0000000001300118

AUTHOR

Thais Grancha

showing 56 related works from this author

Self-assembly of a chiral three-dimensional manganese(II)-copper(II) coordination polymer with a double helical architecture

2013

The use of the anionic dicopper(ii) complex, [CuII(mpba) 2]4- [mpba = N,N′-1,3-phenylenebis(oxamate)], as tetrakis(bidentate) metalloligand toward MnII ions in the presence of oxalate and the chiral (S)-trimethyl-(1-phenylethyl)ammonium cation affords the first example of a mixed oxalato/oxamato-based chiral 3D metal-organic polymer. © 2013 The Royal Society of Chemistry.

chemistry.chemical_classificationDenticityCoordination polymerInorganic chemistrychemistry.chemical_elementGeneral ChemistryPolymerManganeseCondensed Matter PhysicsCopperOxalateIonchemistry.chemical_compoundchemistryPolymer chemistryGeneral Materials ScienceSelf-assemblyCrystEngComm
researchProduct

Enantioselective self-assembly of antiferromagnetic hexacopper(ii) wheels with chiral amino acid oxamates

2013

The Cu(2+)-mediated self-assembly of oxamato-based ligands derived from either the (S)- or (R)-enantiomers of the amino acid valine leads to the formation of two antiferromagnetically coupled homochiral anionic hexacopper(II) wheels in the presence of templating tetramethylammonium countercations.

chemistry.chemical_classificationTetramethylammoniumStereochemistryMagnetic PhenomenaMetals and AlloysEnantioselective synthesisStereoisomerismValineGeneral ChemistryLigandsCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmino acidchemistry.chemical_compoundchemistryCoordination ComplexesValineMaterials ChemistryCeramics and CompositesAntiferromagnetismSelf-assemblyCopperChemical Communications
researchProduct

ChemInform Abstract: Oxamato-Based Coordination Polymers: Recent Advances in Multifunctional Magnetic Materials

2014

The design and synthesis of novel examples of multifunctional magnetic materials based on the so-called coordination polymers (CPs) have become very attractive for chemists and physicists due to their potential applications in nanoscience and nanotechnology. However, their preparation is still an experimental challenge, which requires a deep knowledge of coordination chemistry and large skills in organic chemistry. The recent advances in this field using a molecular-programmed approach based on rational self-assembly methods which fully exploit the versatility of the coordination chemistry of the barely explored and evergreen family of N-substituted aromatic oligo(oxamato) ligands are prese…

chemistry.chemical_classificationchemistryDeep knowledgeNanotechnologyGeneral MedicinePolymerCoordination complexExperimental challengeChemInform
researchProduct

Synthesis of a chiral rod-like metal–organic framework from a preformed amino acid-based hexanuclear wheel

2019

We report the two-step synthesis of a chiral rod-like metal-organic framework (MOF). The chemical approach consists on the use of a previously prepared oxamato-based homochiral hexanuclear wheel, the ligand being a derivative of the natural amino acid l-alanine, with formula (Me4N)6{CuII6[(S)-alama])6}·10H2O (1) [where (S)-alama=(S)-N-(ethyl oxoacetate)alanine]. The anionic hexacopper(II) wheels, stabilized by the presence of templating tetramethylammonium counter-cations, disassemble in the presence of cationic square-planar [Ni(cyclam)]2+ complexes to yield, after a supramolecular reorganization process that involves axial coordination of the [Ni(cyclam)]2+ cations through the free carbon…

Complex-as-ligandchemistry.chemical_classificationMetal–organic frameworkfungi010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciences0104 chemical sciencesAmino acidCrystallographyCopper(II)chemistryMaterials ChemistryMetal-organic frameworkChiralityPhysical and Theoretical ChemistryChirality (chemistry)Journal of Coordination Chemistry
researchProduct

A triple-bridged azido-Cu(II) chain compound fine-tuned by mixed carboxylate/ethanol linkers displays slow-relaxation and ferromagnetic order: synthe…

2014

A new azido-Cu(II) compound, [Cu(4-fba)(N3)(C2H5OH)] (4-fba = 4-fluorobenzoic acid) (1), has been synthesized and characterized. The X-ray crystal structure analysis demonstrates that only one crystallographically independent Cu(II) ion in the asymmetric unit of 1 exhibits a stretched octahedral geometry in which two azido N atoms and two carboxylic O atoms locate in the equatorial square, while two ethanol O atoms occupy the apical positions, forming a 1D Cu(II) chain with an alternating triple-bridge of EO-azido, syn,syn-carboxylate, and μ2-ethanol. The title compound consists of ferromagnetically interacting ferromagnetic chains, which exhibit ferromagnetic order (Tc = 7.0 K). The strong…

Inorganic Chemistrychemistry.chemical_compoundCrystallographychemistryFerromagnetismStereochemistryHydrogen bondOctahedral molecular geometryRelaxation (NMR)MoleculeCarboxylateCrystal structureIonDalton transactions (Cambridge, England : 2003)
researchProduct

Solid-State Aggregation of Metallacyclophane-Based MnIICuII One-Dimensional Ladders

2012

Two distinct one-dimensional (1) and two-dimensional (2) mixed-metal-organic polymers have been synthesized by using the "complex-as-ligand" strategy. The structure of 1 consists of isolated ladderlike Mn(II)(2)Cu(II)(2) chains separated from each other by neutral Mn(II)(2) dimers, whereas 2 possesses an overall corrugated layer structure built from additional coordinative interactions between adjacent Mn(II)(2)Cu(II)(2) ladders. Interestingly, 1 and 2 show overall ferri- and antiferromagnetic behavior, respectively, as a result of their distinct crystalline aggregation in the solid state.

