Search results for "THIN-FILM"
showing 10 items of 66 documents
Atomic layer deposition of ternary ruthenates by combining metalorganic precursors with RuO4 as the co-reactant
2022
In this work, the use of ruthenium tetroxide (RuO4) as a co-reactant for atomic layer deposition (ALD) is reported. The role of RuO4 as a co-reactant is twofold: it acts both as an oxidizing agent and as a Ru source. It is demonstrated that ALD of a ternary Ru-containing metal oxide (i.e. a metal ruthenate) can be achieved by combining a metalorganic precursor with RuO4 in a two-step process. RuO4 is proposed to combust the organic ligands of the adsorbed precursor molecules while also binding RuO2 to the surface. As a proof of concept two metal ruthenate processes are developed: one for aluminum ruthenate, by combining trimethylaluminum (TMA) with RuO4; and one for platinum ruthenate, by c…
Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties
2013
The spectra of localized surface plasmon resonances (LSPRs) in self-assembled silver nanoparticles (NPs), prepared by solid-state dewetting of thin films, are discussed in terms of their structural properties. We summarize the dependences of size and shape of NPs on the fabrication conditions with a proposed structural-phase diagram. It was found that the surface coverage distribution and the mean surface coverage (SC) size were the most appropriate statistical parameters to describe the correlation between the morphology and the optical properties of the nanostructures. The results are interpreted with theoretical predictions based on Mie theory. The broadband scattering efficiency of LSPR…
Parametrical study of multilayer structures for CIGS solar cells
2014
In this paper, a numerical analysis of relevant electrical parameters of multilayer structures for CIGS-based solar cells was carried out, employing the simulation software wxAMPS. In particular, we have focused on thin film cells having a ZnO:Al/ZnO/CdS/CIGS structure with a Molybdenum back contact. The aim of this work is to establish good theoretical reference values for an ongoing experimental activity, where our technology of choice is the single-step electrodeposition. In detail, we have analyzed how the main electrical properties change with the bang gap and the thickness of the absorber layer, for such a type of solar cell structure. Our results show that both efficiency and fill fa…
Optical modeling of nickel-base alloys oxidized in pressurized water reactor
2012
International audience; The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratificati…
Oxide-based nanomaterials for fuel cell catalysis:the interplay between supported single Pt atoms and particles
2017
The concept of single atom catalysis offers maximum noble metal efficiency for the development of low-cost catalytic materials. Among possible applications are catalytic materials for proton exchange membrane fuel cells. In the present review, recent efforts towards the fabrication of single atom catalysts on nanostructured ceria and their reactivity are discussed in the prospect of their employment as anode catalysts. The remarkable performance and the durability of the ceria-based anode catalysts with ultra-low Pt loading result from the interplay between two states associated with supported atomically dispersed Pt and sub-nanometer Pt particles. The occurrence of these two states is a co…
Photoconductive properties of Bi2S3nanowires
2015
The photoconductive properties of Bi2S3 nanowires synthesized inside anodized alumina (AAO) membrane have been characterized as a function of illuminating photon energy between the wavelengths of 500 to 900 nm and at constant illumination intensity of 1–4 μW·cm−2. Photoconductivity spectra, photocurrent values, photocurrent onset/decay times of individual Bi2S3 nanowires liberated from the AAO membrane were determined and compared with those of arrays of as-produced Bi2S3 nanowires templated inside pores of AAO membrane. The alumina membrane was found to significantly influence the photoconductive properties of the AAO-hosted Bi2S3 nanowires, when compared to liberated from the AAO membrane…
Blistering mechanisms of atomic-layer-deposited AlN and Al2O3 films
2017
Blistering of protective, structural, and functional coatings is a reliability risk pestering films ranging from elemental to ceramic ones. The driving force behind blistering comes from either excess hydrogen at the film-substrate interface or stress-driven buckling. Contrary to the stress-driven mechanism, the hydrogen-initiated one is poorly understood. Recently, it was shown that in the bulk Al-Al2O3 system, the blistering is preceded by the formation of nano-sized cavities on the substrate. The stress-and hydrogen-driven mechanisms in atomic-layer-deposited (ALD) films are explored here. We clarify issues in the hydrogen-related mechanism via high-resolution microscopy and show that at…
Growth, Structure, and Stability of KxWO3 Nanorods on Mica Substrate
2012
International audience; KxWO3 nanorods, interesting as gas sensors, were elaborated on mica muscovite substrate and characterized by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and mainly transmission electron microscopy. A combination of structural analyses allowed determining the morphology of these rods, and selected area electron diffraction experiments pointed out the simultaneous presence of the exotic hexagonal and stable monoclinic phases. Moreover, the presence of potassium inside the nanorods, coming from the mica substrate, was revealed. By combining all the observations, a growth model is proposed, consisting of the stacking of two di…
Properties of atomic layer deposited nanolaminates of zirconium and cobalt oxides
2018
Producción Científica
Residual crystalline silicon phase in silicon-rich-oxide films subjected to high temperature annealing
2002
Structural properties of silicon rich oxide films (SRO) have been investigated by means of micro-Raman spectroscopy and transmission electron microscopy (TEM). The layers were deposited by plasma enhanced chemical vapor deposition using different SiH4/O2 gas mixtures. The Raman spectra of the as-deposited SRO films are dominated by a broad band in the region 400-500 cm-1 typical of a highly disordered silicon network. After annealing at temperatures above 1000°C in N2, the formation of silicon nanocrystals is observed both in the Raman spectra and in the TEM images. However, most of the precipitated silicon does not crystallize and assumes an amorphous microstructure. © 2002 The Electrochem…