0000000001311043
AUTHOR
Oscar Gomis
Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure
In this work, we focus on the study of the structural and elastic properties of mercury digallium sulfide (HgGa2S4) at high pressures. This compound belongs to the family of AB(2)X(4) ordered-vacancy compounds and exhibits a tetragonal defect chalcopyrite structure. X-ray diffraction measurements at room temperature have been performed under compression up to 15.1 GPa in a diamond anvil cell. Our measurements have been complemented and compared with ab initio total energy calculations. The axial compressibility and the equation of state of the low-pressure phase of HgGa2S4 have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The pres…
ChemInform Abstract: New Polymorph of InVO4: A High-Pressure Structure with Six-Coordinated Vanadium.
High-pressure XRD and Raman spectroscopy on orthorhombic InVO4 (space group Cmcm, Z = 4) reveal the existence of a new wolframite-type polymorph of InVO4 near 7 GPa.
High-pressure study of the behavior of mineral barite by x-ray diffraction
In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and…
Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds
A strong nonlinear pressure dependence of the optical absorption edge has been measured in defect chalcopyrites CdGa{sub 2}Se{sub 4} and HgGa{sub 2}Se{sub 4}. The behavior is due to the nonlinear pressure dependence of the direct band-gap energy in these compounds as confirmed by ab initio calculations. Our calculations for CdGa{sub 2}Se{sub 4}, HgGa{sub 2}Se{sub 4} and monoclinic {beta}-Ga{sub 2}Se{sub 3} provide evidence that the nonlinear pressure dependence of the direct band-gap energy is a general feature of adamantine ordered-vacancy compounds irrespective of their composition and crystalline structure. The nonlinear behavior is due to a conduction band anticrossing at the {Gamma} po…
High-pressure structural and lattice dynamical study ofHgWO4
We have synthesized monoclinic mercury tungstate $({\text{HgWO}}_{4})$ and characterized its structural and vibrational properties at room conditions. Additionally, we report the structural and lattice dynamical behavior of ${\text{HgWO}}_{4}$ under high pressure studied by means of x-ray diffraction and Raman-scattering measurements up to 16 GPa and 25 GPa, respectively. The pressure dependence of the structural parameters and Raman-active first-order phonons of monoclinic $C2/c$ ${\text{HgWO}}_{4}$ are discussed in the light of our theoretical first-principles total-energy and lattice dynamics calculations. Our measurements show that the monoclinic phase of ${\text{HgWO}}_{4}$ is stable u…
Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneo…
High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides
We have studied by means of high-pressure x-ray diffraction the structural stability of ${\text{Ni}}_{2}{\text{Mo}}_{3}\text{N}$, ${\text{Co}}_{3}{\text{Mo}}_{3}\text{N}$, and ${\text{Fe}}_{3}{\text{Mo}}_{3}\text{N}$. We also report ab initio computing modeling of the high-pressure properties of these compounds, ${\text{Pd}}_{2}{\text{Mo}}_{3}\text{N}$ and ${\text{Pt}}_{2}{\text{Mo}}_{3}\text{N}$. We have found that the nitrides remain stable in the ambient-pressure cubic structure at least up to 50 GPa and determined their equation of state. All of them have a bulk modulus larger than 300 GPa. Single-crystal elastic constants have been calculated in order to quantify the stiffness of the i…
High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4
[EN] Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us with information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on th…
Experimental and Theoretical Study of Bi2O2Se Under Compression
[EN] We report a joint experimental and theoretical study of the structural, vibrational, elastic, optical, and electronic properties of the layered high-mobility semiconductor Bi2O2Se at high pressure. A good agreement between experiments and ab initio calculations is observed for the equation of state, the pressure coefficients of the Raman-active modes and the bandgap of the material. In particular, a detailed description of the vibrational properties is provided. Unlike other Sillen-type compounds which undergo a tetragonal to collapsed tetragonal pressure-induced phase transition at relatively low pressures, Bi2O2Se shows a remarkable structural stability up to 30 GPa; however, our res…
InBO3 and ScBO3 at high pressures: an ab initio study of elastic and thermodynamic properties