Models Molecularchemistry.chemical_classificationManganeseMolecular StructureTemperatureSolid-statePolymerCrystallography X-RayInorganic ChemistryCrystallographychemistryOrganometallic CompoundsAntiferromagnetismPhysical and Theoretical ChemistryLayer (electronics)CopperInorganic Chemistry
researchProduct

Spin-crossover complex encapsulation within a magnetic metal-organic framework.

2016

The solid-state incorporation of a mononuclear iron(III) complex within the pores of a magnetic 3D metal–organic framework (MOF) in a single crystal to single crystal process leads to the formation of a new hybrid material showing both a guest-dependent long-range magnetic ordering and a spin-crossover (SCO) behaviour.

Materials scienceMetals and AlloysPhysics::OpticsNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsEncapsulation (networking)Chemical engineeringSpin crossoverMaterials ChemistryCeramics and CompositesMetal-organic framework0210 nano-technologyHybrid materialSingle crystalChemical communications (Cambridge, England)
researchProduct

Influence of the cyanine counter anions on a bi-layer solar cell performance

2013

ABSTRACTWe present normal and inverted solution processed bi-layer solar cells using cationic cyanine dyes as the electron donor and a fullerene as the electron acceptor. The cells exhibit high open circuit voltages up to 1 volt showing the optimal alignment of donor and acceptor energy levels. We demonstrate the large effect that cyanine dye counter ions can have on the energetics of the solar cells and how the S-shaped current density vs. voltage (J-V) curves can be avoided.

chemistry.chemical_classificationMaterials scienceOpen-circuit voltagePhotovoltaic systemAnalytical chemistryElectron donorElectron acceptorPhotochemistryAcceptorlaw.inventionchemistry.chemical_compoundchemistrylawSolar cellCyanineThin filmMRS Proceedings
researchProduct

Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF

2016

Proton conduction in solids attracts great interest, not only because of possible applications in fuel cell technologies, but also because of the main role of this process in many biological mechanisms. Metal–organic frameworks (MOFs) can exhibit exceptional proton-conduction performances, because of the large number of hydrogen-bonded water molecules embedded in their pores. However, further work remains to be done to elucidate the real conducting mechanism. Among the different MOF subfamilies, bioMOFs, which have been constructed using biomolecule derivatives as building blocks and often affording water-stable materials, emerge as valuable systems to study the transport mechanisms involve…

chemistry.chemical_classificationMaterials scienceProtonGeneral Chemical EngineeringBiomoleculeNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistryMaterials ChemistryMoleculeFuel cellsGrotthuss mechanism0210 nano-technologyPorosityChemistry of Materials
researchProduct

Postsynthetic Improvement of the Physical Properties in a Metal-Organic Framework through a Single Crystal to Single Crystal Transmetallation

2015

As ingle crystal to single crystal transmetallation process takes place in the three-dimensional (3D) metal- organic framework (MOF) of formula Mg II 2{Mg II 4(Cu II 2- (Me3mpba)2)3}·45 H2 O( 1 ;M e 3mpba 4¢ = N,N'-2,4,6-trimethyl- 1,3-phenylenebis(oxamate)). After complete replacement of the Mg II ions within the coordination network and those hosted in the channels by either Co II or Ni II ions, 1 is transmetallated to yield two novel MOFs of formulae Co2 II {Co II 4(Cu II 2(Me3- mpba)2)3}·56 H2 O( 2 )a nd Ni2 II {Ni II 4(Cu II 2(Me3mpba)2)3}· 54 H2 O( 3). This unique postsynthetic metal substitution affords materials with higher structural stability leading to enhanced gas sorption and m…

ChemistryLigandStereochemistryMetal ions in aqueous solutionSupramolecular chemistryGeneral MedicineGeneral ChemistryCatalysisMetalCrystalTransmetalationCrystallographyvisual_artYield (chemistry)visual_art.visual_art_mediumSingle crystalAngewandte Chemie International Edition
researchProduct

Cover Picture: Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties (Chem. Eur. J…

2015

ChemistryOrganic ChemistrySolid-stateMetal-organic frameworkNanotechnologyCover (algebra)General ChemistryInclusion (mineral)NanomagnetCatalysisChemistry - A European Journal
researchProduct

Ligand effects on the dimensionality of oxamato-bridged mixed-metal open-framework magnets

2012

Increasing dimensionality [from 2D (1) to 3D (2)] and T(C) [from 10 (1) to 20 K (2)] in two new oxamato-bridged heterobimetallic Mn(II)(2)Cu(II)(3) open-frameworks result from the steric hindrance provided by the different alkyl substituents of the N-phenyloxamate bridging ligands.

