligands f…
Ferro- and Antiferromagnetic Interactions in Oxalato-Centered Inverse Hexanuclear and Chain Copper(II) Complexes with Pyrazole Derivatives.
Two novel copper(II) complexes of formulas {[Cu(4-Hmpz)4][Cu(4-Hmpz)2(µ3-ox-κ2O1,O2:κO2′:κO1′)(ClO4)2]}n (1) and {[Cu(3,4,5-Htmpz)4]2[Cu(3,4,5-Htmpz)2(µ3-ox-κ2O1,O2:κO2′:κO1′)(H2O)(ClO4)]2[Cu2(3,4,5-Htmpz)4(µ-ox-κ2O1,O2:κ2O2′,O1′)]}(ClO4)4·6H2O (2) have been obtained by using 4-methyl-1H-pyrazole (4-Hmpz) and 3,4,5-trimethyl-1H-pyrazole (3,4,5-Htmpz) as terminal ligands and oxalate (ox) as the polyatomic inverse coordination center. The crystal structure of 1 consists of perchlorate counteranions and cationic copper(II) chains with alternating bis(pyrazole)(µ3-κ2O1,O2:κO2′:κO1′-oxalato)copper(II) and tetrakis(pyrazole)copper(II) fragments. The crystal structure of 2 is made up of perchlorat…
Solution chemistry of N,N'-ethylenebis(salicylideneimine) and its copper(II), nickel(II) and iron(III) complexes
Abstract Potentiometric determination of protonation-deprotonation equilibria of the N,N'-ethylenebis(salicylideneimine) (H2sal2en), the related N-(2-aminoethyl)salicylideneimine, (Hsalen), and their organic fragments, salicylaldehyde (Hsal) and ethylenediamine (en), has been used to study the equilibria involved in the formation of Schiff bases from Hsal, sal− and en and in their complex formation with copper(II), nickel(II) and iron(III) ions in dimethyl sulfoxide (dmso)-water (80:20 wt./wt.) mixture (25 °C and 0.1 mol dm−3 KClO4 ionic strength): en+Hsal⇔Hsalen; en+2Hsal⇔H2sal2en; en+ sal−⇔salen−; en+2sal−⇔sal2en2−; sal−+en+MN+⇔[M(salen)](n−1)+; 2sal−+en+Mn+⇔ [M(sal2en)](n−2)+. In these t…
Theoretical Insights into the Ferromagnetic Coupling in Oxalato-Bridged Chromium(III)-Cobalt(II) and Chromium(III)-Manganese(II) Dinuclear Complexes with Aromatic Diimine Ligands
Two novel heterobimetallic complexes of formula [Cr(bpy)(ox)(2)Co(Me(2)phen)(H(2)O)(2)][Cr(bpy)(ox)(2)]·4H(2)O (1) and [Cr(phen)(ox)(2)Mn(phen)(H(2)O)(2)][Cr(phen)(ox)(2)]·H(2)O (2) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and Me(2)phen = 2,9-dimethyl-1,10-phenanthroline) have been obtained through the "complex-as-ligand/complex-as-metal" strategy by using Ph(4)P[CrL(ox)(2)]·H(2)O (L = bpy and phen) and [ML'(H(2)O)(4)](NO(3))(2) (M = Co and Mn; L' = phen and Me(2)phen) as precursors. The X-ray crystal structures of 1 and 2 consist of bis(oxalato)chromate(III) mononuclear anions, [Cr(III)L(ox)(2)](-), and oxalato-bridged chromium(III)-cobalt(II) and chromium(III)-manganese(II) din…
Tuning up the Tc in Mn(II)Cu(II) bimetallic planes and design of molecular-based magnets
Abstract A family of related compounds of general formula (PPh4)2Mn2[Cu((L)]3nH2O, where PPh4+ is the tetraphenylphosphonium cation and L stands for ortho-phenylenebis(oxamate) (opba, 1), ortho-phenylene (N′-methyloxamidate) (oxamate) (Meopba, 2) and ortho-phenylenebis (N′-methyloxamidate) (Me2opba, 3), have been synthesized. The X-ray absorption near-edge structure (XANES) and extended X-ray Within absorption fine structure (EXAFS) spectra at both Mn and Cu K-edges for all three compounds, as well as their powder X-ray patterns, are consistent with a layered structure built up of parallel Mn11Cu11 two-dimensional honeycomb networks separated by PPh4+ cations. Within the antonic metallic la…
Cu(II) and Cu(I) complexes with 1,2-dithiosquarate as a ligand; from molecular compounds to supramolecular network structures