We have theoretically investigated the elastic properties of calcite-type orthoborates ABO(3) (A= Sc and In) at high pressure by means of ab initio total-energy calculations. From the elastic stiffness coefficients, we have obtained the elastic moduli (B, G and E), Poisson's ratio (nu), B/G ratio, universal elastic anisotropy index (A(U)), Vickers hardness, and sound wave velocities for both orthoborates. Our simulations show that both borates are more resistive to volume compression than to shear deformation (B > G). Both compounds are ductile and become more ductile, with an increasing elastic anisotropy, as pressure increases. We have also calculated some thermodynamic properties, like D…
High-pressure structural and elastic properties of Tl2O3
The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl2O3 has been determined and compared to related compounds. It has been found experimentally that Tl2O3 remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we h…
Structural and vibrational study of Bi2Se3under high pressure
The structural and vibrational properties of bismuth selenide (Bi${}_{2}$Se${}_{3}$) have been studied by means of x-ray diffraction and Raman scattering measurements up to 20 and 30 GPa, respectively. The measurements have been complemented with ab initio total-energy and lattice dynamics calculations. Our experimental results evidence a phase transition from the low-pressure rhombohedral ($R$-3$m$) phase (\ensuremath{\alpha}-Bi${}_{2}$Se${}_{3}$) with sixfold coordination for Bi to a monoclinic $C$2/$m$ structure (\ensuremath{\beta}-Bi${}_{2}$Se${}_{3}$) with sevenfold coordination for Bi above 10 GPa. The equation of state and the pressure dependence of the lattice parameters and volume …
High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3
Bi2Se3, Bi2Te3, and Sb2Te3 are narrow bandgap semiconductors with tetradymite crystal structure (R-3m) which have been extensively studied along with their alloys due to their promising operation as thermoelectric materials in the temperature range between 300 and 500¿K. Studies on these layered semiconductors have increased tremendously in the last years since they have been recently predicted and demonstrated to behave as 3D topological insulators. In particular, a number of high-pressure studies have been done in the recent years in these materials. In this work we summarize the main results of the high-pressure studies performed in this family of semiconductors to date. In particular, w…
Bandgap behavior and singularity of the domain-induced light scattering through the pressure-induced ferroelectric transition in relaxor ferroelectric A(x)Ba(1-x)Nb(2)O(6) (A: Sr,Ca)
[EN] In this letter, we have investigated the electronic structure of A(x)Ba(1-x)Nb(2)O(6) relaxor ferroelectrics on the basis of optical absorption spectroscopy in unpoled single crystals with A = Sr and Ca under high pressure. The direct character of the fundamental transition could be established by fitting Urbach's rule to the photon energy dependence of the absorption edge yielding bandgaps of 3.44(1) eV and 3.57(1) eV for A = Sr and Ca, respectively. The light scattering by ferroelectric domains in the pre-edge spectral range has been studied as a function of composition and pressure. After confirming with x-ray diffraction the occurrence of the previously observed ferroelectric to pa…
High-pressure vibrational and optical study of Bi2Te3
We report an experimental and theoretical lattice dynamics study of bismuth telluride (Bi2Te 3 )u p to 23 GPa together with an experimental and theoretical study of the optical absorption and reflection up to 10 GPa. The indirect bandgap of the low-pressure rhombohedral (R-3m) phase (α-Bi2Te 3) was observed to decrease with pressure at a rate of − 6m eV/GPa. In regard to lattice dynamics, Raman-active modes of α-Bi2Te 3 were observed up to 7.4 GPa. The pressure dependence of their frequency and width provides evidence of the presence of an electronic-topological transition around 4.0 GPa. Above 7.4 GPa a phase transition is detected to the C2/m structure. On further increasing pressure two …
High-pressure theoretical and experimental study of HgWO4
HgWO 4 at ambient pressure is characterized using a combination of ab initio calculations, X-ray diffraction and Raman scattering measurements. The effect of low pressure and temperature on the structural stability is analysed. Extending our ab initio study to the range of higher pressures, a sequence of stable phases up to 30GPa is proposed. © 2011 Taylor & Francis.