Steric effectschemistry.chemical_classificationBridging (networking)Mixed metalChemistryLigandStereochemistryMetals and AlloysGeneral ChemistryOpen frameworkCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyMagnetMaterials ChemistryCeramics and CompositesAlkylCurse of dimensionalityChemical Communications
researchProduct

Rational Synthesis of Chiral Metal-Organic Frameworks from Preformed Rodlike Secondary Building Units.

2017

The lack of rational design methodologies to obtain chiral rod-based MOFs is a current synthetic limitation that hampers further expansion of MOF chemistry. Here we report a metalloligand design strategy consisting of the use, for the first time, of preformed 1D rodlike SBUs (1) for the rational preparation of a chiral 3D MOF (2) exhibiting a rare eta net topology. The encoded chiral information on the enantiopure ligand is efficiently transmitted first to the preformed helical 1D building block and, in a second stage, to the resulting chiral 3D MOF. These results open new routes for the rational design of chiral rod-based MOFs, expanding the scope of these unique porous materials.

010405 organic chemistryLigandChemistryRational designNanotechnology010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesInorganic ChemistryEnantiopure drugMetal-organic frameworkSBusPhysical and Theoretical ChemistryTopology (chemistry)Inorganic chemistry
researchProduct

Solvent-Dependent Self-Assembly of an Oxalato-Based Three-Dimensional Magnet Exhibiting a Novel Architecture.

2016

The old but evergreen family of bimetallic oxalates still offers innovative and interesting results. When (Me4N)3[Cr(ox)3]·3H2O is reacted with Mn(II) ions in a nonaqueous solvent, a novel three-dimensional magnet of the formula [N(CH3)4]6[Mn3Cr4(ox)12]·6CH3OH is obtained instead of the one-dimensional compound obtained in water. This new material exhibits an unprecedented stoichiometry with a binodal (3,4) net topology and the highest critical temperature (TC = 7 K) observed so far in a manganese-chromium oxalate based magnet.

Binodal010405 organic chemistryInorganic chemistry010402 general chemistry01 natural sciencesOxalate0104 chemical sciencesIonInorganic ChemistrySolventchemistry.chemical_compoundCrystallographychemistryMagnet[CHIM]Chemical SciencesSelf-assemblyPhysical and Theoretical ChemistryBimetallic stripStoichiometryComputingMilieux_MISCELLANEOUSInorganic chemistry
researchProduct

Spin Crossover in Double Salts Containing Six- and Four-Coordinate Cobalt(II) Ions

2017

The preparation and spectroscopic and structural characterization of three cobalt(II) complexes of formulas [Co(tppz)2](dca)2 (1), [Co(tppz)2][Co(NCS)4]·MeOH (2), and [Co(tppz)2][Co(NCO)4]·2H2O (3) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine and dca = dicyanamide] are reported here. Compounds 1–3 have in common the presence of the cationic [Co(tppz)2]2+ entity where each mer-tridentate tppz ligand coordinates to the cobalt(II) ion equatorially through two pyridyl donors and axially via the pyrazine, completing the six-coordination. The electroneutrality is achieved by the organic dca group (1) and the anionic tetrakis(thiocyanato-κN)cobaltate(II) (2) and tetrakis(cyanato-κN)cobaltate(II) (3…

Pyrazine010405 organic chemistryLigandStereochemistryCationic polymerizationchemistry.chemical_element010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesIonInorganic Chemistrychemistry.chemical_compoundCrystallographychemistrySpin crossoverPhysical and Theoretical ChemistryCobaltDicyanamideInorganic Chemistry
researchProduct

Oxotris(oxalato)niobate(V) as counterion in cobalt(II) spin-crossover systems

2016

Abstract This work is devoted to the investigation of the thermally induced spin-crossover behavior from a high-spin state (HS, S = 3/2) at higher temperatures to a low-spin phase (LS, S = 1/2) at lower temperatures of the six-coordinate cobalt(II) complex in the compound [Co(terpy)2]3[NbO(C2O4)3]2·3CH​3OH·4H2O (2). The crystal structure of 2 together with that of its counterion as tetraphenylarsonium(V) salt (AsPh4)3[NbO(C2O4)3]·9H2O (1) are also included. The spin-crossover process was followed by the thermal variation of the χMT product between 2.0 and 400 K under the warming mode, with the LS configuration being achieved at T ⩽ 200 K and the LS → HS interconversion being incomplete at 4…

chemistry.chemical_classificationZeeman effect010405 organic chemistryChemistryInorganic chemistrychemistry.chemical_elementCrystal structure010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionInorganic Chemistrysymbols.namesakelawSpin crossoverMaterials ChemistrysymbolsPhysical chemistryElectron configurationPhysical and Theoretical ChemistryCounterionElectron paramagnetic resonanceCobaltNatural bond orbitalPolyhedron
researchProduct

Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties.