Abstract Four new complexes of copper(II) and/or copper(I) with 1,2-dtsq as a ligand have been synthesized and characterized by single crystal X-ray diffraction methods, [CuII(terpy)(1,2-dtsq)] (1), [CuII(dmen)(1,2-dtsq)]n (2), {[CuII(dmen)2][CuI(1,2-dtsq)]2}n·2nH2O(3) and {[CuII(men)2][CuI (1,2-dtsq)]2}n·nH2O (4) (1,2-dtsq = 1,2-dithiosquarate, dianion of 3,4-dimercapto-1-cyclobutene-1,2-dione; dmen = N,N-dimethylethylenediamine; men = N-methylethylenediamine, terpy = 2,2′:6,2″-terpyridine). Compound 1 consists of neutral [CuII(terpy)(1,2-dtsq)] mononuclear units which are held together by O⋯H–C and van der Waals interactions. Compound 2 is built of neutral [CuII(dmen)(1,2-dtsq)] entities …
Dinuclear copper(II) complexes as testing ground for molecular magnetism theory
Abstract A leitmotiv in the field of molecular magnetism is the study of the electron exchange (EE) magnetic interactions among distant metal centers through the corresponding bridging ligands in polynuclear coordination compounds. The present review provides a historical perspective on the use of dinuclear copper(II) complexes with either simple inorganic or extended organic bridging ligands as experimental and theoretical models for the fundamental research on the relative importance of the spin delocalization and spin polarization mechanisms of the EE interaction across σ- and π-type orbital pathways. Particular focus is placed on the work by Professor Miguel Julve, outstanding researche…
A Gadolinium(III) Complex Based on the Thymine Nucleobase with Properties Suitable for Magnetic Resonance Imaging
The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance (MR) imaging to improve the lesion detection and characterization. It generates a signal by changing the relaxivity of protons from associated water molecules and creates a clearer physical distinction between the molecule and the surrounding tissues. New gadolinium-based contrast agents displaying larger relaxivity values and specifically targeted might provide higher resolution and better functional images. We have synthesized the gadolinium(III) complex of formula [Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = 5-methyl-1H-pyrimidine-2,4-dione or thymine], which is the first reported compound based on gadolinium…
Potentiometric study of the formation of hydroxo complexes of [Cu(terpy)]2+. Synthesis and crystal structure of [Cu(terpy) (H2O)](CF3SO3)2
Two complexes of formula [Cu(terpy)(H2O)](CF3SO3)2 (1) and [Cu(terpy)(OH)]BPh4 (2) (terpy=2,2′∶6′,2″-terpyridine and BPh4=tetraphenylborate anion) have been synthesized and characterized by spectroscopic techniques. The x-ray crystal structure of (1) has been determined by x-ray diffraction. The structure is made up of [Cu(terpy)(H2O)]2+ mononuclear cations plus semi-coordinated CF3SO3 − anions. The coordination geometry around the copper atom is approximately elongated tetragonal octahedral. The oxygen atom of water and the three nitrogen atoms of terpy occupy the equatorial sites whereas the apical ones are filled by trifluoromethanesulphonate oxygen atoms. The formation of hydroxo comple…
Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal-organic framework.
Single-ion magnets (SIMs) are the smallest possible magnetic devices for potential applications in quantum computing and high-density information storage. Both, their addressing in surfaces and their organization in metal-organic frameworks (MOFs) are thus current challenges in molecular chemistry. Here we report a two-dimensional 2D MOF with a square grid topology built from cobalt(ii) SIMs as nodes and long rod-like aromatic bipyridine ligands as linkers, and exhibiting large square channels capable to host a large number of different guest molecules. The organization of the cobalt(ii) nodes in the square layers improves the magnetic properties by minimizing the intermolecular interaction…
Solid-state dinuclear-to-trinuclear conversion in an oxalato-bridged chromium(III)-cobalt(II) complex as a new route toward single-molecule magnets.