Structural study of α-Bi2O3 under pressure
An experimental and theoretical study of the structural properties of monoclinic bismuth oxide (alpha-(BiO3)-O-2) under high pressures is here reported. Both synthetic and mineral bismite powder samples have been compressed up to 45 GPa and their equations of state have been determined with angle-dispersive x-ray diffraction measurements. Experimental results have been also compared with theoretical calculations which suggest the possibility of several phase transitions below 10 GPa. However, experiments reveal only a pressure-induced amorphization between 15 and 25 GPa, depending on sample quality and deviatoric stresses. The amorphous phase has been followed up to 45 GPa and its nature di…
New high-pressure phase and equation of state of Ce2Zr2O8
In this paper we report a new high-pressure rhombohedral phase of Ce2Zr2O8 observed from high-pressure angle-dispersive x-ray diffraction and Raman spectroscopy studies up to nearly 12 GPa. The ambient-pressure cubic phase of Ce2Zr2O8 transforms to a rhombohedral structure beyond 5 GPa with a feeble distortion in the lattice. Pressure evolution of unit-cell volume showed a change in compressibility above 5 GPa. The unit-cell parameters of the high-pressure rhombohedral phase at 12.1 GPa are ah = 14.6791(3) {\AA}, ch = 17.9421(5) {\AA}, V = 3348.1(1) {\AA}3. The structure relation between the parent cubic (P2_13) and rhombohedral (P3_2) phases were obtained by group-subgroup relations. All t…
Synthesis of a novel zeolite through a pressure-induced reconstructive phase transition process
et al.
Pressure-induced amorphization of YVO4:Eu3+ nanoboxes
A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu3+ nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu3+ photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two …
Phase Stability of Natural Ni0.75Mg0.22Ca0.03CO3 Gaspeite Mineral at High Pressure and Temperature
[EN] Divalent metal carbonates play an important role in Earth's carbon cycle, but the effect of chemical substitution is still poorly known. In this work, we have studied the structural and vibrational properties of natural mineral gaspeite (Ni0.75Mg0.22Ca0.03CO3) under high pressure and temperature using in situ synchrotron X-ray diffraction and Raman spectroscopy in diamond-anvil cells. These experiments have been complemented by ab initio simulations. Synchrotron high-pressure XRD measurements at room temperature using He as the pressure transmitting medium have shown that the calcite-type structure is stable up to 23.3 GPa. A bulk modulus at zero pressure of B-0 = 105(2) GPa with B-0' …
Crystal structure of sinhalite MgAlBO4 under high pressure
We report on high-pressure angle-dispersive X-ray diffraction data up to 27 GPa for natural MgAlBO4 sinhalite mineral and ab initio total energy calculations. The experimental bulk modulus of sinhalite is B-0 = 171(3) GPa with a first-pressure derivative of B-0' = 4.2(3). A comparison with other olivine-type compounds shows that the value for B0 is 27% larger than that of Mg2SiO4 forsterite and 29% smaller than that of Al2BeO4 chrysoberyl. These differences are interpreted, on the basis of our ab initio calculations, in terms of the relative incompressibility of Al-O bonds in AlO6 octahedra (with a calculated bulk modulus of 250(1) GPa) as compared to Mg-O bonds in MgO6 octahedra (with a ca…
HgGa2 Se4 under high pressure: An optical absorption study
High-pressure optical absorption measurements have been performed in defect chalcopyrite HgGa2Se4 to investigate the influence of pressure on the bandgap energy and its relation with the pressure-induced order–disorder processes that occur in this ordered-vacancy compound. Two different experiments have been carried out in which the sample undergoes either a partial or a total pressure-induced disorder process at 15.4 and 30.8 GPa, respectively. It has been found that the direct bandgap energies of the recovered samples at 1 GPa were around 0.15 and 0.23 eV smaller than that of the original sample, respectively, and that both recovered samples have different pressure coefficients of the dir…
Compression of Silver Sulfide: X-ray Diffraction Measurements and Total-Energy Calculations
