0000000000001872
AUTHOR
Vicente Micó
Lateral magnification matrix from the dioptric power matrix formalism in the paraxial case.
Background Previous studies have highlighted that power matrices fully characterize the concept of dioptric power of any astigmatic surface. Thus, the basic equations in physiological optics can be generalized using the matrix formalism of the dioptric power. Among others, lateral magnification has also been interpreted as a matrix but mainly concerning magnification modification induced by spectacle correction of refractive error. Purpose To provide a fresh look into a novel paraxial formulation for the assessment of the lateral magnification using power matrices and in presence of astigmatism for thin and thick imaging systems in general. Methods Linear optics provides the frame to genera…
Resolution enhancement in quantitative phase microscopy
Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3D topography in reflective samples, as well as the inner structure or refractive index distribution of transparent and translucent samples. Similar to other imaging modalities, QPM is constrained by the conflict between numerical aperture (NA) and field of view (FOV): an imaging system with a low NA has to be employed to maintain a large FOV. This fact severely limits the resolution in QPM up to 0.82λ/NA, λ being the illumination wavelength. Consequently, finer structures of samples cannot be resolved by using modest NA objectives in QPM. Aimed to that, many approaches, suc…
Usage of moving nanoparticles for improved holographic recording
Metal nanoparticles are used for different applications in holographic configurations. The metal nanoparticles are placed close to an object and encode it by a time varying random mask. A decoding mask is computed and used to obtain super-resolution digital hologram and eliminate the twin image and DC from a digital hologram. The method is also shown to be applicable for other optical methods.
Coherent Microscopy for 3-D Movement Monitoring and Super-Resolved Imaging
In this chapter we present three types of microscopy-related configurations while the first one is used for 3-D movement monitoring of the inspected samples, the second one is used for super-resolved 3-D imaging, and the last one presents an overview digital holographic microscopy applications. The first configuration is based on temporal tracking of secondary reflected speckles when imaged by properly defocused optics. We validate the proposed scheme by using it to monitor 3-D spontaneous contraction of rat’s cardiac muscle cells while allowing nanometric tracking accuracy without interferometric recording. The second configuration includes projection of temporally varying speckle patterns…
Transverse resolution improvement using rotating-grating time-multiplexing approach
The ability to improve the limited resolving power of optical imaging systems while approaching the theoretical diffraction limit has been an attractive discipline with growing interest over the last years due to its benefits in many applied optics systems. This paper presents a new approach to achieve transverse superresolution in far-field imaging systems, with direct application in both digital microscopy and digital holographic microscopy. Theoretical analysis and computer simulations show the validity of the presented approach.
Speckle based sensing device for fast detection of malaria
We propose a new technique for malaria detection. It is based upon extraction of correlation based statistics of speckle patterns generated while illuminating red blood cells with a laser and inspecting them under a microscope.
DarkFocus: numerical autofocusing in digital in-line holographic microscopy using variance of computational dark-field gradient
Abstract We report on a novel computational technique for automatic numerical refocusing in digital in-line holographic microscopy. It is based on the adaptive filtering of the recorded on-axis hologram to eliminate its background term and extract interference intensity-component connected with light scattered on the sample (interference fringes). Numerical propagation of such filtered hologram yields the computationally generated dark-field imaging coming from the amplitude part of the complex field. We propose a simple measure in the form of the variance of the dark-field gradient, which attains its maximum value in the focal planes for all types of objects (phase, amplitude and mixed pha…
Effect of counting chamber depth on the accuracy of lensless microscopy for the assessment of boar sperm motility.
