0000000001303204

AUTHOR

Masaaki Ohba

showing 22 related works from this author

Enhanced bistability by guest inclusion in Fe(ii) spin crossover porous coordination polymers

2012

Inclusion of thiourea guest molecules in the tridimensional spin crossover porous coordination polymers {[Fe(pyrazine)[M(CN)(4)]} (M = Pd, Pt) leads to novel clathrates exhibiting unprecedented large thermal hysteresis loops of ca. 60 K wide centered near room temperature.

Materials sciencePyrazineStereochemistryMetals and Alloyschemistry.chemical_elementGeneral ChemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHysteresischemistry.chemical_compoundCrystallographychemistryThioureaSpin crossoverMaterials ChemistryCeramics and CompositesMoleculePlatinumThermal analysisPalladiumChemical Communications
researchProduct

Sequestering aromatic molecules with a spin-crossover Fe(II) microporous coordination polymer.

2012

All in a spin: A series of three-dimensional porous coordination polymer {Fe(dpe)[Pt(CN)(4)]}⋅G (dpe = 1,2-di(4-pyridyl)ethylene; G = phenazine, anthracene, or naphthalene) exhibiting spin crossover and host-guest functions is reported. The magnetic properties of the framework are very sensitive to the chemical nature (aromatic or hydroxilic solvents) and the size of the included guest molecules.

AnthraceneEthyleneMolecular StructureCoordination polymerPolymersOrganic ChemistryPhenazineInorganic chemistryMolecular ConformationGeneral ChemistryMicroporous materialCrystallography X-RayCatalysischemistry.chemical_compoundMagneticschemistrySpin crossoverPolymer chemistryMoleculeFerrous CompoundsNaphthaleneChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Precise Control and Consecutive Modulation of Spin Transition Temperature Using Chemical Migration in Porous Coordination Polymers

2011

Precise control of spin transition temperature (T(c)) is one of the most important challenges in molecular magnetism. A Hofmann-type porous coordination polymer {Fe(pz)[Pt(II)(CN)(4)]} (1; pz = pyrazine) exhibited cooperative spin transition near room temperature (T(c)(up) = 304 K and T(c)(down) = 284 K) and its iodine adduct {Fe(pz)[Pt(II/IV)(CN)(4)(I)]} (1-I), prepared by oxidative addition of iodine to the open metal sites of Pt(II), raised the T(c) by 100 K. DSC and microscopic Raman spectra of a solid mixture of 1-I and 1 revealed that iodine migrated from 1-I to 1 through the grain boundary after heating above 398 K. We have succeeded in precisely controlling the iodine content of {Fe…

PyrazineMagnetismCoordination polymerInorganic chemistrySpin transitionGeneral ChemistryBiochemistryOxidative additionCatalysisAdductMetalsymbols.namesakechemistry.chemical_compoundCrystallographyColloid and Surface Chemistrychemistryvisual_artsymbolsvisual_art.visual_art_mediumRaman spectroscopyJournal of the American Chemical Society
researchProduct

Reversible Chemisorption of Sulfur Dioxide in a Spin Crossover Porous Coordination Polymer

2013

The chemisorption of sulfur dioxide (SO2) on the Hofmann-like spin crossover porous coordination polymer (SCO-PCP) {Fe(pz)[Pt(CN)4]} has been investigated at room temperature. Thermal analysis and adsorption-desorption isotherms showed that ca. 1 mol of SO2 per mol of {Fe(pz)[Pt(CN)4]} was retained in the pores. Nevertheless, the SO2 was loosely attached to the walls of the host network and completely released in 24 h at 298 K. Single crystals of {Fe(pz)[Pt(CN)4]}·nSO2 (n ≈ 0.25) were grown in water solutions saturated with SO2, and its crystal structure was analyzed at 120 K. The SO2 molecule is coordinated to the Pt(II) ion through the sulfur atom ion, Pt-S = 2.585(4) Å. This coordination…

Molecular StructureCoordination polymerInorganic chemistrySpin transitionCrystal structureCrystallography X-RayIonInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryChemisorptionSpin crossoverX-ray crystallographySulfur DioxideMoleculeAdsorptionFerrous CompoundsPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Enhancement of guest-responsivity by mesocrystallization of porous coordination polymers

2017

Mesocrystals of a porous coordination polymer {Fe(pz)[Pt(CN)4]} (1) showing spin transition were prepared by the reverse micelle method, and the size-controlled mesocrystal 1 kept its porous property and magnetic bistability and exhibited higher guest-responsivity with switching the spin state in both solid and aqueous suspension states than the bulk 1.

