Search results for "Mathematics - Classical Analysis and ODEs"

showing 10 items of 106 documents

Structure of distributions generated by the scenery flow

2015

We expand the ergodic theory developed by Furstenberg and Hochman on dynamical systems that are obtained from magnifications of measures. We prove that any fractal distribution in the sense of Hochman is generated by a uniformly scaling measure, which provides a converse to a regularity theorem on the structure of distributions generated by the scenery flow. We further show that the collection of fractal distributions is closed under the weak topology and, moreover, is a Poulsen simplex, that is, extremal points are dense. We apply these to show that a Baire generic measure is as far as possible from being uniformly scaling: at almost all points, it has all fractal distributions as tangent …

Dynamical systems theoryWeak topologyMatemáticasGeneral MathematicsdistributionsDynamical Systems (math.DS)Scenery flowMeasure (mathematics)Matemática PuraFractalPrimary 37A10 28A80 Secondary 28A33 28A75Fractal distributionClassical Analysis and ODEs (math.CA)FOS: MathematicsErgodic theoryscenery flowMathematics - Dynamical SystemsScalingMathematicsCP-processergodic theoryMathematical analysista111Distribution (mathematics)Flow (mathematics)Mathematics - Classical Analysis and ODEsCIENCIAS NATURALES Y EXACTAS
researchProduct

Combinatorial proofs of two theorems of Lutz and Stull

2021

Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One of the theorems states that if $K \subset \mathbb{R}^{n}$ is any set with equal Hausdorff and packing dimensions, then $$ \dim_{\mathrm{H}} π_{e}(K) = \min\{\dim_{\mathrm{H}} K,1\} $$ for almost every $e \in S^{n - 1}$. Here $π_{e}$ stands for orthogonal projection to $\mathrm{span}(e)$. The primary purpose of this paper is to present proofs for Lutz and Stull's projection theorems which do not refer to information theoretic concepts. Instead, they will rely on combinatori…

FOS: Computer and information sciences28A80 (primary) 28A78 (secondary)General MathematicskombinatoriikkaCombinatorial proofComputational Complexity (cs.CC)01 natural sciencesCombinatoricsMathematics - Metric GeometryHausdorff and packing measures0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematicsAlgorithmic information theoryLemma (mathematics)Euclidean spacePigeonhole principle010102 general mathematicsOrthographic projectionHausdorff spaceMetric Geometry (math.MG)Projection (relational algebra)Computer Science - Computational ComplexityMathematics - Classical Analysis and ODEsfraktaalit010307 mathematical physicsmittateoria
researchProduct

Coherent Quantum Tomography

2016

We discuss a quantum mechanical indirect measurement method to recover a position dependent Hamilton matrix from time evolution of coherent quantum mechanical states through an object. A mathematical formulation of this inverse problem leads to weighted X-ray transforms where the weight is a matrix. We show that such X-ray transforms are injective with very rough weights. Consequently, we can solve our quantum mechanical inverse problem in several settings, but many physically relevant problems we pose also remain open. We discuss the physical background of the proposed imaging method in detail. We give a rigorous mathematical treatment of a neutrino tomography method that has been previous…

FOS: Physical sciences01 natural sciencesMatrix (mathematics)neutrino physics0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsStatistical physics0101 mathematics010306 general physicsQuantumMathematical PhysicsMathematicsQuantum Physicsinverse problemsgeophysicsApplied Mathematicsta111quantum mechanics010102 general mathematicsMathematical analysisTime evolutionweighted ray transformsMathematical Physics (math-ph)81Q99 81V99 86A22 44A12Inverse problemQuantum tomographyInjective functionComputational MathematicsMathematics - Classical Analysis and ODEsTomographyNeutrinoQuantum Physics (quant-ph)AnalysisSIAM Journal on Mathematical Analysis
researchProduct

Unique continuation of the normal operator of the x-ray transform and applications in geophysics

2020

We show that the normal operator of the X-ray transform in $\mathbb{R}^d$, $d\geq 2$, has a unique continuation property in the class of compactly supported distributions. This immediately implies uniqueness for the X-ray tomography problem with partial data and generalizes some earlier results to higher dimensions. Our proof also gives a unique continuation property for certain Riesz potentials in the space of rapidly decreasing distributions. We present applications to local and global seismology. These include linearized travel time tomography with half-local data and global tomography based on shear wave splitting in a weakly anisotropic elastic medium.