Sperm motility is one of the most significant parameters in the prediction of male fertility. Until now, both motility analysis using an optical microscope and computer-aided sperm analysis (CASA-Mot) entailed the use of counting chambers with a depth to 20 µm. Chamber depth significantly affects the intrinsic sperm movement, leading to an artificial motility pattern. For the first time, laser microscopy offers the possibility of avoiding this interference with sperm movement. The aims of the present study were to determine the different motility patterns observed in chambers with depths of 10, 20 and 100 µm using a new holographic approach and to compare the results obtained in the 20-µm c…
Demonstration of remote optical measurement configuration that correlates to glucose concentration in blood
An optical approach allowing the extraction and the separation of remote vibration sources has recently been proposed. The approach has also been applied for medical related applications as blood pressure and heart beats monitoring. In this paper we demonstrate its capability to monitor glucose concentration in blood stream. The technique is based on the tracking of temporal changes of reflected secondary speckle produced in human skin (wrist) when being illuminated by a laser beam. A temporal change in skin’s vibration profile generated due to blood pulsation is analyzed for estimating the glucose concentration. Experimental tests that were carried out in order to verify the proposed appro…
Random angular coding for superresolved imaging.
In this paper, we present a new approach capable of working under coherent and incoherent illumination for achieving superresolution by random coding of the object's angular information. By placing two static random masks in optically conjugate planes inside an aperture-limited imaging setup, one may obtain a transmitted image containing spatial resolution higher than the one obtained without the masks. As the most noticeable fact, the superresolution effect is obtained without imposing any restrictions either in the time domain or in the field-of-view domain but rather only in the dynamic range of the camera device. Experimental verifications for the proposed technique with incoherent illu…
Phase-shifting digital lensless Fourier holography for high numerical aperture in-line interferometric microscopy
A new common-path and phase-shifting digital lensless Fourier architecture for high numerical aperture (NA) imaging in lensless in-line holographic microscopy based on the use of a spatial light modulator (SLM) is presented and experimentally validated.
Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution
We present an experimental setup useful for complex amplitude evaluation and phase image quantification of three-dimensional (3-D) samples in digital holographic microscopy (DHM). It is based on a common-path interferometric configuration performed by dividing the input plane in two contiguous regions and by placing a translation grating near to the Fourier plane. Then, complex amplitude distribution of the sample under test is recovered with phase-shifting standard method obtained by moving the grating using a linear motion stage. Some experimental results of an USAF resolution test are presented for different numerical aperture (NA) microscope lenses. In a second part, the proposed setup …
Three-Dimensional Mapping and Ranging of Objects Using Speckle Pattern Analysis
In this chapter, we present two novel approaches for 3-D object shape measurement and range estimation based on digital image processing of speckle patterns. In the first one, 3-D mapping and range measurement are retrieved by projecting, through a ground glass diffuser, random speckle patterns on the object or on the camera for a transmissive and reflective configuration, respectively. Thus, the camera sensor records in time sequence different speckle patterns at different distances, and by using correlation operation between them, it is possible to achieve 3-D mapping and range finding. In the second one, the 3-D mapping and ranging are performed by sensing the visibility associated with …
Single-Element Reflective Digital Holographic Microscopy
Digital holographic microscopy (DHM) is a well-known microscopy technique using an interferometric architecture for quantitative phase imaging (QPI) and it has been already implemented utilizing a large number of interferometers. Among them, single-element interferometers are of particular interest due to its simplicity, stability, and low cost. Here, we present an extremely simple common-path interferometric layout based on the use of a single one-dimensional diffraction grating for both illuminating the sample in reflection and generating the digital holograms. The technique, named single-element reflective digital holographic microscopy (SER-DHM), enables QPI and topography analysis of r…
Spatially multiplexed interferometric microscopy with partially coherent illumination
We have recently reported on a simple, low cost, and highly stable way to convert a standard microscope into a holographic one [Opt. Express 22, 14929 (2014)]. The method, named spatially multiplexed interferometric microscopy (SMIM), proposes an off-axis holographic architecture implemented onto a regular (nonholographic) microscope with minimum modifications: the use of coherent illumination and a properly placed and selected one-dimensional diffraction grating. In this contribution, we report on the implementation of partially (temporally reduced) coherent illumination in SMIM as a way to improve quantitative phase imaging. The use of low coherence sources forces the application of phase…
Quantitative phase imaging by single-shot Hilbert-Huang phase microscopy.