Materials scienceSpin states010405 organic chemistryCoordination polymerInorganic chemistryPorous Coordination PolymersSpin transitionGeneral Chemistry010402 general chemistry01 natural sciencesMicelle0104 chemical scienceschemistry.chemical_compoundResponsivitychemistryChemical engineeringMaterials ChemistryMesocrystalPorosityJournal of Materials Chemistry C
researchProduct

Oxidative Addition of Halogens on Open Metal Sites in a Microporous Spin-Crossover Coordination Polymer

2009

PolymersCoordination polymeroxidative additionMolecular ConformationchemisorptionPhotochemistryCatalysisMetalchemistry.chemical_compoundHalogensX-Ray Diffractionspin crossoverSpin crossoverPlatinumporous compoundsBinding SitesGeneral ChemistryMicroporous materialGeneral MedicineOxidative additioncoordination polymerschemistryMetalsChemisorptionvisual_artX-ray crystallographyHalogenvisual_art.visual_art_mediumOxidation-ReductionAngewandte Chemie
researchProduct

Downsizing of Nanocrystals While Retaining Bistable Spin Crossover Properties in Three-Dimensional Hofmann-Type {Fe(pz)[Pt(CN)4]}–Iodine Adducts

2021

Mastering nanostructuration of functional materials into electronic devices is presently an essential task in materials science. This is particularly relevant for spin crossover (SCO) compounds, whose properties are extremely sensitive to size reduction. Indeed, the search for materials displaying strong cooperative hysteretic SCO properties operative at the nanoscale close near room temperature is extremely challenging. In this context, we describe here the synthesis and characterization of 20-30 nm surfactant-free nanocrystals of the FeII Hofmann-type polymer {FeII(pz)[PtII,IVIx(CN)4]} (pz = pyrazine), which affords the first example of a robust three-dimensional coordination polymer, sub…

chemistry.chemical_classificationBistabilityPyrazine010405 organic chemistryCoordination polymerContext (language use)Polymer010402 general chemistry01 natural sciences0104 chemical sciencesCharacterization (materials science)Inorganic ChemistryCrystallographychemistry.chemical_compoundchemistryNanocrystalSpin crossoverPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

A novel high-spin heterometallic Ni12K4cluster incorporating large Ni–azide circles and an in situ cyanomethylated di-2-pyridyl ketone

2005

Reaction of di-2-pyridyl ketone (dpk) with nickel acetate and azide in the presence of potassium tert-butylate as a catalytic base generates the title compound, which contains the largest [Ni(m1,1-N3)]6 circles in the discrete ferromagnetically-coupled MII–azide cluster family, and shows an unprecedented in situ cyanomethylation of ketone. Clemente Juan, Juan Modesto, Juan.M.Clemente@uv.es

In situPotassium tert-butylateKetoneBase (chemistry)UNESCO::QUÍMICAPotassiumchemistry.chemical_elementCyanomethylation of ketone:QUÍMICA [UNESCO]Ferromagnetically-coupled Mll-azideCatalysisCatalysischemistry.chemical_compoundPolymer chemistryMaterials ChemistryCluster (physics)Organic chemistrySpin (physics)Novelchemistry.chemical_classificationUNESCO::QUÍMICA::Química inorgánicaMetals and AlloysNickel acetateGeneral Chemistry:QUÍMICA::Química inorgánica [UNESCO]Cyanomethylation of ketone ; Potassium tert-butylate ; Ferromagnetically-coupled Mll-azide ; Nickel acetate ; NovelSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryCeramics and CompositesAzideChem. Commun.
researchProduct