A novel bis(oxalato)chromium(III) salt of a ferromagnetically coupled, oxalato-bridged dinuclear chromium(III)-cobalt(II) complex of formula [CrL(ox)(2)CoL'(H(2)O)(2)][CrL(ox)(2)]·4H(2)O (1) has been self-assembled in solution using different aromatic α,α'-diimines as blocking ligands, such as 2,2'-bipyridine (L = bpy) and 2,9-dimethyl-1,10-phenanthroline (L' = Me(2)phen). Thermal dehydration of 1 leads to an intriguing solid-state reaction between the S = 3/2 Cr(III) anions and the S = 3 Cr(III)Co(II) cations to give a ferromagnetically coupled, oxalato-bridged trinuclear chromium(III)-cobalt(II) complex of formula {[CrL(ox)(2)](2)CoL'} (2). Complex 2 possesses a moderately anisotropic S =…
Molecular magnetism, quo vadis? A historical perspective from a coordination chemist viewpoint☆
Abstract Molecular magnetism has travelled a long way from the pioneering studies on electron exchange and double exchange or spin crossover and valence tautomerism in small oligonuclear complexes, from mono- to di- and tetranuclear species, to the current investigations about magnetic anisotropy and spin dynamics or quantum coherence of simple mono- or large polynuclear complexes, behaving as switchable bistable molecular nanomagnets for potential applications in information data storage and processing. In this review, we focus on the origin and development of the research in the field of molecular magnetism from a coordination chemistry viewpoint, which dates back to the establishment of …
Synthesis, spectroscopic and structural characterization of [Cu(phen)(C5O5)(H2O)]·H2O, [Ni(terpy)(C5O5)(H2O)]·H2O and [Ni(terpy)2](NO3)2·0.5H2O
Abstract The new mononuclear complexes [Cu(phen)(C5O5)(H2O)]·H2O (1), [Ni(terpy)(C5O5)(H2O)]·H2O (2) and [Ni(terpy)2](NO3)2·0.5H2O (3) [phen=1,10-phenanthroline, C 5 O 5 2 − =dianion of the 4,5-dihydroxycyclopent-4-ene-1,2,3-trione and terpy=2,2′:6′,2″-terpyridine] have been synthesized and characterized by single-crystal X-ray diffraction. The copper atom of 1 has a distorted square pyramidal environment with two phen-nitrogen and two croconate-oxygen atoms building the equatorial plane and a water molecule in the apical position. The nickel atom of 2 exhibits a distorted NiN3O3 octahedral coordination, which may be described either as tetragonally compressed or as skewed trapezoidal bipyr…
Study of the interaction of [Cu(bipy)]2+ with oxalate and squarate in aqueous solution
A study of the formation of complexes between [Cu(bipy)]2+ and ox2− and sq2− in aqueous solution, (bipy being 2,2′-bipyridine and ox2− and sq2− the dianions of ethanedioic acid and 3,4-dihydroxy-3-cyclobutene-1,2-dione, respectively), has been carried out with the aim of comparing the coordinating properties of these related ligands. The constants of the equilibria (i) and (ii) $$[Cu(bipy)]^{2 + } + ox^{2 - } \rightleftharpoons [Cu(bipy)ox]$$ (i) $$[Cu(bipy)]^{2 + } + sq^{2 - } \rightleftharpoons [Cu(bipy)sq]$$ (ii) have been determined by potentiometry and spectrophotometry at 25.0°C and 0.1 M NaNO3:logβ=5.78(2) and 2.16(2) for the oxalato- and squarato-complex, respectively. Such differen…
Study of the interaction between [Cu(bipy)]2+ and oxalate in dimethyl sulfoxide. Crystal structure of [Cu2(bipy)2(H2O)2ox]SO4·[Cu(bipy)ox]
Abstract A study of complex formation between [Cu(bipy)]2+ and ox2− (bipy and ox2− being 2,2′-bipyridyl and the dianion of oxalic acid), has been carried out by potentiometry in dimethyl sulfoxide solution. The constants of the equilibria and are log β110 = 11.165(1) and log β210 = 13.185(5) at 25 °C and 0.1 mol dm−3 tetra-n- butylammonium perchlorate. The high values of these constants are consistent with the symmetrical bidentate and bis-bidentate modes of oxalate in [Cu(bipy)ox] and [Cu2(bipy)2ox]2+ units, respectively, as shown by X-ray diffraction studies. Well-formed single crystals of [Cu2(bipy)2(H2O)2ox]SO4· [Cu(bipy)ox] were grown from aqueous solutions and characterized by X-ray d…
Field-Induced Slow Magnetic Relaxation in a Six-Coordinate Mononuclear Cobalt(II) Complex with a Positive Anisotropy
International audience; The novel mononuclear Co(II) complex cis-[Co-II(dmphen)(2)(NCS)(2)]center dot 0.25EtOH (1) (dmphen = 2,9-dimethyl-1,10-phenanthroline) features a highly rhombically distorted octahedral environment that is responsible for the strong positive axial and rhombic magnetic anisotropy of the high-spin Co-II ion (D = +98 cm(-1) and E = +8.4 cm(-1)). Slow magnetic relaxation effects were observed for 1 in the presence of a dc magnetic field, constituting the first example of field-induced single-molecule magnet behavior in a mononuclear six-coordinate Co(II) complex with a transverse anisotropy energy barrier.