[EN] Angle-dispersive X-ray diffraction measurements have been performed in acanthite, Ag2S, up to 18 GPa in order to investigate its high-pressure structural behavior. They have been complemented by ab initio electronic structure calculations. From our experimental data, we have determined that two different high-pressure phase transitions take place at 5 and 10.5 GPa. The first pressure-induced transition is from the initial anti-PbCl2-like monoclinic structure (space group P2(1)/n) to an orthorhombic Ag2Se-type structure (space group P2(1)2(1)2(1)). The compressibility of the lattice parameters and the equation of state of both phases have been determined. A second phase transition to a …
Quasi-hydrostatic X-ray powder diffraction study of the low- and high-pressure phases of CaWO4 up to 28 GPa
We have studied CaWO4 under compression using Ne as pressure-transmitting medium at room temperature by means of synchrotron X-ray powder diffraction. We have found that CaWO4 beyond 8.8 GPa transforms from its low-pressure tetragonal structure (scheelite) into a monoclinic structure (fergusonite). The high-pressure phase remains stable up to 28 GPa and the low-pressure phase is totally recovered after full decompression. The pressure dependence of the unit-cell parameters, as well as the pressure volume equation of state, has been determined for both phases. Compared with previous studies, we found in our quasi-hydrostatic experiments a different behavior for the unit-cell parameters of th…
Pressure Impact on the Stability and Distortion of the Crystal Structure of CeScO3
[EN] The effects of high pressure on the crystal structure of orthorhombic (Pnma) perovskite-type cerium scandate were studied in situ under high pressure by means of synchrotron X-ray powder diffraction, using a diamond-anvil cell. We found that the perovskite-type crystal structure remains stable up to 40 GPa, the highest pressure reached in the experiments. The evolution of unit-cell parameters with pressure indicated an anisotropic compression. The room-temperature pressure¿volume equation of state (EOS) obtained from the experiments indicated the EOS parameters V0 = 262.5(3) Å3 , B0 = 165(7) GPa, and B0¿ = 6.3(5). From the evolution of microscopic structural parameters like bond distan…
Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method
Undoped and Eu3+-doped cubic yttria (Y2O3) nanophosphors of good crystallinity, with selective particle sizes ranging between 6 and 37 nm and showing narrow size distributions, have been synthesized by a complex-based precursor solution method. The systematic size tuning has been evidenced by transmission electron microscopy, X-ray diffraction, and Raman scattering measurements. Furthermore, size-modulated properties of Eu3+ ions have been correlated with the local structure of Eu3+ ion in different sized Y2O3:Eu3+ nanophosphors by means of steady-state and time-resolved site-selective laser spectroscopies. Time-resolved site-selective excitation measurements performed in the 7F0 ¿ 5D0 peak…
Synthesis and High-Pressure Study of Corundum-Type In2O3
This work reports the high-pressure and high-temperature (HP-HT) synthesis of pure rhombohedral (corundum-type) phase of indium oxide (In2O3) from its most stable polymorph, cubic bixbyite-type In2O3, using a multianvil press. Structural and vibrational properties of corundum-type In2O3 (rh-In2O3) have been characterized by means of angle-dispersive powder X-ray diffraction and Raman scattering measurements at high pressures which have been compared to structural and lattice dynamics ab initio calculations. The equation of state and the pressure dependence of the Raman-active modes of the corundum-type phase are reported and compared to those of corundum (α-Al2O3). It can be concluded that …
Pressure effects on the vibrational properties of alpha-Bi2O3: an experimental and theoretical study
We report an experimental and theoretical high-pressure study of the vibrational properties of synthetic monoclinic bismuth oxide (alpha-Bi2O3), also known as mineral bismite. The comparison of Raman scattering measurements and theoretical lattice-dynamics ab initio calculations is key to understanding the complex vibrational properties of bismite. On one hand, calculations help in the symmetry assignment of phonons and to discover the phonon interactions taking place in this low-symmetry compound, which shows considerable phonon anticrossings; and, on the other hand, measurements help to validate the accuracy of first-principles calculations relating to this compound. We have also studied …
Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity.