2015

Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structur…

010405 organic chemistryMagnetismChemistryOrganic ChemistrySupramolecular chemistryPhysics::OpticsNanotechnologyGeneral Chemistry010402 general chemistry01 natural sciencesNanomagnetCatalysis0104 chemical sciencesMagnetic fieldMagnetMetal-organic frameworkNanoscopic scaleQuantum computerChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

High-temperature spin crossover in a mononuclear six-coordinate cobalt(II) complex.

2014

The six-coordinate cobalt(II) complex of formula [Co(tppz)2](tcm)2 exhibits a thermally induced spin-crossover behavior from a high spin (S = 3/2) at higher temperatures to a low spin (S = 1/2) at lower temperatures, with the low-spin phase being achieved at T ≤ 200 K.

Inorganic ChemistryNuclear magnetic resonancechemistrySpin crossoverPhase (matter)Analytical chemistrychemistry.chemical_elementCondensed Matter::Strongly Correlated ElectronsPhysical and Theoretical ChemistrySpin (physics)CobaltInorganic chemistry
researchProduct

Efficient, Cyanine Dye Based Bilayer Solar Cells

2012

Simple bilayer solar cells, using commercially available cationic cyanine dyes as donors and evaporated C60 layer as an acceptor are prepared. Cyanine dyes with absorption maxima of 578, 615 and 697 nm having either perchlorate or hexafluorophosphate counter-ions are evaluated. The perchlorate dye leads to cells with S-shape current-voltage curves; only the dyes with the hexafluorophosphate counter-ions lead to efficient solar cells. When the wide bandgap dyes are employed, S-shape current-voltage curves are obtained when the conductive polymer PEDOT:PSS is used as hole transport layer. Substitution of PEDOT:PSS with MoO3 leads to cells with more rectangular current–voltage curves and high …

Conductive polymerMaterials scienceRenewable Energy Sustainability and the EnvironmentOpen-circuit voltageBilayer02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry7. Clean energy01 natural sciencesAcceptor0104 chemical scienceslaw.inventionchemistry.chemical_compoundPEDOT:PSSchemistrylawHexafluorophosphateSolar cellGeneral Materials ScienceCyanine0210 nano-technologyAdvanced Energy Materials
researchProduct

Toward Engineering Chiral Rodlike Metal-Organic Frameworks with Rare Topologies.

2018

The establishment of novel design strategies to target chiral rodlike MOFs, elusively faced until now, is one of the most straightforward manners to widen the scope of MOFs. Here we describe our last advances on the application of the metalloligand design strategy toward the development of efficient routes to obtain chiral rodlike MOFs. To this end, we have used as precursor an enantiopure homochiral hexanuclear wheel (1), derived from the amino acid d-valine, which, after a supramolecular reorganization into a one-dimensional homochiral chain-with the same configuration as 1-led to the formation of a homochiral rodlike MOF (2) exhibiting rare etd topology.

ChemistrySupramolecular chemistryNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyNetwork topology01 natural sciences0104 chemical sciencesInorganic ChemistryEnantiopure drugMetal-organic frameworkPhysical and Theoretical Chemistry0210 nano-technologyTopology (chemistry)Inorganic chemistry
researchProduct

Double Interpenetration in a Chiral Three-Dimensional Magnet with a (10,3)-a Structure

2015

A unique chiral three-dimensional magnet with an overall racemic double-interpenetrated (10,3)-a structure of the formula [(S)-(1-PhEt)Me3N]4[Mn4Cu6(Et2pma)12](DMSO)3]·3DMSO·5H2O (1; Et2pma = N-2,6-diethylphenyloxamate) has been synthesized by the self-assembly of a mononuclear copper(II) complex acting as a metalloligand toward Mn(II) ions in the presence of a chiral cationic auxiliary, constituting the first oxamato-based chiral coordination polymer exhibiting long-range magnetic ordering.

Coordination polymerCationic polymerizationStructure (category theory)chemistry.chemical_elementCopper3. Good healthIonInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryMagnet[CHIM]Chemical SciencesPhysical and Theoretical ChemistryComputingMilieux_MISCELLANEOUSInorganic Chemistry
researchProduct

Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs

2017

Purification of methane from other light hydrocarbons in natural gas is a topic of intense research due to its fundamental importance in the utilization of natural gas fields. Porous materials have emerged as excellent alternative platforms to conventional cryogenic methodologies to perform this task in a cost- and energy-efficient manner. Here we report a new family of isoreticular chiral MOFs, prepared from oxamidato ligands derived from natural amino acids L-alanine, L-valine and L-leucine, where, by increasing the length of the alkyl residue of the amino acid, the charge density of the MOF's channels can be tuned (1 > 2 > 3), decreasing the adsorption preference towards methane over lig…

Inorganic chemistry02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyMethaneIsoreticularchemistry.chemical_compoundAdsorptionLight hydrocarbonsNatural gasGeneral Materials ScienceAlkylchemistry.chemical_classificationQuímica InorgánicaRenewable Energy Sustainability and the Environmentbusiness.industryRational designCharge densityGeneral ChemistryNatural gas021001 nanoscience & nanotechnologyMOFs0104 chemical scienceschemistryChemical engineering13. Climate action0210 nano-technologySelectivityPorous mediumbusiness
researchProduct

Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal–Organic Framework

2016

A novel chiral 3D bioMOF exhibiting functional channels with thio-alkyl chains derived from the natural amino acid l-methionine (1) has been rationally prepared. The well-known strong affinity of gold for sulfur derivatives, together with the extremely high flexibility of the thioether "arms" decorating the channels, account for a selective capture of gold(III) and gold(I) salts in the presence of other metal cations typically found in electronic wastes. The X-ray single-crystal structures of the different gold adsorbates Au(III)@1 and Au(I)@1 suggest that the selective metal capture occurs in a metal ion recognition process somehow mimicking what happens in biological systems and protein r…

chemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyHeterogeneous catalysis01 natural sciencesBiochemistrySulfurCombinatorial chemistryCatalysis0104 chemical sciencesCatalysisMetalchemistry.chemical_compoundColloid and Surface ChemistryThioetherchemistryvisual_artvisual_art.visual_art_mediumOrganic chemistryMetal-organic framework0210 nano-technologyHybrid materialHydroalkoxylationJournal of the American Chemical Society
researchProduct

Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials

2014

The design and synthesis of novel examples of multifunctional magnetic materials based on the so-called coordination polymers (CPs) have become very attractive for chemists and physicists due to their potential applications in nanoscience and nanotechnology. However, their preparation is still an experimental challenge, which requires a deep knowledge of coordination chemistry and large skills in organic chemistry. The recent advances in this field using a molecular-programmed approach based on rational self-assembly methods which fully exploit the versatility of the coordination chemistry of the barely explored and evergreen family of N-substituted aromatic oligo(oxamato) ligands are prese…

chemistry.chemical_classificationMetals and AlloysNanotechnologyGeneral ChemistryPolymerCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCoordination complexchemistryMaterials ChemistryCeramics and CompositesDeep knowledgeExperimental challengeChem. Commun.
researchProduct

Structural Studies on a New Family of Chiral BioMOFs

2016

The use of a family of dinuclear copper(II) complexes, prepared from enantiopure disubstituted oxamidato ligands derived from the natural amino acids l-alanine, l-valine, and l-leucine, as metalloligands toward barium(II) cations leads to the formation of three novel three-dimensional (3D) chiral metal–organic frameworks (MOFs). They exhibit different architectures, which serve as playground to study both how the chiral information contained in the starting enantiopure ligands is ultimately transmitted to the 3D structure and the effect of the size of the aliphatic residue of the amino acid on the final architecture.

chemistry.chemical_classification010405 organic chemistryChemistryStereochemistrychemistry.chemical_elementGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciencesCopper0104 chemical sciencesAmino acidResidue (chemistry)Enantiopure drugGeneral Materials ScienceCrystal Growth & Design
researchProduct

CCDC 1451174: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Jesús Ferrando-Soria, Joan Cano, Pedro Amoros , Beatriz Seoane, Jorge Gascon, Montse Bazaga-García, Enrique R. Losilla, Aurelio Cabeza, Donatella Armentano, Emilio Pardo|2016|Chem.Mater.|28|4608|doi:10.1021/acs.chemmater.6b01286

catena-[tris(mu-NN'-bis((S)-2-propanoato)oxamide)-(mu-aqua)-bis(mu-hydroxy)-calcium(ii)-hexa-copper(ii) hydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1530550: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Marta Mon, Jesús Ferrando-Soria, Jorge Gascon, Beatriz Seoane, Enrique V. Ramos-Fernandez, Donatella Armentano, Emilio Pardo|2017|J.Mater.Chem.A|5|11032|doi:10.1039/C7TA01179B

Space GroupCrystallographycatena-[tris(mu-22'-[(12-dioxoethane-12-diyl)bis(azanidediyl)]bis(4-methylpentanoate))-bis(mu-hydroxo)-(mu-aqua)-calcium-hexa-copper unknown solvate undecahydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1432054: Experimental Crystal Structure Determination

2016

Related Article: Thais Grancha, Jesús Ferrando-Soria, Joan Cano, Pedro Amoros , Beatriz Seoane, Jorge Gascon, Montse Bazaga-García, Enrique R. Losilla, Aurelio Cabeza, Donatella Armentano, Emilio Pardo|2016|Chem.Mater.|28|4608|doi:10.1021/acs.chemmater.6b01286

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(tris(mu-22'-((12-dihydroxyethane-12-diylidene)diazanylylidene)dipropanoato)-tris(mu-hydroxo)-calcium-hexa-copper dotriacontahydrate)
researchProduct

CCDC 1030505: Experimental Crystal Structure Determination

2015

Related Article: Thais Grancha, Jesús Ferrando-Soria, Hong-Cai Zhou, Jorge Gascon, Beatriz Seoane, Jorge Pasán, Oscar Fabelo, Miguel Julve and Emilio Pardo|2015|Angew.Chem.,Int.Ed.|54|6521|doi:10.1002/anie.201501691

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexa-nickel bis(mu-24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-tetra-aqua-di-copper bis(bis(24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-diaqua-dicopper) nonahydrateExperimental 3D Coordinates
researchProduct

