Search results for "adiation effects"

showing 10 items of 97 documents

Heavy Ion Induced Degradation in SiC Schottky Diodes : Bias and Energy Deposition Dependence

2017

Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence. peerReviewed

Nuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)Schottky barrierschottky diodes01 natural sciencesFluenceIonpower semiconductor deviceschemistry.chemical_compoundsilicon carbide0103 physical sciencesSilicon carbidecurrent-voltage characteristicsElectrical and Electronic EngineeringLeakage (electronics)Diode010302 applied physicsta114ta213010308 nuclear & particles physicsbusiness.industrySchottky diodemodelingNuclear Energy and EngineeringchemistryOptoelectronicsbusinession radiation effectsIEEE Transactions on Nuclear Science
researchProduct

Radiation Characterization of Optical Frequency Domain Reflectometry Fiber-Based Distributed Sensors

2016

International audience; We studied the responses of fiber-basedtemperature and strain sensors related to Optical FrequencyDomain Reflectometry (OFDR) and exposed to high γ-ray dosesup to 10 MGy. Three different commercial fiber classes areused to investigate the evolution of OFDR parameters withdose, thermal treatment and fiber core/cladding composition.We find that the fiber coating is affected by both thermal andradiation treatments and this modification results in anevolution of the internal stress distribution inside the fiber that influences its temperature and strain Rayleigh coefficients. These two environmental parameters introduce a relative error up to 5% on temperature and strain…

Nuclear and High Energy PhysicsMaterials scienceRadiation effects02 engineering and technologyThermal treatmentRadiation01 natural sciencesTemperature measurementsymbols.namesake020210 optoelectronics & photonics0103 physical sciencesThermal0202 electrical engineering electronic engineering information engineeringElectroniqueRayleigh scatteringElectrical and Electronic EngineeringReflectometryNuclear and High Energy PhysicTemperature measurement010308 nuclear & particles physicsbusiness.industryOptical fiber sensorsCladding (fiber optics)[SPI.TRON]Engineering Sciences [physics]/ElectronicsNuclear Energy and EngineeringFiber optic sensorsymbolsOptoelectronicsStrain measurementbusiness
researchProduct

Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET

2020

International audience; The combined effects of electrical stress and neutron irradiation of the last generation of commercial discrete silicon carbide power MOSFETs are studied. The single-event burnout (SEB) sensitivity during neutron irradiation is analyzed for unstressed and electrically stressed devices. For surviving devices, a comprehensive study of the breakdown voltage degradation is performed by coupling the electrical stress and irradiation effects. In addition, mutual influences between electrical stress and radiative constraints are investigated through TCAD modeling.

Nuclear and High Energy PhysicsMaterials scienceRadiation effectsSilicon carbide[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Stress01 natural sciencesNeutron effectsSilicon carbide (SiC)Stress (mechanics)Semiconductor device modelschemistry.chemical_compoundMOSFETReliability (semiconductor)0103 physical sciencesMOSFETSilicon carbideBreakdown voltageSemiconductor device breakdownSilicon compoundsSingle Event BurnoutNeutronIrradiationElectrical and Electronic EngineeringPower MOSFETPower MOSFETComputingMilieux_MISCELLANEOUSElectric breakdownNeutrons[PHYS]Physics [physics]010308 nuclear & particles physicsbusiness.industryLogic gatesWide band gap semiconductorsSemiconductor device reliability[SPI.TRON]Engineering Sciences [physics]/ElectronicsNuclear Energy and Engineeringchemistry13. Climate actionSingle-event burnout (SEB)Atmospheric neutronsOptoelectronicsbusinessTechnology CAD (electronics)
researchProduct

Heavy-Ion-Induced Degradation in SiC Schottky Diodes : Incident Angle and Energy Deposition Dependence

2017

International audience; Heavy-ion-induced degradation in the reverse leakage current of SiC Schottky power diodes exhibits a strong dependence on the ion angle of incidence. This effect is studied experimentally for several different bias voltages applied during heavy-ion exposure. In addition, TCAD simulations are used to give insight on the physical mechanisms involved.

Nuclear and High Energy PhysicsMaterials scienceSchottky barrierschottky diodesmodelling (creation related to information)01 natural sciencesElectronic mailIonpower semiconductor devicesReverse leakage currentchemistry.chemical_compoundsilicon carbide0103 physical sciencesSilicon carbideElectrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDiode010302 applied physicsta114010308 nuclear & particles physicsbusiness.industrydiodesSchottky diodesiliconmodelingradiationNuclear Energy and EngineeringchemistryionsOptoelectronicsbusinession radiation effectsVoltageIEEE Transactions on Nuclear Science
researchProduct

Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs

2019

IEEE Transactions on Nuclear Science, 66 (7)

Nuclear and High Energy PhysicsMaterials scienceSiC power MOSFETsheavy ion irradiationComputerApplications_COMPUTERSINOTHERSYSTEMS01 natural scienceselektroniikkakomponentitchemistry.chemical_compoundMOSFETgate leakageGate oxidesilicon carbide0103 physical sciencesMOSFETSilicon carbideIrradiationElectrical and Electronic EngineeringPower MOSFETLeakage (electronics)leakage currentsionit010308 nuclear & particles physicsbusiness.industryionisoiva säteilysingle event effectspilaantuminenNuclear Energy and EngineeringchemistrysäteilyfysiikkaLogic gatelogic gatesradiation effectstransistoritOptoelectronicsbusinessAND gate
researchProduct