Innentitelbild: Bidirectional Chemo‐Switching of Spin State in a Microporous Framework (Angew. Chem. 26/2009)

2009

Das chemische Schalten des Magnetismus in zwei Richtungen wurde in einem mikroporosen Koordinationspolymer mit Spin-Crossover-Einheiten beobachtet. M. Ohba, J. A. Real, S. Kitagawa und Mitarbeiter stellten in ihrer Zuschrift auf S. 4861 ff. magnetische Messungen vor, die belegen, dass die meisten Gastmolekule einen Ubergang des Netzwerks vom diamagnetischen Low-Spin- (rot) in den paramagnetischen High-Spin-Zustand (gelb) bewirken. Allein CS2 stabilisiert den Low-Spin-Zustand. Die induzierten Spinzustande werden auch nach Freisetzung der Gastspezies beibehalten.

PhysicsCrystallographySpin statesGeneral MedicineMicroporous materialAngewandte Chemie
researchProduct

A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound

2012

A quasielastic neutron scattering and solid-state 2H NMR spectroscopy study of the polymeric spin-crossover compound {Fe(pyrazine)[Pt(CN) 4]} shows that the switching of the rotation of a molecular fragment-the pyrazine ligand-occurs in association with the change of spin state. The rotation switching was examined on a wide time scale (10 -13-10 -3 s) by both techniques, which clearly demonstrated the combination between molecular rotation and spin-crossover transition under external stimuli (temperature and chemical). The pyrazine rings are seen to perform a 4-fold jump motion about the coordinating nitrogen axis in the high-spin state. In the low-spin state, however, the motion is suppres…

Spin statesPyrazineFrameworkNanotechnologyBiochemistryCrystalsCatalysischemistry.chemical_compoundColloid and Surface ChemistrySpin crossoverPorous Coordination PolymersMoleculeSpectroscopyChemistryGeneral ChemistryNeutron spectroscopyDynamicsCrystallographyRotorsFISICA APLICADAQuasielastic neutron scatteringTransitionProton NMRMachinesCondensed Matter::Strongly Correlated ElectronsRoom-TemperatureState
researchProduct

Bidirectional Chemo-Switching of Spin State in a Microporous Framework

2009

The ins and outs of spin: Using the microporous coordination polymer {Fe(pz)[Pt(CN)(4)]} (1, pz=pyrazine), incorporating spin-crossover subunits, two-directional magnetic chemo-switching is achieved at room temperature. In situ magnetic measurements following guest vapor injection show that most guest molecules transform 1 from the low-spin (LS) state to the high-spin (HS) state, whereas CS(2) uniquely causes the reverse HS-to-LS transition.

chemo-switchingSpin statesPyrazinemicroporous materialsCoordination polymerGeneral ChemistryMicroporous materialCatalysiscoordination polymerschemistry.chemical_compoundCrystallographyspin crossoverchemistrySpin crossoverMoleculeMetal-organic frameworkSpin (physics)metal-organic frameworksAngewandte Chemie International Edition
researchProduct

Coordination nano-space as stage of hydrogen ortho–para conversion

2015

The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H 2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN) 4 ]} (pz=pyrazine), by the temperature dependence of Raman spectra. The ortho (o)–para (p) conversion process of H 2 is forbidden for an isolated molecule. The charge density study using synchrotron radiation X-ray diffraction reveals the electric field generated in coordination nano-space. The present results corroborate similar findings observed on different systems and confirm …

196Materials scienceHydrogenPyrazine1002chemistry.chemical_elementCatalysissymbols.namesakechemistry.chemical_compoundhydrogen storage porous coordination polymerElectric fieldNano-Moleculelcsh:ScienceMultidisciplinaryCharge density39hydrogen storage porous coordination polymer; structure of absorbed H-2; ortho-para conversion56ChemistrychemistrysymbolsPhysical chemistrylcsh:Qstructure of absorbed H2ortho–para conversionRaman spectroscopyResearch ArticleRoyal Society Open Science
researchProduct

Guest Modulation of Spin-Crossover Transition Temperature in a Porous Iron(II) Metal Organic Framework: Experimental and Periodic DFT Studies