Bioinspired manganese(II) complexes with a clickable ligand for immobilisation on a solid support.
International audience; Clickable ligands like N,N′-bis((pyridin-2-yl)methyl)prop-2-yn-1-amine (L1) and N-((1-methyl-1H-imidazol-2-yl)methyl)-N-(pyridin-2-ylmethyl)prop-2-yn-1-amine (L2) have been used to synthesise a series of manganese(II) complexes for grafting onto appropriate solid supports. These ligands mimic the 2-His-1-carboxylate facial chelation present in the active site of the manganese-dependent dioxygenase (MndD), while the alkyne side function allows grafting of the ligand onto an azido-functionalised support using “click chemistry” methodologies. Such synthetic analogues of the MndD crystallise in the solid state as double halide or pseudohalide-bridged dinuclear manganese(…
Self-assembly, binding ability and magnetic properties of dicopper(ii) pyrazolenophanes
A novel series of dinuclear copper(II) pyrazolenophanes of the formula [Cu2(μ-4-Mepz)2(μ-ClO4)(ClO4)(bpm)2] (1), [Cu2(μ-pz)2(μ-H2O)(ClO4)(4,7-Me2phen)2]ClO4·H2O·CH3CN (2), [Cu2(μ-pz)2(μ-H2O)(ClO4)3/2(H2O)1/2(phen)2]2[Cu2(μ-pz)2(μ-ClO4)(ClO4)2(phen)2]·8H2O (3), and [Cu2(μ-pz)2(CH3CN)2(3,4,7,8-Me4phen)2](ClO4)2 (4) (Hpz = pyrazole, H-4-Mepz = 4-methylpyrazole, bpm = 2,2'-bipyrimidine, phen = 1,10-phenanthroline, 4,7-Me2phen = 4,7-dimethyl-1,10-phenanthroline, and 3,4,7,8-Me4phen = 3,4,7,8-tetramethyl-1,10-phenanthroline) have been synthesized and magneto-structurally investigated. The crystal structures of 1–4 contain bis(pyrazolate)(perchlorate)- (1 and 3), bis(pyrazolate)(aqua)- (2 and 3), …
Slow relaxation of the magnetization in Oximato-bridged heterobimetallic Copper(II)-Manganese(III) chains
The use of the oximato-containing copper(II) complexes, [Cu(Hdeg)2] (H2deg = diethylglyoxime), [Cu(Hmeg)2] (H2meg = methylethylglyoxime) and [Cu(Hdmg)2] (H2dmg = dimethylglyoxime), as ligands toward manganese(II) acetate in methanol afforded the heterobimetallic compounds of formula [MnCu(deg)2(CH3COO)(H2O)2] (1), [MnCu(meg)2(CH3COO)(H2O)2] (2) and [MnCu(dmg)2(CH3COO)(H2O)2] (3) where the starting manganese(II) ion was oxidized to manganese(III) by air. In the lack of single crystals suitable for X-ray diffraction analysis, X-ray absorption techniques (EXAFS and XANES) at 40 K were used for the structural characterization of 1-3. The analysis of the X-ray absorption data reveals that 1-3 ar…
Syntheses, crystal structures and magnetic properties of di- and trinuclear croconato-bridged copper(ii) complexes
The new croconato-bridged copper(II) compounds [Cu2(terpy)2(H2O)2(C5O5)](NO3)2·H2O (1) and [Cu3(phen)5(C5O5)2](CF3SO3)2 (2) (C5O52− = croconate, dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione; terpy = 2,2′:6′,2″-terpyridine; phen = 1,10-phenanthroline) have been prepared, and their crystal structures and variable temperature magnetic susceptibilities determined. The structure of complex 1 consists of croconato-bridged dinuclear [Cu2(terpy)2(H2O)2(C5O5)]2+ complex ions, nitrate counter ions and water of hydration. The croconato ligand exhibits an asymmetrical bis-bidentate coordination mode through four of its five oxygen atoms. The two crystallographically independent copper atoms hav…
Dicopper(II) pyrazolenophanes: Ligand effects on their structures and magnetic properties