CCDC 1416018: Experimental Crystal Structure Determination

2015

Related Article: Thais Grancha, Marta Mon, Francesc Lloret, Jesús Ferrando-Soria, Yves Journaux, Jorge Pasán, and Emilio Pardo|2015|Inorg.Chem.|54|8890|doi:10.1021/acs.inorgchem.5b01738

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis((S)-(1-Phenylethyl)trimethylammonium) hexakis(mu2-((26-diethylphenyl)amino)(oxo)acetato)-bis(dimethyl sulfoxide)-tri-copper-di-manganese dimethyl sulfoxide solvate hydrate)Experimental 3D Coordinates
researchProduct

CCDC 941373: Experimental Crystal Structure Determination

2013

Related Article: Thais Grancha, Clarisse Tourbillon, Jesús Ferrando-Soria, Miguel Julve, Francesc Lloret, Jorge Pasán, Catalina Ruiz-Pérez, Oscar Fabelo, Emilio Pardo|2013|CrystEngComm|15|9312|doi:10.1039/C3CE41022F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(S-NNN-Trimethyl-1-phenylethanaminium) bis(mu~4~-1-([carboxylato(oxidanidyl)methylidene]amino)-3-([carboxylato(oxidanidyl)methylidene]amino)benzene)-(mu~2~-oxalato)-diaqua-di-copper-di-manganese unknown solvate trihydrate]Experimental 3D Coordinates
researchProduct

CCDC 1418715: Experimental Crystal Structure Determination

2016

Related Article: Willian X.C. Oliveira, Cynthia L.M. Pereira, Carlos B. Pinheiro, Klaus Krambrock, Thais Grancha, Nícolas Moliner, Francesc Lloret, Miguel Julve|2016|Polyhedron|117|710|doi:10.1016/j.poly.2016.07.014

Space GroupCrystallographyCrystal SystemCrystal Structuretris(bis(22':6'2''-terpyridine)-cobalt(ii)) bis(tris(oxalato)-oxo-niobium(v)) methanol solvate tetrahydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1530549: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Marta Mon, Jesús Ferrando-Soria, Jorge Gascon, Beatriz Seoane, Enrique V. Ramos-Fernandez, Donatella Armentano, Emilio Pardo|2017|J.Mater.Chem.A|5|11032|doi:10.1039/C7TA01179B

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-22'-[(12-dioxoethane-12-diyl)bis(azanidediyl)]bis(4-methylpentanoate))-bis(mu-hydroxo)-(mu-aqua)-calcium-hexa-copper unknown solvate tridecahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1478222: Experimental Crystal Structure Determination

2016

Related Article: Marta Mon, Jesús Ferrando-Soria, Thais Grancha, Francisco R. Fortea-Pérez, Jorge Gascon, Antonio Leyva-Pérez, Donatella Armentano, and Emilio Pardo|2016|J.Am.Chem.Soc.|138|7864|doi:10.1021/jacs.6b04635

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-2-((2-((1-carboxylato-3-(methylsulfanyl)propyl)amino)-1-oxy-2-oxoethylidene)amino)-4-(methylsulfanyl)butanoato)-bis(mu-hydroxy)-(mu-aqua)-trichloro-calcium(ii)-hexa-copper(ii)-tri-gold(iii) hexakis(chloride) unknown solvate nonahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1030506: Experimental Crystal Structure Determination

2015

Related Article: Thais Grancha, Jesús Ferrando-Soria, Hong-Cai Zhou, Jorge Gascon, Beatriz Seoane, Jorge Pasán, Oscar Fabelo, Miguel Julve and Emilio Pardo|2015|Angew.Chem.,Int.Ed.|54|6521|doi:10.1002/anie.201501691

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexa-cobalt bis(mu-24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-tetra-aqua-di-copper bis(bis(24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-diaqua-dicopper) dodecahydrateExperimental 3D Coordinates
researchProduct

CCDC 1529277: Experimental Crystal Structure Determination

2017

Related Article: Joanna Palion-Gazda, Barbara Machura, Rafal Kruszynski, Thais Grancha, Nicolás Moliner, Francesc Lloret, Miguel Julve|2017|Inorg.Chem.|56|6281|doi:10.1021/acs.inorgchem.7b00360

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(26-bis(pyridin-2-yl)-35-bis(pyridin-2-yl)pyrazine)-cobalt(ii) bis(dicyanoazanide)Experimental 3D Coordinates
researchProduct

CCDC 980967: Experimental Crystal Structure Determination

2014

Related Article: Xiangyu Liu, Sanping Chen, Thais Grancha, Emilio Pardo, Hongshan Ke, Bing Yin, Qing Wei, Gang Xie, Shengli Gao|2014|Dalton Trans.|43|15359|doi:10.1039/C4DT02195A

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[(mu-azido)-(mu-ethanol)-(mu-4-fluorobenzoato)-copper(ii)]
researchProduct

CCDC 1520974: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Xiaoni Qu, Miguel Julve, Jesús Ferrando-Soria, Donatella Armentano, Emilio Pardo|2017|Inorg.Chem.|56|6551|doi:10.1021/acs.inorgchem.7b00681