We propose a novel single-shot Hilbert-Huang transform-based algorithm applied to digital holographic microscopy (DHM) for robust, fast, and accurate single-shot quantitative phase imaging in on-axis and off-axis configurations. Fringe pattern with possible defects and closed fringes are adaptively filtered and accurately phase demodulated using local fringe direction estimation. Experimental validation of the proposed techniques is presented as the DHM study of microbeads and red blood cells phase samples. Obtained results compare very favorably with the Fourier approach (off-axis) and temporal phase shifting (on-axis).
A microscope configuration for nanometer 3-D movement monitoring accuracy.
In this paper we present a new microscopy configuration based upon temporal tracking of a secondary reflected speckle by imaging the speckle through properly defocused optics. The configuration is used to monitor three-dimensional (3-D) spontaneous contraction of rat cardiac muscle cells while achieving nanometer tracking accuracy at a rate of 30 frames per second (fps) without using interferometric recording. Estimation of the change in the optical path of accuracy of 50 nm in the transverse direction and of 200 nm in the axial direction was achieved.
On axis holography by random particles encoding
A method for eliminating the unwanted terms in an on axis hologram is presented. In this method, free randomly distributed nanoparticles are in proximity to the object and their Brownian motion encodes the spatial features of the object in the recorded hologram. The nanoparticles are localized and a decoding pattern is calculated for each frame. This decoding pattern is then used to remove the reference beam and the conjugate beam in the reconstruction of the hologram.
Speckle based configuration for simultaneousin vitroinspection of mechanical contractions of cardiac myocyte cells
In this manuscript we propose optical lensless configuration for a remote non-contact measuring of mechanical contractions of vast number of cardiac myocytes. All the myocytes were taken from rats, and the measurements were done in an in vitro mode. The optical method is based on temporal analysis of secondary reflected speckle patterns generated in lensless microscope configuration. The processing involves analyzing the movement and the change in the statistics of the generated secondary speckle patterns that are created on top of the cell culture when it is illuminated by a spot of laser beam. The main advantage of the proposed system is the ability to measure many cells simultaneously (a…
Synthetic aperture microscopy using off-axis illumination and polarization coding
A new method to improve the resolution of optical imaging systems beyond the classical Rayleigh resolution limit is presented. The technique relies on synthetic aperture generation in three stages. The first one (encoding stage) uses an illumination procedure that combines both on-axis and off-axis illumination beams with different polarization states onto the object. After the imaging system, a second stage (decoding stage) allows the recovering of the encoded spatial-frequency object information by means of an interferometric configuration based on the polarization coding carried out in the previous stage. Finally, a third stage (digital post-processing stage) is used to generate a synthe…
Sub-wavelength and non-periodic holes array based fully lensless imager
Abstract We present a novel concept for microscopic imaging. The proposed microscope-like device does not include an objective lens neither a condenser. Instead, a metallic plate of sub-wavelength hole-array with a varying pitch is used to illuminate the inspected object that is mounted very close to it. As a result, the transmitted spectrum through each hole differs from the others and therefore, each spot of the detected object is illuminated with a unique spectrum. By measuring a single spectrum that is the sum of all the spectra that are transmitted through the sample and by using spectral decomposition algorithms, the spatial transmission pattern of the object can be extracted.
Optical remote sensor for alcohol concentration in blood
In this paper we incorporate recently developed novel optical approach for extraction of remote vibration sources to estimate the alcohol concentration in blood stream.
Superesolution in digital holographic microscopy
In this contribution, we address with the possibility to overcome the limited resolving power of imaging systems beyond the limit imposed by Abbe's diffraction theory. We first review the mathematical foundations underlying superresolution (SR) from an information theory point of view and then we focus on two multiplexing approaches in digital holographic microscopy (DHM) for achieving SR by synthetic aperture (SA) generation.