Abstract The use of simple pyrazolate anions and related polychelating acyclic or macrocyclic pyrazolate derivatives as bridging ligands, and occasionally additional blocking ligands, has led to the stereospecific Cu II -mediated self-assembly of both homo- and heteroleptic di-μ-pyrazolatodicopper(II) complexes of the metallacyclophane type, so-called dicopper(II) pyrazolenophanes. Besides their unique molecular conformation features and binding abilities toward both neutral molecules and charged anionic species, which have illustrated the putative role of weak intramolecular π–π stacking, hydrogen bonding, and coordinative interactions in the self-assembling process, dicopper(II) pyrazolen…
Syntheses, crystal structures and magnetic properties of chromato-, sulfato-, and oxalato-bridged dinuclear copper(II) complexes
Abstract Four dinuclear copper(II) complexes of formula [Cu2(bpca)2(H2O)3(CrO4)]·H2O (1), [Cu2(bpca)2(H2O)3(SO4)]·H2O (2), [Cu2(bpca)2(H2O)2(C2O4)]·2H2O (3), and [Cu2(bpca)2(C2O4)] (4) [bpca=bis(2-pyridylcarbonyl)amide anion] have been synthesized and their magnetic behavior has been investigated as a function of temperature. The structures of 1–3 have been determined by single-crystal X-ray diffraction, whereas the structure of 4 was already known. The structures of this family of complexes are made up of neutral chromateO1,O1′ (1), sulfateO1,O1′ (2) and oxalateO1,O2:O1′,O2′-bridged (3 and 4) dinuclear copper(II) units. The two copper atoms within the dinuclear unit of the isomorphous c…
CCDC 1914220: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Marta Viciano-Chumillas, Francisco Lloret, Miguel Julve, Isabel Castro, J. Krzystek, Mykhaylo Ozerov, Donatella Armentano, Giovanni De Munno, Joan Cano|2019|Inorg.Chem.|58|15726|doi:10.1021/acs.inorgchem.9b01719
CCDC 1972102: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, José Martı́nez-Lillo|2020|Cryst.Growth Des.|20|2044|doi:10.1021/acs.cgd.9b01702
CCDC 878930: Experimental Crystal Structure Determination
Related Article: M. Luisa Calatayud, Marta Orts-Arroyo, Miguel Julve, Francesc Lloret, Nadia Marino, Giovanni De Munno, Rafael Ruiz-García, Isabel Castro|2018|J.Coord.Chem.|71|657|doi:10.1080/00958972.2017.1421950
CCDC 1415919: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 987581: Experimental Crystal Structure Determination
Related Article: Isabel Castro, M. Luisa Calatayud, Wdeson P. Barros, José Carranza, Miguel Julve, Francesc Lloret, Nadia Marino, and Giovanni De Munno|2014|Inorg.Chem.|53|5759|doi:10.1021/ic500544n
CCDC 1047962: Experimental Crystal Structure Determination
Related Article: Wdeson P. Barros, M. Luisa Calatayud, Francesc Lloret, Miguel Julve, Nadia Marino, Giovanni De Munno, Humberto O. Stumpf, Rafael Ruiz-García, Isabel Castro|2016|CrystEngComm|18|437|doi:10.1039/C5CE02058A
CCDC 1415917: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1972100: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, José Martı́nez-Lillo|2020|Cryst.Growth Des.|20|2044|doi:10.1021/acs.cgd.9b01702
CCDC 1991872: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, José Martínez-Lillo|2020|Dalton Trans.|49|9155|doi:10.1039/D0DT01126F
CCDC 987580: Experimental Crystal Structure Determination