[EN] YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation o…
Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach
The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transit…
Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides
We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd 2Mo 3N, Ni 2Mo 3C 0.52N 0.48, Co 3Mo 3C 0.62N 0.38, and Fe 3Mo 3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, the least compressible material being Fe 3Mo 3C, B 0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content is increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials. © 2012 American Physic…
Pressure-induced band anticrossing in two adamantine ordered-vacancy compounds: CdGa2S4 and HgGa2S4
Abstract This paper reports a joint experimental and theoretical study of the electronic band structure of two ordered-vacancy compounds with defect-chalcopyrite structure: CdGa2S4 and HgGa2S4. High-pressure optical-absorption experiments (up to around 17 GPa) combined with first-principles electronic band-structure calculations provide compelling evidence of strong nonlinear pressure dependence of the bandgap in both compounds. The nonlinear pressure dependence is well accounted for by the band anticrossing model that was previously established mostly for selenides with defect chalcopyrite structure. Therefore, our results on two sulfides with defect chalcopyrite structure under compressio…
High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4
[EN] Zircon-type holmium phosphate (HoPO4) and thulium phosphate (TmPO4) have been studied by single-crystal x-ray diffraction and ab initio calculations. We report on the influence of pressure on the crystal structure, and on the elastic and thermodynamic properties. The equation of state for both compounds is accurately determined. We have also obtained information on the polyhedral compressibility which is used to explain the anisotropic axial compressibility and the bulk compressibility. Both compounds are ductile and more resistive to volume compression than to shear deformation at all pressures. Furthermore, the elastic anisotropy is enhanced upon compression. Finally, the calculation…
Structural and electrical study of the topological insulator SnBi2Te4 at high pressures
We report high-pressure X-ray diffraction and electrical measurements of the topological insulator SnBi2Te4 at room temperature. The pressure dependence of the structural properties of the most stable phase of SnBi2Te4 at ambient conditions (trigonal phase) have been experimentally determined and compared with results of our ab initio calculations. Furthermore, a comparison of SnBi2Te4 with the parent compound Bi2Te3 shows that the central TeSnTe trilayer, which substitutes the Te layer at the center of the TeBiTeBiTe layers of Bi2Te3, plays a minor role in the compression of SnBi2Te4. Similar to Bi2Te3, our resistance measurements and electronic band structure simulations in SnBi2Te4 at hi…
Pressure-induced order–disorder transitions in β-In2S3: an experimental and theoretical study of structural and vibrational properties
This joint experimental and theoretical study of the structural and vibrational properties of β-In2S3 upon compression shows that this tetragonal defect spinel undergoes two reversible pressure-induced order-disorder transitions up to 20 GPa. We propose that the first high-pressure phase above 5.0 GPa has the cubic defect spinel structure of α-In2S3 and the second high-pressure phase (ϕ-In2S3) above 10.5 GPa has a defect α-NaFeO2-type (R3m) structure. This phase, related to the NaCl structure, has not been previously observed in spinels under compression and is related to both the tetradymite structure of topological insulators and to the defect LiTiO2 phase observed at high pressure in oth…
Structural, vibrational and electrical study of compressed BiTeBr
Compresed BiTeBr has been studied from a joint experimental and theoretical perspective. Room-temperature x-ray diffraction, Raman scattering, and transport measurements at high pressures have been performed in this layered semiconductor and interpreted with the help of ab initio calculations. A reversible first-order phase transition has been observed above 6–7 GPa, but changes in structural, vibrational, and electrical properties have also been noted near 2 GPa. Structural and vibrational changes are likely due to the hardening of interlayer forces rather than to a second-order isostructural phase transition while electrical changes are mainly attributed to changes in the electron mobilit…
Theoretical and experimental study of the structural stability ofTbPO4at high pressures
