6533b7dafe1ef96bd126f5b7
RESEARCH PRODUCT
Beneficial Read-Through of aUSH1CNonsense Mutation by Designed Aminoglycoside NB30 in the Retina
Uwe WolfrumTamar Ben-yosefKerstin Nagel-wolfrumValery BelakhovAnnie Rebibo-sabbahTimor BaasovNora OverlackIgor NudelmanTobias Goldmannsubject
ParomomycinUsher syndromeBlotting WesternNonsense mutationCell Culture TechniquesGene ExpressionCell Cycle ProteinsParomomycinBiologyPharmacologyTransfectionRetinaMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRetinitis pigmentosaIn Situ Nick-End Labelingotorhinolaryngologic diseasesmedicineAnimalsHumansAdaptor Proteins Signal Transducing030304 developmental biologyGenetics0303 health sciencesRetinaDose-Response Relationship DrugAminoglycosideRetinalmedicine.disease3. Good healthMice Inbred C57BLCytoskeletal ProteinsAminoglycosidesElectroporationHEK293 Cellsmedicine.anatomical_structureMicroscopy FluorescencechemistryCodon NonsenseProtein BiosynthesisGentamicinGentamicins030217 neurology & neurosurgerymedicine.drugdescription
PURPOSE. The human Usher syndrome (USH) is the most frequent cause of inherited combined deaf-blindness. USH is clinically and genetically heterogeneous, assigned to three clinical types. The most severe type is USH1, characterized by profound inner ear defects and retinitis pigmentosa. Thus far, no effective treatment for the ophthalmic component of USH exists. The p.R31X nonsense mutation in USH1C leads to a disease causing premature termination of gene translation. Here, we investigated the capability of the novel synthetic aminoglycoside NB30 for the translational read-through of the USH1C-p.R31X nonsense mutation as a retinal therapy option. METHODS. Read-through of p.R31X by three commercial, clinically applied aminoglycosides and the synthetic derivative NB30 was validated in vitro, in cell culture, and in retinal explants. Restoration of harmonin functions was monitored in GST pull-downs (scaffold function) and by F-actin bundling analysis in HEK293T cells. Biocompatibility of aminoglycosides was determined in retinal explants by TUNEL assays. RESULTS. In vitro translation and analyses of transfected HEK293T cells revealed a dose-dependent read-through by all aminoglycosides. In addition, gentamicin, paromomycin, and NB30 induced read-through of p.R31X in mouse retinal explants. The read-through of p.R31X restored harmonin protein function. In contrast to all commercial aminoglycosides NB30 showed good biocompatibility. CONCLUSIONS. Commercial aminoglycosides and NB30 induced significant read-through of the USH1C-p.R31X nonsense mutation. However, the observed read-through efficiency, along with its significantly reduced toxicity and good biocompatibility, indicate that the novel derivate NB30 represents a better choice than commercial aminoglycosides in a read-through therapy of USH1C and other ocular diseases. (Invest Ophthalmol Vis Sci. 2010;51:6671‐6680) DOI:10.1167/iovs.10-5741
year | journal | country | edition | language |
---|---|---|---|---|
2010-12-01 | Investigative Opthalmology & Visual Science |