Related Article: Isabel Castro, M. Luisa Calatayud, Wdeson P. Barros, José Carranza, Miguel Julve, Francesc Lloret, Nadia Marino, and Giovanni De Munno|2014|Inorg.Chem.|53|5759|doi:10.1021/ic500544n
CCDC 1047964: Experimental Crystal Structure Determination
Related Article: Wdeson P. Barros, M. Luisa Calatayud, Francesc Lloret, Miguel Julve, Nadia Marino, Giovanni De Munno, Humberto O. Stumpf, Rafael Ruiz-García, Isabel Castro|2016|CrystEngComm|18|437|doi:10.1039/C5CE02058A
CCDC 2046049: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, José Martínez-Lillo|2021|Biosensors|11|19|doi:10.3390/bios11010019
CCDC 911104: Experimental Crystal Structure Determination
Related Article: Jérémy Chaignon, Salah-Eddine Stiriba, Francisco Lloret, Consuelo Yuste, Guillaume Pilet, Laurent Bonneviot, Belén Albela, Isabel Castro|2014|Dalton Trans.|43|9704|doi:10.1039/C3DT53636J
CCDC 1415920: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1047963: Experimental Crystal Structure Determination
Related Article: Wdeson P. Barros, M. Luisa Calatayud, Francesc Lloret, Miguel Julve, Nadia Marino, Giovanni De Munno, Humberto O. Stumpf, Rafael Ruiz-García, Isabel Castro|2016|CrystEngComm|18|437|doi:10.1039/C5CE02058A
CCDC 911105: Experimental Crystal Structure Determination
Related Article: Jérémy Chaignon, Salah-Eddine Stiriba, Francisco Lloret, Consuelo Yuste, Guillaume Pilet, Laurent Bonneviot, Belén Albela, Isabel Castro|2014|Dalton Trans.|43|9704|doi:10.1039/C3DT53636J
CCDC 1898602: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, José Martı́nez-Lillo|2020|Cryst.Growth Des.|20|2044|doi:10.1021/acs.cgd.9b01702
CCDC 953476: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Alejandro Pascual-Alvarez, Joan Cano, Isabel Castro, Miguel Julve, Francesc Lloret, J. Krzystek, Giovanni De Munno, Donatella Armentano, Wolfgang Wernsdorfer, Rafael Ruiz-García, Emilio Pardo|2013|Angew.Chem.,Int.Ed.|52|14075|doi:10.1002/anie.201308047
CCDC 1040032: Experimental Crystal Structure Determination
Related Article: Luis Escriche-Tur, Montserrat Corbella, Mercè Font-Bardia, Isabel Castro, Laurent Bonneviot, and Belén Albela|2015|Inorg.Chem.|54|10111|doi:10.1021/acs.inorgchem.5b01425
CCDC 1898601: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, Jos�� Mart����nez-Lillo|2020|Cryst.Growth Des.|20|2044|doi:10.1021/acs.cgd.9b01702
CCDC 987579: Experimental Crystal Structure Determination
Related Article: Isabel Castro, M. Luisa Calatayud, Wdeson P. Barros, José Carranza, Miguel Julve, Francesc Lloret, Nadia Marino, and Giovanni De Munno|2014|Inorg.Chem.|53|5759|doi:10.1021/ic500544n
CCDC 1415918: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 911106: Experimental Crystal Structure Determination
Related Article: Jérémy Chaignon, Salah-Eddine Stiriba, Francisco Lloret, Consuelo Yuste, Guillaume Pilet, Laurent Bonneviot, Belén Albela, Isabel Castro|2014|Dalton Trans.|43|9704|doi:10.1039/C3DT53636J
CCDC 1415921: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 905065: Experimental Crystal Structure Determination
Related Article: Jérémy Chaignon, Salah-Eddine Stiriba, Francisco Lloret, Consuelo Yuste, Guillaume Pilet, Laurent Bonneviot, Belén Albela, Isabel Castro|2014|Dalton Trans.|43|9704|doi:10.1039/C3DT53636J
CCDC 1415915: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 2076621: Experimental Crystal Structure Determination
