Search results for "Quantum dot"
showing 10 items of 418 documents
Topology driven g-factor tuning in type-II quantum dots
2017
We investigate how the voltage control of the exciton lateral dipole moment induces a transition from singly to doubly connected topology in type-II InAs/GaAsxSb1−x quantum dots. The latter causes visible Aharonov-Bohm oscillations and a change of the exciton g factor, which are modulated by the applied bias. The results are explained in the frame of realistic →k⋅→p and effective Hamiltonian models and could open a venue for new spin quantum memories beyond the InAs/GaAs realm.
Interaction-induced spin polarization in quantum dots.
2010
The electronic states of lateral many electron quantum dots in high magnetic fields are analyzed in terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb blockade peaks are measured. A zig-zag pattern is found as it is known from the Fock-Darwin spectrum. However, only data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1 cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within spin-density-functional theory a good agreement between experiment and theory is obtained. The absence of bimodality on Landau level 1 is found to be due to strong spin polarization.
Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates
2013
The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device. © 2013 AIP Publishing LLC.
Indium surfactant effect on AlN/GaN heterostructures grown by metal-organic vapor-phase epitaxy: Applications to intersubband transitions
2006
We report on a dramatic improvement of the optical and structural properties of AlN/GaN multiple quantum wells (MQWs) grown by metal-organic vapor-phase epitaxy using indium as a surfactant. This improvement is observed using photoluminescence as well as x-ray diffraction. Atomic force microscopy shows different surface morphologies between samples grown with and without In. This is ascribed to a modified relaxation mechanism induced by different surface kinetics. These improved MQWs exhibit intersubband absorption at short wavelength (2 mu m). The absorption linewidth is as low as 65 meV and the absorption coefficient is increased by 85%.
Mid-infrared intersubband absorption in lattice-matched AlInN/GaN multiple-quantum wells
2005
We report the observation of midinfrared intersubband (ISB) absorption in nearly lattice-matched AlInNGaN multiple-quantum-wells. A clear absorption peak is observed around 3 μm involving transitions from the conduction band ground state to the first excited state. In addition to ISB absorption, photoluminescence experiments were carried out on lattice- matched AlInNGaN single quantum wells in order to determine the spontaneous polarization discontinuity between GaN and Al0.82 In0.18 N compounds. The experimental value is in good agreement with theoretical predictions. Our results demonstrate that the AlInNGaN system is very promising to achieve crack-free and low dislocation density struct…
Mathematical logic and quantum finite state automata
2009
AbstractThis paper is a review of the connection between formulas of logic and quantum finite-state automata in respect to the language recognition and acceptance probability of quantum finite-state automata. As is well known, logic has had a great impact on classical computation, it is promising to study the relation between quantum finite-state automata and mathematical logic. After a brief introduction to the connection between classical computation and logic, the required background of the logic and quantum finite-state automata is provided and the results of the connection between quantum finite-state automata and logic are presented.
Photo-Activated Phosphorescence of Ultrafine ZnS:Mn Quantum Dots: On the Lattice Strain Contribution
2021
We address the enhancement of orange-light luminescence of Mn-doped zinc sulfide nanoparticles (NPs) induced by exposure to UV light. Ultrafine ZnS:Mn NPs are prepared by microwave-assisted crystal growth in ethanol, without adding any dispersant agents. When exposed to UV light, their orange emission intensity undergoes a strong increase. This effect is observed when the NPs are deposited as a thin layer on a transparent substrate or dispersed in an ethanolic suspension. Such a feature was already observed on polymer- or surfactant-coated ZnS:Mn NPs and explained as a passivation effect. In this study, by coupling X-ray photoelectron, Fourier transform infrared, and electron paramagnetic r…
Kondo Resonance in a Mesoscopic Ring Coupled to a Quantum Dot: Exact Results for the Aharonov-Bohm/Casher Effects
2000
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
Application of graphene quantum dots in heavy metals and pesticides detection
2020
Graphene Quantum Dots (GQDs) were produced using electrochemical oxidation of graphite rods. Obtained GQDs were gamma-irradiated in the presence of the N atoms source, ethylenediamine. Both structural and morphological changes were investigated using UV-Vis, X-ray photoelectron and photoluminescence (PL) spectroscopy as well as atomic force microscopy. The ability of both types of dots to change PL intensity in the presence of pesticides such as malathion and glyphosate, as well as copper (II) ions was detected. These preliminary results indicated a high potential of produced GQDs to be applied as non-enzymatic PL sensors for the detection of selected pesticides and metal ions. 26th Interna…
Jahn-Teller effect in molecular electronics: quantum cellular automata
2017
The article summarizes the main results of application of the theory of the Jahn-Teller (JT) and pseudo JT effects to the description of molecular quantum dot cellular automata (QCA), a new paradigm of quantum computing. The following issues are discussed: 1) QCA as a new paradigm of quantum computing, principles and advantages; 2) molecular implementation of QCA; 3) role of the JT effect in charge trapping, encoding of binary information in the quantum cell and non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cell; 5) intervalence optical absorption in tetrameric molecular mixed-valence cell through the symmetry assisted approach to the multimode/mul…