Radiation effects on silica-based preforms and optical fibers-II: Coupling ab initio simulations and experiments

2008

International audience; Abstract—Experimental characterization through electron paramagnetic resonance (EPR) and confocal luminescence microscopy (CML) of a Ge-doped glass (preform and fiber) reveals the generation of several point defects by 10 keV X-ray radiation-induced attenuation: GeE', Ge(1), Ge(2), and Ge-ODC. The generation mechanisms of Ge-ODC and charged defects like GeE' centers are studied through ab initio simulation. Our calculations used a 108 atom supercell with a glass composition comparable to the Ge-doped core or to the pure-silica cladding of the canonical sample. The large size of our cell allows us to study the influence of the local environment surrounding the X-ODC d…

Nuclear and High Energy PhysicsMaterials scienceoptical fibersAb initio02 engineering and technology01 natural sciencesMolecular physicslaw.inventionlawAb initio quantum chemistry methods0103 physical sciencesAtomElectrical and Electronic Engineeringdensity functionalElectron paramagnetic resonancetheorydefects010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]021001 nanoscience & nanotechnologyCrystallographic defectOptical fiber photosensitivity absorption luminescenceAmorphous solidBond lengthNuclear Energy and Engineeringsilicaradiation effectsAb initio calculationssilica.0210 nano-technologyLuminescence
researchProduct

Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers

2013

International audience; We investigate the response of Ge-doped, P-doped, pure-silica, or Fluorine-doped fibers to extreme environments combining doses up to MGy(SiO $_{{{2}}}$) level of 10 keV X-rays and temperatures between 25 C and 300 C . First, we evaluate their potential to serve either as parts of radiation tolerant optical or optoelectronic systems or at the opposite, for the most sensitive ones, as punctual or distributed dosimeters. Second, we improve our knowledge on combined ionizing radiations and temperature (R&T) effects on radiation-induced attenuation (RIA) by measuring the RIA spectra in the ultraviolet and visible domains varying the R&T conditions. Our results reveal the…

Nuclear and High Energy PhysicsOptical fiberMaterials science02 engineering and technologyRadiationmedicine.disease_cause01 natural sciencesElectromagnetic radiationlaw.inventionIonizing radiation010309 opticslaw0103 physical sciencesmedicineIrradiationElectrical and Electronic EngineeringDosimeterbusiness.industryAttenuationIRRADIATION EFFECTSSettore FIS/01 - Fisica Sperimentale021001 nanoscience & nanotechnologyNuclear Energy and Engineering[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics0210 nano-technologybusinessUltraviolet
researchProduct

Steady-State X-Ray Radiation-Induced Attenuation in Canonical Optical Fibers

2020

The so-called canonical optical fibers (OFs) are samples especially designed to highlight the impact of some manufacturing process parameters on the radiation responses. Thanks to the results obtained on these samples, it is thus possible to define new procedures to better control the behaviors of OFs in radiation environments. In this article, we characterized the responses, under steady-state X-rays, of canonical samples representative of the most common fiber types differing by their core-dopants: pure silica, Ge, Al, and P. Their radiation-induced attenuation (RIA) spectra were measured online at both room temperature (RT) and liquid nitrogen temperature (LNT), in the energy range [~0.6…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceDoped optical fibers)Analytical chemistryRadiation01 natural sciencesSpectral linelaw.inventionlaw0103 physical sciencespoint defectsFiberIrradiationElectrical and Electronic EngineeringAbsorption (electromagnetic radiation)ComputingMilieux_MISCELLANEOUSpure silica core[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]010308 nuclear & particles physicsAttenuationSettore FIS/01 - Fisica SperimentaleX-rayAttenuationNuclear Energy and Engineeringradiation effects
researchProduct

Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading

2019

The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersHydrogenAnalytical chemistrychemistry.chemical_element01 natural scienceslaw.invention[SPI]Engineering Sciences [physics]law0103 physical sciencesX-rayspoint defectsElectrical and Electronic Engineeringphosphoruspulsed X-raysSaturation (magnetic)ComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber010308 nuclear & particles physicsAttenuationtemperatureLiquid nitrogenCrystallographic defectNuclear Energy and Engineeringchemistryradiation effectsH2 loadingLuminescence
researchProduct

Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters

2012

International audience; A dedicated set of fibers elaborated via the Modified Chemical Vapor Deposition (MCVD) technique is used to study the influence of composition and drawing parameters on their responses to an X-ray pulse representative of the radiation environments associated with Megajoule class lasers. These canonical fibers were designed to highlight the impact of these parameters on the amplitude and kinetics of the transient pulsed X-ray Radiation Induced Attenuation (RIA) at room temperature. From preforms differing by their core composition, three optical fibers were elaborated by varying the tension and speed during the drawing process. No or only slight RIA change results fro…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersMegajoule class lasersDrawing parameters MCVD Megajoule class lasers optical fibers radiation effects02 engineering and technologyChemical vapor deposition01 natural scienceslaw.inventionOpticslaw0103 physical sciencesTransient responseFiberDrawing parametersElectrical and Electronic EngineeringDopant010308 nuclear & particles physicsbusiness.industryAttenuation021001 nanoscience & nanotechnologyLaserCore (optical fiber)Nuclear Energy and Engineeringradiation effects[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicMCVD0210 nano-technologybusiness
researchProduct