We have performed a theoretical and experimental study of the structural stability of terbium phosphate at high pressures. Theoretical ab initio total-energy and lattice-dynamics calculations together with x-ray diffraction experiments have allowed us to completely characterize a phase transition at {approx}9.8 GPa from the zircon to the monazite structure. Furthermore, total-energy calculations have been performed to check the relative stability of 17 candidate structures at different pressures and allow us to propose the zircon {yields} monazite {yields} scheelite {yields} SrUO{sub 4}-type sequence of stable structures with increasing pressure. In this sequence, sixfold P coordination is …
Ordered helium trapping and bonding in compressed arsenolite: Synthesis ofAs4O6·2He
Compression of arsenolite has been studied from a joint experimental and theoretical point of view. Experiments on this molecular solid at high pressures with different pressure-transmitting media have been interpreted thanks to state-of-the-art ab initio calculations. Our results confirm arsenolite as one of the most compressible minerals and provide evidence for ordered helium trapping above 3 GPa between adamantane-type $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}$ cages. Our calculations indicate that, at relatively small pressures, helium establishes rather localized structural bonds with arsenic forming a compound with stoichiometry $\mathrm{A}{\mathrm{s}}_{4}{\mathrm{O}}_{6}\ifmmode\c…
New polymorph of InVO4: A high-pressure structure with six-coordinated vanadium
A new wolframite-type polymorph of InVO4 is identified under compression near 7 GPa by in situ high-pressure (HP) X-ray diffraction (XRD) and Raman spectroscopic investigations on the stable orthorhombic InVO4. The structural transition is accompanied by a large volume collapse (Delta V/V = -14%) and a drastic increase in bulk modulus (from 69 to 168 GPa). Both techniques also show the existence of a third phase coexisting with the low- and high-pressure phases in a limited pressure range close to the transition pressure. XRD studies revealed a highly anisotropic compression in orthorhombic InVO4. In addition, the compressibility becomes nonlinear in the HP polymorph. The volume collapse in…
Compressibility Systematics of Calcite-Type Borates: An Experimental and Theoretical Structural Study on ABO(3) (A = Al, Sc, Fe, and In)
The structural properties of calcite-type orthoborates ABO(3) (A = Al, Fe, Sc, and In) have been investigated at high pressures up to 32 GPa. They were studied experimentally using synchrotron powder X-ray diffraction and theoretically by means of ab initio total-energy calculations. We found that the calcite-type structure remains stable up to the highest pressure explored in the four studied compounds. Experimental and calculated static geometries (unit-cell parameters and internal coordinates), bulk moduli, and their pressure derivatives are in good agreement. The compressibility along the c axis is roughly three times that along the a axis. Our data clearly indicate that the compressibi…
Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression
[EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary…
Crystal structure of HgGa2Se4 under compression
We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa2Se4). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa2Se4 exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.
Experimental and Theoretical Investigations on Structural and Vibrational Properties of Melilite-Type Sr2ZnGe2O7 at High Pressure and Delineation of a High-Pressure Monoclinic Phase.
We report a combined experimental and theoretical study of melilite-type germanate, Sr2ZnGe2O7, under compression. In situ high-pressure X-ray diffraction and Raman scattering measurements up to 22 GPa were complemented with first-principles theoretical calculations of structural and lattice dynamics properties. Our experiments show that the tetragonal structure of Sr2ZnGe2O7 at ambient conditions transforms reversibly to a monoclinic phase above 12.2 Gpa with similar to 1% volume drop at the phase transition pressure. Density functional calculations indicate the transition pressure at, similar to 13 GPa, which agrees well with the experimental value. The structure of the high-pressure mono…
Transition path to a dense efficient-packed post-delafossite phase. Crystal structure and evolution of the chemical bonding
We are thankful for the financial support received from the Spanish Ministerio de Ciencia e Innovación and the Agencia Estatal de Investigación under national projects PGC2018-094417-B-I00 (co-financed by EU FEDER funds), MAT2016-75586-C4-1-P/2-P, FIS2017-83295-P, PID2019-106383GB-C41/C42 and RED2018- 102612-T (MALTA Consolider), and from Generalitat Valenciana under project PROMETEO/2018/123. D.S-P, A.O.R, and J.A.S acknowledge financial support of the Spanish MINECO for the RyC-2014-15643, RyC-2016-20301, and RyC-2015-17482 Ramón y Cajal Grants, respectively.
Front Cover: High-pressure studies of topological insulators Bi2 Se3 , Bi2 Te3 , and Sb2 Te3 (Phys. Status Solidi B 4/2013)
ChemInform Abstract: Experimental and Theoretical Investigations on Structural and Vibrational Properties of Melilite-Type Sr2ZnGe2O7at High Pressure and Delineation of a High-Pressure Monoclinic Phase.