FOS: Physical sciencesx-ray transformSpace (mathematics)01 natural sciencesTheoretical Computer SciencePhysics - GeophysicsContinuationtomografiaClassical Analysis and ODEs (math.CA)FOS: MathematicsNormal operatorUniqueness0101 mathematicsAnisotropyMathematical PhysicsMathematicsX-ray transformgeophysicsApplied Mathematics010102 general mathematicsMathematical analysisgeofysiikkaShear wave splittingInverse problemFunctional Analysis (math.FA)Geophysics (physics.geo-ph)Computer Science ApplicationsMathematics - Functional Analysis010101 applied mathematicsMathematics - Classical Analysis and ODEsSignal ProcessingInverse Problems
researchProduct

Generalized Alomari functionals

2015

We consider a generalized form of certain integral inequalities given by Guessab, Schmeisser and Alomari. The trapezoidal, mid point, Simpson, Newton-Simpson rules are obtained as special cases. Also, inequalities for the generalized Alomari functional in terms of the $n$-th order modulus, $n=\overline{1,4}$, are given and applied to some known quadrature rules.

General Mathematics010102 general mathematicsMathematics::Classical Analysis and ODEsComputer Science::Numerical Analysis01 natural sciencesMidpointModulus of continuityQuadrature (mathematics)Moduli010101 applied mathematicsMathematics::Algebraic Geometry41A44 41A55 41A80 65D30Mathematics - Classical Analysis and ODEsMathematikClassical Analysis and ODEs (math.CA)FOS: MathematicsApplied mathematics0101 mathematicsMathematics
researchProduct

Plenty of big projections imply big pieces of Lipschitz graphs

2020

I prove that a closed $n$-regular set $E \subset \mathbb{R}^{d}$ with plenty of big projections has big pieces of Lipschitz graphs. This answers a question of David and Semmes.

General Mathematics010102 general mathematicsprojectionMetric Geometry (math.MG)Lipschitz continuity01 natural sciencesprojektiomatemaattinen analyysiCombinatorics28A75 (Primary) 28A78 (Secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometrymittateoria010307 mathematical physics0101 mathematicsMathematicsInventiones mathematicae
researchProduct

Accessible parts of boundary for simply connected domains

2018

For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…

General MathematicsBoundary (topology)30C35 26D1501 natural sciencesUpper and lower boundsOmegaDomain (mathematical analysis)CombinatoricsfunktioteoriaHardy inequality0103 physical sciencesSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: MathematicsComplex Variables (math.CV)0101 mathematicsepäyhtälötMathematicsPointwiseMathematics - Complex VariablesApplied Mathematics010102 general mathematicsta111simply connected domainsMathematics - Classical Analysis and ODEsBounded functionContent (measure theory)010307 mathematical physicsJohn domainsProceedings of the American Mathematical Society
researchProduct

Weak separation condition, Assouad dimension, and Furstenberg homogeneity

2015

We consider dimensional properties of limit sets of Moran constructions satisfying the finite clustering property. Just to name a few, such limit sets include self-conformal sets satisfying the weak separation condition and certain sub-self-affine sets. In addition to dimension results for the limit set, we manage to express the Assouad dimension of any closed subset of a self-conformal set by means of the Hausdorff dimension. As an interesting consequence of this, we show that a Furstenberg homogeneous self-similar set in the real line satisfies the weak separation condition. We also exhibit a self-similar set which satisfies the open set condition but fails to be Furstenberg homogeneous.

General MathematicsHomogeneity (statistics)ta111Open setPrimary 28A80 Secondary 37C45 28D05 28A50Moran constructioniterated function systemSet (abstract data type)CombinatoricsDimension (vector space)dimensionMathematics - Classical Analysis and ODEsweak separation conditionClassical Analysis and ODEs (math.CA)FOS: MathematicsLimit (mathematics)Limit setCluster analysisReal lineMathematics
researchProduct

Dimension estimates on circular (s,t)-Furstenberg sets

2023

In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya sets by Wolff.

General MathematicsMathematics::Classical Analysis and ODEsMathematics::General TopologyMetric Geometry (math.MG)Hausdorff dimensionArticlesMathematics - Metric GeometryMathematics - Classical Analysis and ODEscircular Furstenberg setClassical Analysis and ODEs (math.CA)FOS: MathematicsulottuvuusFurstenberg setAnnales Fennici Mathematici
researchProduct

Random cutout sets with spatially inhomogeneous intensities

2015

We study the Hausdorff dimension of Poissonian cutout sets defined via inhomogeneous intensity measures on Ahlfors-regular metric spaces. We obtain formulas for the Hausdorff dimension of such cutouts in self-similar and self-conformal spaces using the multifractal decomposition of the average densities for the natural measures.

General MathematicsStructure (category theory)Hausdorff dimensionDynamical Systems (math.DS)01 natural sciencesMeasure (mathematics)010104 statistics & probabilityCorollaryDimension (vector space)Classical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematics - Dynamical SystemsMathematicsmatematiikkaHausdorffin dimensioProbability (math.PR)010102 general mathematicsMathematical analysisMultifractal systemPoissonian CutoutMetric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionPrimary 60D05 Secondary 28A80 37D35 37C45Intensity (heat transfer)Mathematics - Probability
researchProduct