Search results for "mono"

showing 10 items of 6843 documents

2020

Recent experiments have demonstrated the formation of free-standing Au monolayers by exposing the Au–Ag alloy to electron beam irradiation. Inspired by this discovery, we used semi-empirical effective medium theory simulations to investigate monolayer formation in 30 different binary metal alloys composed of late d-series metals such as Ni, Cu, Pd, Ag, Pt, and Au. In qualitative agreement with the experiment, we find that the beam energy required to dealloy Ag atoms from the Au–Ag alloy is smaller than the energy required to break the dealloyed Au monolayer. Our simulations suggest that a similar method could also be used to form Au monolayers from the Au–Cu alloy and Pt monolayers from Pt–…

010302 applied physicsMaterials scienceAlloyGeneral Physics and AstronomyBinary number02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsMetalElectron beam irradiationvisual_art0103 physical sciencesMonolayerengineeringvisual_art.visual_art_medium0210 nano-technologyBeam energyAIP Advances
researchProduct

Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapo…

2019

Abstract We have analysed the growth, morphological and structural characterization of Cd1-xZnxO thin films grown on r-sapphire substrates by atmospheric pressure metal organic chemical vapour deposition, mainly focusing on the Cd-rich rock-salt phase for its promising optical and technological applications. The evolution of the surface morphology and crystalline properties as a function of Zn content has been studied by means of high resolution x-ray diffraction and electron microscopy techniques. Monocrystalline (002) single-phase cubic films were obtained with Zn contents up to 10.4%, and with a low density of dislocations as a consequence of the optimized crystal growth process. Particu…

010302 applied physicsMaterials scienceAtmospheric pressureAlloyMetals and AlloysCrystal growth02 engineering and technologySurfaces and InterfacesChemical vapor depositionengineering.material021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMonocrystalline siliconChemical engineeringPhase (matter)0103 physical sciencesMaterials ChemistryengineeringThin film0210 nano-technologyWurtzite crystal structureThin Solid Films
researchProduct

Acoustic vibrations of monoclinic zirconia nanocrystals

2011

International audience; Polarized low-frequency Raman spectra originating from confined acoustic vibrations are reported for monoclinic ZrO2 nanoparticles with a narrow size distribution synthesized from a continuous supercritical water process. The monoclinic lattice structure is taken into account for the interpretation of the spectra by comparing with isotropic and anisotropic continuum elasticity calculations for monodomain nanocrystals. The various mechanisms leading to the broadening of the Raman peaks are discussed. We demonstrate that an accurate determination of the size distribution of the nanoparticles is possible using the Raman peak due to the fundamental breathing vibration wh…

010302 applied physicsMaterials scienceCondensed matter physicsIsotropy[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographysymbols.namesakeGeneral Energy0103 physical sciencessymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Cubic zirconiaPhysical and Theoretical ChemistryElasticity (economics)0210 nano-technologyAnisotropyRaman spectroscopyMonoclinic crystal system
researchProduct

Morphological and magnetic analysis of Fe nanostructures on W(110) by using scanning tunneling microscopy and Lorentz microscopy

2016

Abstract We investigated morphological features and magnetic properties of epitaxial Fe nanostructures (films, stripes and nanoparticles) on a W(110) surface with monoatomic steps preferentially along the direction. The nanostructures were prepared in ultra-high vacuum by using electron-beam evaporation and subsequent annealing at different temperatures. Scanning tunneling microscopy measurements in-situ revealed elongated Fe nanostructures with aspect ratios of up to . The observable shape and orientation (along or perpendicular to the monoatomic steps of the substrate) of the nanostructures depended substantially on the preparation parameters. By capping the system with 7 monolayers of Pt…

010302 applied physicsMaterials scienceNanostructureCondensed matter physicsAnnealing (metallurgy)General EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural scienceslaw.inventionMagnetic fieldCondensed Matter::Materials ScienceCrystallographyMagnetizationlaw0103 physical sciencesMonolayerSingle domainScanning tunneling microscope0210 nano-technologyJapanese Journal of Applied Physics
researchProduct

Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

2018

The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

010302 applied physicsMaterials scienceScale (ratio)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologycomputer.software_genre01 natural sciencesSimulation softwareMonocrystalline siliconScientific method0103 physical sciencesTransient (oscillation)0210 nano-technologyMaterial propertiescomputerIOP Conference Series: Materials Science and Engineering
researchProduct

3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process

2019

Abstract A 3D quasi-stationary model for crystal ridge formation in FZ crystal growth systems for silicon is presented. Heat transfer equations for the melt and crystal are solved, and an anisotropic crystal growth model together with a free surface shape solver is used to model the facet growth and ridge formation. The simulation results for 4″ and 5″ crystals are presented and compared to experimental ridge shape data.