The title compound is characterized by high-pressure powder XRD and Raman scattering measurements up to 22 GPa, and by DFT calculations.
Lattice Dynamics Study of HgGa2Se4 at High Pressures
We report on Raman scattering measurements in mercury digallium selenide (HgGa2Se4) up to 25 GPa. We also performed, for the low-pressure defect-chalcopyrite structure, lattice-dynamics ab initio calculations at high pressures which agree with experiments. Measurements evidence that the semiconductor HgGa2Se4 exhibits a pressure-induced phase transition above 19 GPa to a previously undetected structure. This transition is followed by a transformation to a Raman-inactive phase above 23.4 GPa. On downstroke from 25 GPa until 2.5 GPa, a broad Raman spectrum was observed, which has been attributed to a fourth phase, and whose pressure dependence was followed during a second upstroke. Candidate …
Structural and vibrational study of pseudocubic CdIn2Se4 under compression
We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se…
Complex high-pressure polymorphism of barium tungstate
We have studied BaWO 4 under compression at room temperature by means of x-ray diffraction and Raman spectroscopy. When compressed with neon as a pressure-transmitting medium (quasihydrostatic conditions), we found that BaWO 4 transforms from its low-pressure tetragonal structure into a much denser monoclinic structure. This result confirms our previous theoretical prediction based on ab initio calculations that the scheelite to BaWO 4-II transition occurs at room temperature if kinetic barriers are suppressed by pressure. However, our experiment without any pressure- transmitting medium has resulted in a phase transition to a completely different structure, suggesting nonhydrostaticity may…
High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds
Research was financed by the Spanish Ministerio de Educacion y Ciencia (MEC) under Grants No. MAT2010-21270-C04-01/02/04, and No. CSD-2007-00045. J. R.-F. thanks the MEC for support through the FPI program, as well as the SPP1236 central facility in Frankfurt for its use. F. J. M. acknowledges support from Vicerrectorado de Investigacion y Desarrollo de la Universitat Politecnica de Valencia (UPV) (Grant No. UPV2010-0096). A. M. and P. R.-H. acknowledge the supercomputer time provided by the Red Espanola de Supercomputacion. A. F. appreciates support from the German Research Foundation (Grant No. FR2491/2-1).
High-pressure structural phase transition inMnWO4
The pressure-induced phase transition of the multiferroic manganese tungstate MnWO4 is studied on single crystals using synchrotron x-ray diffraction and Raman spectroscopy. We observe the monoclinic P2/c to triclinic P (1) over bar phase transition at 20.1 GPa and get insight on the phase transition mechanism from the appearance of tilted triclinic domains. Selective Raman spectroscopy experiments with single crystals have shown that the onset of the phase transition occurs 5 GPa below the previously reported pressure obtained from experiments performed with powder samples.
High-pressure crystal structure, lattice vibrations, and band structure of BiSbO4
The high-pressure crystal structure, lattice-vibrations HP crystal structure, lattice vibrations, and band , and electronic band structure of BiSbO4 were studied by ab initio simulations. We also performed Raman spectroscopy, infrared spectroscopy, and diffuse-reflectance measurements, as well as synchrotron powder X-ray diffraction. High-pressure X-ray diffraction measurements show that the crystal structure of BiSbO4 remains stable up to at least 70 GPa, unlike other known MTO4-type ternary oxides. These experiments also give information on the pressure dependence of the unit-cell parameters. Calculations properly describe the crystal structure of BiSbO4 and the changes induced by pressur…
CSD 976492: Experimental Crystal Structure Determination
Related Article: Daniel Errandonea, Oscar Gomis, Braulio García-Domene, Julio Pellicer-Porres, Vasundhara Katari, S. Nagabhusan Achary, Avesh K. Tyagi, and Catalin Popescu|2013|Inorg.Chem.|52|12790|doi:10.1021/ic402043x
CSD 976491: Experimental Crystal Structure Determination
Related Article: Daniel Errandonea, Oscar Gomis, Braulio García-Domene, Julio Pellicer-Porres, Vasundhara Katari, S. Nagabhusan Achary, Avesh K. Tyagi, and Catalin Popescu|2013|Inorg.Chem.|52|12790|doi:10.1021/ic402043x