Search results for "Mathematics - Classical Analysis and ODEs"
showing 10 items of 106 documents
Structure of distributions generated by the scenery flow
2015
We expand the ergodic theory developed by Furstenberg and Hochman on dynamical systems that are obtained from magnifications of measures. We prove that any fractal distribution in the sense of Hochman is generated by a uniformly scaling measure, which provides a converse to a regularity theorem on the structure of distributions generated by the scenery flow. We further show that the collection of fractal distributions is closed under the weak topology and, moreover, is a Poulsen simplex, that is, extremal points are dense. We apply these to show that a Baire generic measure is as far as possible from being uniformly scaling: at almost all points, it has all fractal distributions as tangent …
Combinatorial proofs of two theorems of Lutz and Stull
2021
Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One of the theorems states that if $K \subset \mathbb{R}^{n}$ is any set with equal Hausdorff and packing dimensions, then $$ \dim_{\mathrm{H}} π_{e}(K) = \min\{\dim_{\mathrm{H}} K,1\} $$ for almost every $e \in S^{n - 1}$. Here $π_{e}$ stands for orthogonal projection to $\mathrm{span}(e)$. The primary purpose of this paper is to present proofs for Lutz and Stull's projection theorems which do not refer to information theoretic concepts. Instead, they will rely on combinatori…
Coherent Quantum Tomography
2016
We discuss a quantum mechanical indirect measurement method to recover a position dependent Hamilton matrix from time evolution of coherent quantum mechanical states through an object. A mathematical formulation of this inverse problem leads to weighted X-ray transforms where the weight is a matrix. We show that such X-ray transforms are injective with very rough weights. Consequently, we can solve our quantum mechanical inverse problem in several settings, but many physically relevant problems we pose also remain open. We discuss the physical background of the proposed imaging method in detail. We give a rigorous mathematical treatment of a neutrino tomography method that has been previous…
Unique continuation of the normal operator of the x-ray transform and applications in geophysics
2020
We show that the normal operator of the X-ray transform in $\mathbb{R}^d$, $d\geq 2$, has a unique continuation property in the class of compactly supported distributions. This immediately implies uniqueness for the X-ray tomography problem with partial data and generalizes some earlier results to higher dimensions. Our proof also gives a unique continuation property for certain Riesz potentials in the space of rapidly decreasing distributions. We present applications to local and global seismology. These include linearized travel time tomography with half-local data and global tomography based on shear wave splitting in a weakly anisotropic elastic medium.
Generalized Alomari functionals
2015
We consider a generalized form of certain integral inequalities given by Guessab, Schmeisser and Alomari. The trapezoidal, mid point, Simpson, Newton-Simpson rules are obtained as special cases. Also, inequalities for the generalized Alomari functional in terms of the $n$-th order modulus, $n=\overline{1,4}$, are given and applied to some known quadrature rules.
Plenty of big projections imply big pieces of Lipschitz graphs
2020
I prove that a closed $n$-regular set $E \subset \mathbb{R}^{d}$ with plenty of big projections has big pieces of Lipschitz graphs. This answers a question of David and Semmes.
Accessible parts of boundary for simply connected domains
2018
For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…
Weak separation condition, Assouad dimension, and Furstenberg homogeneity
2015
We consider dimensional properties of limit sets of Moran constructions satisfying the finite clustering property. Just to name a few, such limit sets include self-conformal sets satisfying the weak separation condition and certain sub-self-affine sets. In addition to dimension results for the limit set, we manage to express the Assouad dimension of any closed subset of a self-conformal set by means of the Hausdorff dimension. As an interesting consequence of this, we show that a Furstenberg homogeneous self-similar set in the real line satisfies the weak separation condition. We also exhibit a self-similar set which satisfies the open set condition but fails to be Furstenberg homogeneous.
Dimension estimates on circular (s,t)-Furstenberg sets
2023
In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya sets by Wolff.
Random cutout sets with spatially inhomogeneous intensities
2015
We study the Hausdorff dimension of Poissonian cutout sets defined via inhomogeneous intensity measures on Ahlfors-regular metric spaces. We obtain formulas for the Hausdorff dimension of such cutouts in self-similar and self-conformal spaces using the multifractal decomposition of the average densities for the natural measures.