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[bis(mu-([carboxylato(oxidanidyl)methylidene]amino)(phenyl)acetato)-(14811-tetraazacyclotetradecane)-aqua-di-copper(ii)-nickel(ii) propan-2-ol solvate pentahydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1529275: Experimental Crystal Structure Determination

2017

Related Article: Joanna Palion-Gazda, Barbara Machura, Rafal Kruszynski, Thais Grancha, Nicolás Moliner, Francesc Lloret, Miguel Julve|2017|Inorg.Chem.|56|6281|doi:10.1021/acs.inorgchem.7b00360

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(2356-tetrakis(pyridin-2-yl)pyrazine)-cobalt(ii) tetrakis(isothiocyanato)-cobalt(ii) methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1493129: Experimental Crystal Structure Determination

2016

Related Article: Thais Grancha, Marta Mon, Jesus Ferrando-Soria, Donatella Armentano, Emilio Pardo|2016|Cryst.Growth Des.|16|5571|doi:10.1021/acs.cgd.6b01052

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(tris(mu-(SS)-alanine oxalyl diamide)-(mu-aqua)-bis(mu-hydroxo)-barium(ii)-hexa-copper(ii) triacontahydrate)
researchProduct

CCDC 1478221: Experimental Crystal Structure Determination

2016

Related Article: Marta Mon, Jesús Ferrando-Soria, Thais Grancha, Francisco R. Fortea-Pérez, Jorge Gascon, Antonio Leyva-Pérez, Donatella Armentano, and Emilio Pardo|2016|J.Am.Chem.Soc.|138|7864|doi:10.1021/jacs.6b04635

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-2-((2-((1-carboxylato-3-(methylsulfanyl)propyl)amino)-1-oxy-2-oxoethylidene)amino)-4-(methylsulfanyl)butanoato)-bis(mu-hydroxy)-(mu-aqua)-calcium(ii)-hexa-copper(ii) hexadecahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1030504: Experimental Crystal Structure Determination

2015

Related Article: Thais Grancha, Jesús Ferrando-Soria, Hong-Cai Zhou, Jorge Gascon, Beatriz Seoane, Jorge Pasán, Oscar Fabelo, Miguel Julve and Emilio Pardo|2015|Angew.Chem.,Int.Ed.|54|6521|doi:10.1002/anie.201501691

Space GroupCrystallographyCrystal Systemhexa-magnesium bis(mu-24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-tetra-aqua-di-copper bis(bis(24-bis([carboxylato(oxidanidyl)methylidene]amino)-135-trimethylbenzene)-diaqua-dicopper) hexahydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454962: Experimental Crystal Structure Determination

2016

Related Article: Willian X.C. Oliveira, Cynthia L.M. Pereira, Carlos B. Pinheiro, Klaus Krambrock, Thais Grancha, Nícolas Moliner, Francesc Lloret, Miguel Julve|2016|Polyhedron|117|710|doi:10.1016/j.poly.2016.07.014

Space GroupCrystallographyCrystal Systemtris(tetraphenylarsonium) tris(oxalato)-oxo-niobium(v) nonahydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1478223: Experimental Crystal Structure Determination

2016

Related Article: Marta Mon, Jesús Ferrando-Soria, Thais Grancha, Francisco R. Fortea-Pérez, Jorge Gascon, Antonio Leyva-Pérez, Donatella Armentano, and Emilio Pardo|2016|J.Am.Chem.Soc.|138|7864|doi:10.1021/jacs.6b04635

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tris(mu-2-((2-((1-carboxylato-3-(methylsulfanyl)propyl)amino)-1-oxy-2-oxoethylidene)amino)-4-(methylsulfanyl)butanoato)-bis(mu-hydroxy)-(mu-aqua)-dichloro-calcium(ii)-hexa-copper(ii)-di-gold(i) methanol solvate trihydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1414395: Experimental Crystal Structure Determination

2016

Related Article: Marta Mon, Alejandro Pascual-Álvarez, Thais Grancha, Joan Cano, Jesús Ferrando-Soria, Francesc Lloret, Jorge Gascon, Jorge Pasán, Donatella Armentano, Emilio Pardo|2016|Chem.-Eur.J.|22|539|doi:10.1002/chem.201504176

catena-[tri-sodium (5101520-tetraphenylporphryinato)-manganese(iii) bis(tris(mu-22'-((246-trimethyl-13-phenylene)diazanylylidene)bis(oxidoacetato))-tetra-aqua-tri-copper(ii)-di-manganese(ii)) unknown solvate pentatriacontahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 999841: Experimental Crystal Structure Determination

2015

Related Article: Joanna Palion-Gazda, Anna Świtlicka-Olszewska, Barbara Machura, Thais Grancha, Emilio Pardo, Francesc Lloret, and Miguel Julve|2014|Inorg.Chem.|53|10009|doi:10.1021/ic501195y

Space GroupCrystallographyCrystal Systembis(26-bis(pyridin-2-yl)-35-bis(pyridin-2-yl)pyrazine)-cobalt(ii) bis(tricyanomethanide)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1493131: Experimental Crystal Structure Determination