2014

The synthesis, structure, and magnetic properties of three clathrate derivatives of the spin-crossover porous coordination polymer {Fe(pyrazine)[Pt(CN)(4)]} (1) with five-membered aromatic molecules furan, pyrrole, and thiophene is reported. The three derivatives have a cooperative spin-crossover transition with hysteresis loops 14-29 K wide and average critical temperatures T-c=201 K (1.fur), 167 K (1.pyr), and 114.6 K (1.thio) well below that of the parent compound 1 (T-c=295 K), confirming stabilization of the HS state. The transition is complete and takes place in two steps for 1.fur, while 1.pyr and 1.thio show 50% spin transition. For 1.fur the transformation between the HS and IS (mi…

Phase transitionPyrazineMetal–organic frameworksTransition temperatureOrganic ChemistrySpin transitionSpace groupGeneral ChemistryCatalysisSpin-crossover compoundsCrystallographychemistry.chemical_compoundTetragonal crystal systemDensity functional calculationsHofmann clathrateschemistryComputational chemistrySpin crossoverFISICA APLICADAMagnetic propertiesOrthorhombic crystal system
researchProduct

Inside Cover: Bidirectional Chemo-Switching of Spin State in a Microporous Framework (Angew. Chem. Int. Ed. 26/2009)

2009

Bidirectional chemo-switching of magnetism occurs in a microporous coordination polymer containing spin-crossover subunits, as described by M. Ohba, J. A. Real, S. Kitagawa, and co-workers in their Communication on page 4767 ff. In situ magnetic measurements reveal that most guest molecules transform the framework spin state from diamagnetic low spin (red) to paramagnetic high spin (yellow), whereas the guest CS2 stabilizes the low-spin state. These induced spin states are retained as a memory effect after the release of the guest.

Spin statesChemistryMagnetismCoordination polymerNanotechnologyGeneral ChemistryMicroporous materialCatalysisParamagnetismCrystallographychemistry.chemical_compoundSpin crossoverDiamagnetismCondensed Matter::Strongly Correlated ElectronsMetal-organic frameworkAngewandte Chemie International Edition
researchProduct

CCDC 684617: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(octakis(mu2-Cyano-CN)-bis(mu2-pyrazine)-di-iron-di-platinum thiophene solvate)Experimental 3D Coordinates
researchProduct

CCDC 684616: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum furan solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 684618: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(octakis(mu2-Cyano-CN)-bis(mu2-pyrazine)-di-iron-di-platinum thiophene solvate)Experimental 3D Coordinates
researchProduct

CCDC 684615: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum furan solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 684614: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu2-cyano)-(mu2-pyrazine)-iron-platinum furan]Experimental 3D Coordinates
researchProduct

CCDC 987530: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum pyrrole solvate)Experimental 3D Coordinates
researchProduct

CCDC 987531: Experimental Crystal Structure Determination

2015

Related Article: Daniel Aravena, Zulema Arcís Castillo, M. Carmen Muñoz, Ana B. Gaspar, Ko Yoneda, Ryo Ohtani, Akio Mishima, Susumu Kitagawa, Masaaki Ohba, José Antonio Real, Eliseo Ruiz|2014|Chem.-Eur.J.|20|12864|doi:10.1002/chem.201402292

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu2-Cyano-CN)-(mu2-pyrazine)-iron-platinum pyrrole solvate)Experimental 3D Coordinates
researchProduct

CCDC 929061: Experimental Crystal Structure Determination

2013

Related Article: Zulema Arcís-Castillo, Francisco J. Muñoz-Lara, M. Carmen Muñoz, Daniel Aravena, Ana B. Gaspar, Juan F. Sánchez-Royo, Eliseo Ruiz, Masaaki Ohba, Ryotaro Matsuda, Susumu Kitagawa, and José A. Real|2013|Inorg.Chem.|52|12777|doi:10.1021/ic4020477

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu~2~-cyano)-(mu~2~-pyrazine)-iron-platinum sulfur dioxide]Cell ParametersExperimental 3D Coordinates
researchProduct