010302 applied physicsMaterials scienceSiliconPhysics::Opticschemistry.chemical_elementCrystal growthGeometry02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnologyCondensed Matter PhysicsRidge (differential geometry)01 natural sciencesInorganic ChemistryMonocrystalline siliconCrystalchemistryCondensed Matter::SuperconductivityFree surface0103 physical sciencesMaterials ChemistryFacet0210 nano-technologyJournal of Crystal Growth
researchProduct

Mathematical modelling of the feed rod shape in floating zone silicon crystal growth

2017

Abstract A three-dimensional (3D) transient multi-physical model of the feed rod melting in the floating zone (FZ) silicon single-crystal growth process is presented. Coupled temperature, electromagnetic (EM), and melt film simulations are performed for a 4 inch FZ system, and the time evolution of the open melting front is studied. The 3D model uses phase boundaries and parameters from a converged solution of a quasi-stationary axisymmetric (2D) model of the FZ system as initial conditions for the time dependent simulations. A parameter study with different feed rod rotation, crystal pull rates and widths of the inductor main slit is carried out to analyse their influence on the evolution …

010302 applied physicsMaterials scienceSiliconbusiness.industryRotational symmetryTime evolutionPhase (waves)chemistry.chemical_element010103 numerical & computational mathematicsMechanicsCondensed Matter PhysicsRotation01 natural sciencesCondensed Matter::Soft Condensed MatterInorganic ChemistryMonocrystalline siliconCrystalOpticschemistry0103 physical sciencesMaterials ChemistryTransient (oscillation)0101 mathematicsbusinessJournal of Crystal Growth
researchProduct

Reduced temperature sensitivity of multicrystalline silicon solar cells with low ingot resistivity

2016

This study presents experimental data on the reduction of temperature sensitivity of multicrystalline silicon solar cells made from low resistivity ingot. The temperature coefficients of solar cells produced from different ingot resistivities are compared, and the advantages of increasing the net doping are explained.

010302 applied physicsMaterials scienceTemperature sensitivityintegumentary systemSiliconDopingMetallurgytechnology industry and agriculturefood and beverageschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMonocrystalline siliconReduced propertieschemistryElectrical resistivity and conductivity0103 physical sciencesIngot0210 nano-technologySensitivity (electronics)2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
researchProduct

Application of enthalpy model for floating zone silicon crystal growth

2017

Abstract A 2D simplified crystal growth model based on the enthalpy method and coupled with a low-frequency harmonic electromagnetic model is developed to simulate the silicon crystal growth near the external triple point (ETP) and crystal melting on the open melting front of a polycrystalline feed rod in FZ crystal growth systems. Simulations of the crystal growth near the ETP show significant influence of the inhomogeneities of the EM power distribution on the crystal growth rate for a 4 in floating zone (FZ) system. The generated growth rate fluctuations are shown to be larger in the system with higher crystal pull rate. Simulations of crystal melting on the open melting front of the pol…

010302 applied physicsMaterials scienceTriple pointPhysics::OpticsCrystal growth02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physicsInorganic ChemistryCrystalMonocrystalline siliconCrystallographyCondensed Matter::Superconductivity0103 physical sciencesMaterials ChemistryLaser-heated pedestal growthCrystalliteGrowth rate0210 nano-technologySeed crystalJournal of Crystal Growth
researchProduct

Experimental and numerical investigation of laboratory crystal growth furnace for the development of model-based control of CZ process

2019

Abstract The presented study is focused on laboratory Czochralski crystal growth experiments and their mathematical modelling. The developed small-scale CZ crystal growth furnace is described as well as the involved automation systems: crystal radius detection by image recognition, temperature sensors, adjustable heater power and crystal pull rate. The CZ-Trans program is used to model the experimental results – transient, 2D axisymmetric simulation software primarily used for modelling of the industrial-scale silicon crystal growth process. Poor agreement with the experimental results is reached; however, the proven ability to perform affordable, small-scale experiments and successfully mo…

010302 applied physicsMaterials sciencebusiness.industryProcess (computing)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physicscomputer.software_genreProcess automation system01 natural sciencesAutomationSimulation softwareInorganic ChemistryCrystalMonocrystalline silicon0103 physical sciencesMaterials ChemistryTransient (oscillation)0210 nano-technologybusinesscomputerJournal of Crystal Growth
researchProduct