2016

Related Article: Thais Grancha, Marta Mon, Jesus Ferrando-Soria, Donatella Armentano, Emilio Pardo|2016|Cryst.Growth Des.|16|5571|doi:10.1021/acs.cgd.6b01052

Space GroupCrystallographycatena-[hexakis(mu-22'-[(12-dioxoethane-12-diyl)diazanidediyl]bis(5-methylhexanoato))-hexakis(mu-hydroxo)-tris(mu-aqua)-trideca-aqua-tri-barium(ii)-dodeca-copper(ii) dotriacontahydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1529486: Experimental Crystal Structure Determination

2017

Related Article: Joanna Palion-Gazda, Barbara Machura, Rafal Kruszynski, Thais Grancha, Nicolás Moliner, Francesc Lloret, Miguel Julve|2017|Inorg.Chem.|56|6281|doi:10.1021/acs.inorgchem.7b00360

Space GroupCrystallographybis(2356-tetrakis(pyridin-2-yl)pyrazine)-cobalt(ii) tetrakis(cyanato)-cobalt(ii) dihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1520975: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Xiaoni Qu, Miguel Julve, Jesús Ferrando-Soria, Donatella Armentano, Emilio Pardo|2017|Inorg.Chem.|56|6551|doi:10.1021/acs.inorgchem.7b00681

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-([carboxylato(oxidanidyl)methylidene]amino)(phenyl)acetato)-(14811-tetraazacyclotetradecane)-di-copper(ii)-nickel(ii) propan-2-ol solvate hexahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1493130: Experimental Crystal Structure Determination

2016

Related Article: Thais Grancha, Marta Mon, Jesus Ferrando-Soria, Donatella Armentano, Emilio Pardo|2016|Cryst.Growth Des.|16|5571|doi:10.1021/acs.cgd.6b01052

Space GroupCrystallographyCrystal Systemcatena-(tris(mu-(SS)-valine oxalyl diamide)-bis(mu-hydroxo)-hexakis(mu-methanol)-barium(ii)-hexa-copper(ii) hexahydrate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 931371: Experimental Crystal Structure Determination

2013

Related Article: Thais Grancha,Jesus Ferrando-Soria,Joan Cano,Francesc Lloret,Miguel Julve,Giovanni De Munno,Donatella Armentano,Emilio Pardo|2013|Chem.Commun.|49|5942|doi:10.1039/C3CC42776E

Space GroupCrystallographyhexakis(tetramethylammonium) hexakis(mu~2~-(R)-2-([carboxylato(oxidanidyl)methylidene]amino)-3-methylbutanoato)-hexa-copper heptahydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1520973: Experimental Crystal Structure Determination

2017

Related Article: Thais Grancha, Xiaoni Qu, Miguel Julve, Jesús Ferrando-Soria, Donatella Armentano, Emilio Pardo|2017|Inorg.Chem.|56|6551|doi:10.1021/acs.inorgchem.7b00681

Space GroupCrystallographycatena-[tetramethylammonium (mu-([carboxylato(oxidanidyl)methylidene]amino)(phenyl)acetato)-copper(ii) dihydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480930: Experimental Crystal Structure Determination

2016

Related Article: Marta Mon, Thais Grancha, Michel Verdaguer, Cyrille Train, Donatella Armentano and Emilio Pardo|2016|Inorg.Chem.|55|6845|doi:10.1021/acs.inorgchem.6b01256

catena-[hexakis(Tetramethylammonium) dodecakis(mu-oxalato)-tetra-chromium(iii)-tri-manganese(ii) methanol solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 931372: Experimental Crystal Structure Determination

2013

Related Article: Thais Grancha,Jesus Ferrando-Soria,Joan Cano,Francesc Lloret,Miguel Julve,Giovanni De Munno,Donatella Armentano,Emilio Pardo|2013|Chem.Commun.|49|5942|doi:10.1039/C3CC42776E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(tetramethylammonium) hexakis(mu~2~-2-([carboxylato(oxidanidyl)methylidene]amino)-3-methylbutanoato)-hexa-copper heptahydrateExperimental 3D Coordinates
researchProduct

CCDC 1849587: Experimental Crystal Structure Determination

2018

Related Article: Thais Grancha, Jesús Ferrando-Soria, Davide M. Proserpio, Donatella Armentano, Emilio Pardo|2018|Inorg.Chem.|57|12869|doi:10.1021/acs.inorgchem.8b02082

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(octkais(mu-(R)-N-(ethyl oxoacetate)valinato)-tetrakis(14811-tetra-azacyclotetradecane)-penta-aqua-octa-copper(ii)-tetra-nickel(ii) pentadecahydrate)Experimental 3D Coordinates
researchProduct

CCDC 1529276: Experimental Crystal Structure Determination

2017

Related Article: Joanna Palion-Gazda, Barbara Machura, Rafal Kruszynski, Thais Grancha, Nicolás Moliner, Francesc Lloret, Miguel Julve|2017|Inorg.Chem.|56|6281|doi:10.1021/acs.inorgchem.7b00360

Space GroupCrystallographybis[2356-tetrakis(pyridin-2-yl)pyrazine]-cobalt bis(dicyanamide)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct