Search results for "React"

showing 10 items of 9101 documents

Acceptorless dehydrogenative condensation: synthesis of indoles and quinolines from diols and anilines.

2021

The use of diols and anilines as reagents for the preparation of indoles represents a challenge in organic synthesis. By means of acceptorless dehydrogenative condensation, heterocycles, such as indoles, can be obtained. Herein we present an experimental and theoretical study for this purpose employing heterogeneous catalysts Pt/Al2O3 and ZnO in combination with an acid catalyst (p-TSA) and NMP as solvent. Under our optimized conditions, the diol excess has been reduced down to 2 equivalents. This represents a major advance, and allows the use of other diols. 2,3-Butanediol or 1,2-cyclohexanediol has been employed affording 2,3-dimethyl indoles and tetrahydrocarbazoles. In addition, 1,3-pro…

010405 organic chemistryChemistryOrganic ChemistryCondensationDiol010402 general chemistryCondensation reaction01 natural sciencesBiochemistry0104 chemical sciencesCatalysisSolventchemistry.chemical_compoundReagentOrganic chemistryOrganic synthesisPhysical and Theoretical ChemistryOrganicbiomolecular chemistry
researchProduct

Selective Formation of 4,4'-Biphenols by Anodic Dehydrogenative Cross- and Homo-Coupling Reaction.

2019

A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.

010405 organic chemistryChemistryOrganic ChemistryGeneral Chemistry010402 general chemistryElectrochemistry01 natural sciencesEnvironmentally friendlyCombinatorial chemistryCatalysisCoupling reaction0104 chemical sciencesAnodeReagentOxidizing agentDehydrogenationStoichiometryChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Mild, Fast, and Easy To Conduct MoCl5-Mediated Dehydrogenative Coupling Reactions in Flow

2018

A convenient and straightforward approach to performing oxidative coupling reactions in flow is presented. A collection of electron-rich benzene derivatives was subjected to this protocol, and the distinct utility of molybdenum pentachloride (MoCl5) is established. Using this unexplored protocol, biphenyls could be obtained in 21–91% isolated yield. This simple protocol opens a new chapter in reagent-mediated dehydrogenative coupling reactions, and yields are compared to classical approaches.

010405 organic chemistryChemistryOrganic ChemistryMolybdenum pentachloride010402 general chemistry01 natural sciencesBiochemistryCombinatorial chemistryCoupling reaction0104 chemical sciencesFlow (mathematics)Yield (chemistry)Benzene derivativesOxidative coupling of methanePhysical and Theoretical ChemistryOrganic Letters
researchProduct

Gold-Catalyzed Povarov-Type Reaction of Fluorinated Imino Esters and Furans

2016

A gold-catalyzed Povarov-type reaction of fluorinated imino esters and furans is described. The process, which takes place in dichoromethane at room temperature, gives rise to novel fluorinated tetrahydrofuran-fused tetrahydroquinolines in good yields and moderate levels of diastereo-selectivity in a very simple manner. The reported examples expand the versatility of the Povarov reaction to unprecedented fluorinated substrates, generating scaffolds that contain quaternary alpha-amino acid units.

010405 organic chemistryChemistryOrganic ChemistryOrganic chemistryPovarov reaction010402 general chemistry01 natural sciences0104 chemical sciencesCatalysisThe Journal of Organic Chemistry
researchProduct

Mononuclear Rearrangement of the Z-Phenylhydrazones of Some 3-Acyl-1,2,4-oxadiazoles: Effect of Substituents on the Nucleophilic Character of the &gt…

2019

The reaction rates for the mononuclear rearrangement of the Z-phenylhydrazones of 3-acyl-1,2,4-oxadiazoles 3a-c into the relevant 2-phenyl-2 H-1,2,3-triazoles (4a-c) have been measured in dioxane/water at different temperatures in a large range of proton concentrations. The occurrence of two different reaction pathways (one uncatalyzed, water assisted, and the other general base catalyzed) has- been observed. The obtained results have been able to furnish information about the effects of the nature of the 3-acyl structure and of the 5-substituents in the 1,2,4-oxadiazole ring on the reactivity of the examined rearrangements: they are well in line with the previsions carried out considering …

010405 organic chemistryChemistryOrganic ChemistryOxadiazoleCharge density010402 general chemistryRing (chemistry)01 natural sciencesMedicinal chemistry0104 chemical sciencesCatalysisReaction ratechemistry.chemical_compoundNucleophileElectrophileReactivity (chemistry)The Journal of Organic Chemistry
researchProduct

A Combined Experimental and Theoretical Study of the Ammonium Bifluoride Catalyzed Regioselective Synthesis of Quinoxalines and Pyrido[2,3-b]pyrazines

2015

International audience; Ammonium bifluoride was efficiently used (at a 0.5 mol % loading) to catalyze the cyclocondensation between 1,2-arylenediamines and 1,2-dicarbonyl compounds at room temperature in methanol-water, affording quinoxalines and pyrido[2,3-b]pyrazines in excellent yields. Importantly, 2,8-disubstituted quinoxalines and 3-substituted pyrido[2,3-b]pyrazines were regioselectively formed by reacting aryl glyoxals with 3-methyl-1,2-phenylenediamine and 2,3-diaminopyridine, respectively. Analysis of the DFT reactivity indices allowed to explain the catalytic role of ammonium bifluoride.

010405 organic chemistryChemistryOrganic ChemistryRegioselectivityAmmonium bifluoride010402 general chemistrypyrido[201 natural sciencesCatalysisammonium bifluoride0104 chemical sciencesCatalysischemistry.chemical_compoundregioselectivity3-b]pyrazinesDFT reactivity indices[CHIM]Chemical SciencesOrganic chemistryquinoxalinesDensity functional theoryReactivity (chemistry)Synthesis
researchProduct

Interactions of a Diplumbyne with Dinuclear Transition Metal Carbonyls to Afford Metalloplumbylenes

2020

The metathesis reactions of the diplumbyne AriPr6PbPbAriPr6 (AriPr6 = −C6H3–2,6-(C6H2–2,4,6-iPr3)2) with the dinuclear metal carbonyls Mn2(CO)10, Fe2(CO)9, and Co2(CO)8 under mild conditions afforded the complexes Mn(CO)5(PbAriPr6) (1), Fe(CO)4(PbAriPr6)2 (2), and Co4(CO)9(PbAriPr6)2 (3), respectively. Complexes 1–3 were structurally characterized by single-crystal X-ray diffraction and spectroscopically characterized by 1H, 13C{1H}, 59Co{1H}, and 207Pb{1H} NMR; UV–vis; and IR methods. They are rare examples of species formed by the direct reaction of a group 14 dimetallyne with transition metal carbonyls. Complexes 1 and 2 feature Mn–Pb or Fe–Pb single bonds, whereas in 3 a Co–Pb cluster i…

010405 organic chemistryChemistryOrganic ChemistrycarbonylsmetalsMetal carbonylkompleksiyhdisteetorganometalliyhdisteet010402 general chemistry01 natural sciencescobalttransition metals0104 chemical sciencesInorganic ChemistryTransition metalPolymer chemistrySalt metathesis reactionPhysical and Theoretical Chemistrykarbonyylitnuclear magnetic resonance spectroscopy
researchProduct

Organocatalytic enantioselective Strecker reaction with seven-membered cyclic imines

2018

[EN] A highly enantioselective Strecker reaction with dibenzo[b,f][1,4]oxazepines has been described using a dihydroquinine-derived thiourea as organocatalyst. The reaction affords chiral 10,11-dihydrodibenzo[b,f][1,4] oxazepine 11-carbonitrile derivatives in excellent yields (up to 99%) and excellent enantioselectivities (up to 98%) under mild reaction conditions.

010405 organic chemistryChemistryOrganocatalysisDibenzo[bf][14]oxazepinesStrecker amino acid synthesisEnantioselective synthesisGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesReaccions químiquesAlpha-amino nitrilesCatàlisiStrecker reactionOrganocatalysisFISICA APLICADAAsymmetric catalysisEconomic historymedia_common.cataloged_instanceEuropean unionmedia_common
researchProduct

Vinyl Fluorides: Competent Olefinic Counterparts in the Intramolecular Pauson–Khand Reaction

2019

Despite the great advances achieved in the Pauson-Khand reaction and the ever-increasing demand for fluorinated compounds, the use of vinyl fluorides as olefinic counterparts in the above-mentioned transformation had been completely overlooked. Herein, we describe, for the first time, the intramolecular Pauson-Khand reaction of enynes containing a vinyl fluoride moiety.

010405 organic chemistryChemistryPauson–Khand reactionOrganic Chemistry010402 general chemistry01 natural sciencesBiochemistry0104 chemical scienceschemistry.chemical_compoundIntramolecular forcePolymer chemistryMoietyPhysical and Theoretical ChemistryVinyl fluorideOrganic Letters
researchProduct

Formation of dibutyl carbonate and butylcarbamate via CO2 insertion in titanium(IV) butoxide and reaction with n-butylamine

2016

Abstract The species resulting from insertion of 12CO2 and 13CO2 into titanium(IV) butoxide is for the first time fully characterized by means of infrared and nuclear magnetic resonance spectroscopy. Results show formation of Ti-monobutylcarbonate, that easily undergoes nucleophilic attack by an aliphatic amine. The hydrolysis of the resulting species produces butylcarbamate and dibutylcarbonate as the only main products. Characterization results of the carbonate-like adduct, along with its reactivity with amine molecules open the route to new ways of CO2 utilization as building block for valuable organic compounds.

010405 organic chemistryChemistryProcess Chemistry and Technologyn-Butylaminechemistry.chemical_elementNuclear magnetic resonance spectroscopy010402 general chemistry01 natural sciences0104 chemical sciencesAdductHydrolysischemistry.chemical_compoundNucleophilePolymer chemistryChemical Engineering (miscellaneous)Organic chemistryReactivity (chemistry)Amine gas treatingSettore CHIM/07 - Fondamenti Chimici Delle TecnologieWaste Management and DisposalTitaniumDibutyl carbonate CO2 insertion Titanium alkoxides Carbamate
researchProduct