Related Article: Isabel Castro, M. Luisa Calatayud, Marta Orts-Arroyo, Nicolás Moliner, Nadia Marino, Francesc Lloret, Rafael Ruiz-García, Giovanni De Munno, Miguel Julve|2021|Molecules|26|2792|doi:10.3390/molecules26092792
CCDC 1047965: Experimental Crystal Structure Determination
Related Article: Wdeson P. Barros, M. Luisa Calatayud, Francesc Lloret, Miguel Julve, Nadia Marino, Giovanni De Munno, Humberto O. Stumpf, Rafael Ruiz-García, Isabel Castro|2016|CrystEngComm|18|437|doi:10.1039/C5CE02058A
CCDC 1914219: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Marta Viciano-Chumillas, Francisco Lloret, Miguel Julve, Isabel Castro, J. Krzystek, Mykhaylo Ozerov, Donatella Armentano, Giovanni De Munno, Joan Cano|2019|Inorg.Chem.|58|15726|doi:10.1021/acs.inorgchem.9b01719
CCDC 1991873: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, José Martínez-Lillo|2020|Dalton Trans.|49|9155|doi:10.1039/D0DT01126F
CCDC 1415916: Experimental Crystal Structure Determination
Related Article: Julia Vallejo, Francisco R. Fortea-Pérez, Emilio Pardo, Samia Benmansour, Isabel Castro, J. Krzystek, Donatella Armentano, Joan Cano|2016|Chemical Science|7|2286|doi:10.1039/C5SC04461H
CCDC 1040033: Experimental Crystal Structure Determination
Related Article: Luis Escriche-Tur, Montserrat Corbella, Mercè Font-Bardia, Isabel Castro, Laurent Bonneviot, and Belén Albela|2015|Inorg.Chem.|54|10111|doi:10.1021/acs.inorgchem.5b01425
CCDC 2046050: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, José Martínez-Lillo|2021|Biosensors|11|19|doi:10.3390/bios11010019
CCDC 2047766: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Renato Rabelo, Ainoa Carrasco-Berlanga, Nicolás Moliner, Joan Cano, Miguel Julve, Francesc Lloret, Giovanni De Munno, Rafael Ruiz-García, Júlia Mayans, José Martínez-Lillo, Isabel Castro|2021|Dalton Trans.|50|3801|doi:10.1039/D1DT00462J
CCDC 1577623: Experimental Crystal Structure Determination
Related Article: M. Luisa Calatayud, Marta Orts-Arroyo, Miguel Julve, Francesc Lloret, Nadia Marino, Giovanni De Munno, Rafael Ruiz-García, Isabel Castro|2018|J.Coord.Chem.|71|657|doi:10.1080/00958972.2017.1421950
CCDC 1972101: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, José Martı́nez-Lillo|2020|Cryst.Growth Des.|20|2044|doi:10.1021/acs.cgd.9b01702
CCDC 1898600: Experimental Crystal Structure Determination
Related Article: Marta Orts-Arroyo, Isabel Castro, Francesc Lloret, José Martı́nez-Lillo|2020|Cryst.Growth Des.|20|2044|doi:10.1021/acs.cgd.9b01702
CCDC 2076622: Experimental Crystal Structure Determination
Related Article: Isabel Castro, M. Luisa Calatayud, Marta Orts-Arroyo, Nicolás Moliner, Nadia Marino, Francesc Lloret, Rafael Ruiz-García, Giovanni De Munno, Miguel Julve|2021|Molecules|26|2792|doi:10.3390/molecules26092792
Bioinorganic Chemistry (Topic 2)
Este documento ha sido elbaorado en el marco de un proyecto de Renovación de Metodologías Docentes concedido por el Servicio de Formación Permanente de la Universitat de València (código de la solicitud: UV-SFPIE_RMD17-725369). Este documento forma parte de la asignatura Química Inorgánica Avanzada impartida en el Máster Universitario en Química. This document forms part of the course of Advanced Inorganic Chemistry belonging to the Master in Chemistry.