Hilbert-Huang single-shot spatially multiplexed interferometric microscopy.
Hilbert-Huang single-shot spatially multiplexed interferometric microscopy (H2S2MIM) is presented as the implementation of a robust, fast, and accurate single-shot phase estimation algorithm with an extremely simple, low-cost, and highly stable way to convert a bright field microscope into a holographic one using partially coherent illumination. Altogether, H2S2MIM adds high-speed (video frame rate) quantitative phase imaging capability to a commercially available nonholographic microscope with improved phase reconstruction (coherence noise reduction). The technique has been validated using a 20×/0.46 NA objective in a regular Olympus BX-60 upright microscope for static, as well as dynamic…
Superresolved imaging in digital holography by superposition of tilted wavefronts
A technique based on superresolution by digital holographic microscopic imaging is presented. We used a two dimensional (2-D) vertical-cavity self-emitting laser (VCSEL) array as spherical-wave illumination sources. The method is defined in terms of an incoherent superposition of tilted wavefronts. The tilted spherical wave originating from the 2-D VCSEL elements illuminates the target in transmission mode to obtain a hologram in a Mach-Zehnder interferometer configuration. Superresolved images of the input object above the common lens diffraction limit are generated by sequential recording of the individual holograms and numerical reconstruction of the image with the extended spatial frequ…
Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing
Off-axis holographic multiplexing involves capturing several complex wavefronts, each encoded into off-axis holograms with different interference fringe orientations, simultaneously, with a single camera acquisition. Thus, the multiplexed off-axis hologram can capture several wavefronts at once, where each one encodes different information from the sample, using the same number of pixels typically required for acquiring a single conventional off-axis hologram encoding only one sample wavefront. This gives rise to many possible applications, with focus on acquisition of dynamic samples, with hundreds of scientific papers already published in the last decade. These include field-of-view multi…
Dual-mode holographic microscopy imaging platform
We report on a novel layout capable of dual-mode imaging in real time with different magnifications and resolution capabilities in lensless microscopy. The concept is based on wavelength multiplexing for providing two illuminations with different wavefront curvatures: one is collimated, allowing a large field of view (FOV) with a poor resolution limit, and the other is divergent, to achieve a better resolution limit (micron range) over a small FOV. Moreover, our recently reported concept of MISHELF microscopy [M. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García and V. Micó, Sci. Rep., 2017, 7, 43291] is applied to the divergent illumination case, improving the image quality by noise averagin…
Optical sensor for remote estimation of alcohol concentration in blood stream
Abstract The purpose of this manuscript is to validate our recently developed novel optical approach for extraction of remote vibration sources as a successful technique to estimate the alcohol concentration in blood stream. This technique is based on the tracking of temporal changes of reflected secondary speckle patterns produced in human skin when being illuminated by a laser beam. Since the skin’s vibrations profile is changed due to the alcohol in the blood stream, the extraction of the vibration profile can be translated into the corresponding alcohol concentration values by means of defining several parameters acting as indicators for the presence of alcohol in the blood stream. We h…
Digital Holography and Phase Retrieval
Hamootal Duadi1, Ofer Margalit1, Vicente Mico2, Jose A. Rodrigo3, Tatiana Alieva4, Javier Garcia2 and Zeev Zalevsky1 1School of Engineering, Bar-Ilan University, Ramat-Gan 52900, 2Departamento de Optica, Universitat de Valencia, c/Dr. Moliner, 50, 46100 Burjassot, 3Instituto de Optica (CSIC), Imaging and Vision Department. Serrano 121, Madrid 28006, 4Universidad Complutense de Madrid, Facultad de Ciencias Fisicas, Ciudad Universitaria s/n, Madrid 28040, 1Israel 2,3,4Spain
Resolution enhancement and orders separation in on-axis nanoparticles based digital holography
A method for eliminating the unwanted terms in an on axis hologram is presented. Free randomly distributed nanoparticles are used to encode and later on to decode/separate the desired term from the unwanted aberrations.
Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern
The ability of dynamic extraction of remote sounds is very appealing. In this manuscript we propose an optical approach allowing the extraction and the separation of remote sound sources. The approach is very modular and it does not apply any constraints regarding the relative position of the sound sources and the detection device. The optical setup doing the detection is very simple and versatile. The principle is to observe the movement of the secondary speckle patterns that are generated on top of the target when it is illuminated by a spot of laser beam. Proper adaption of the imaging optics allows following the temporal trajectories of those speckles and extracting the sound signals ou…
Super-resolved imaging with randomly distributed, time- and size-varied particles
In this paper we present a super-resolved approach aimed at overcoming the diffraction limit in imaging systems. It is based on place randomly and time-varied particles having different sizes on the top of the sample. By considering particle sizes smaller than the object's minimum detail that an imaging system can resolve, it is possible to recover a high resolution image from a set of low resolution images while before capturing each image we produce a randomly modified distribution of the particles by vibrating the sample. The simulation process as well as experimental results validates the proposed approach that includes effectively decreasing the F number of the imaging system while bei…
Super Resolved Holographic Configurations
Super Resolution Methods Implementing Diffractive Masks Having a Certain Degree of Periodicity
This section presents an approach that provides super resolved imaging at the center of the field of view and yet allows to see the remaining of the original field of view with original resolution. This operation resembles optical zooming while the zoomed and the nonzoomed images are obtained simultaneously. This is obtained by taking a single snap-shot and using a single imaging lens. The technique utilizes a special static/still coding element and a postprocessing algorithmic, without any mechanical movements.
Compact, cost-effective and field-portable microscope prototype based on MISHELF microscopy
AbstractWe report on a reduced cost, portable and compact prototype design of lensless holographic microscope with an illumination/detection scheme based on wavelength multiplexing, working with single hologram acquisition and using a fast convergence algorithm for image processing. All together, MISHELF (initials coming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy allows the recording of three Fresnel domain diffraction patterns in a single camera snap-shot incoming from illuminating the sample with three coherent lights at once. Previous implementations have proposed an illumination/detection procedure based on a tuned (illumination wavelengths centered…
Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging.
Digital in-line holographic microscopy (DIHM) is a modern approach capable of achieving micron-range lateral and depth resolutions in three-dimensional imaging. DIHM in combination with numerical imaging reconstruction uses an extremely simplified setup while retaining the advantages provided by holography with enhanced capabilities derived from algorithmic digital processing. We introduce superresolved DIHM incoming from time and angular multiplexing of the sample spatial frequency information and yielding in the generation of a synthetic aperture (SA). The SA expands the cutoff frequency of the imaging system, allowing submicron resolutions in both transversal and axial directions. The pr…
Lensless object scanning holography for two-dimensional mirror-like and diffuse reflective objects
Recently proposed lensless object scanning holography (LOSH) [Opt. Express 20, 9382 (2012)] is a fully lensless method capable of improving the image quality in digital Fourier holography applied to one-dimensional (1D) reflective objects and it involves a very simplified experimental setup. LOSH is based on the recording and digital postprocessing of a set of digital lensless Fourier transform holograms, which finally results in a synthetic image with improved resolution, field-of-view (FOV), signal-to-noise ratio (SNR), and depth of field. In this paper, LOSH is extended to the cases of two-dimensional (2D) mirror-like and 1D diffuse-based objects. For 2D mirror-like objects, the experime…
Quantitative Phase Imaging in Microscopy Using a Spatial Light Modulator
In this chapter, we present a new method capable of recovery of the quantitative phase information of microscopic samples. Essentially, a spatial light modulator (SLM) and digital image processing are the basics to extract the sample’s phase distribution. The SLM produces a set of misfocused images of the input sample at the CCD plane by displaying a set of lenses with different power at the SLM device. The recorded images are then numerically processed to retrieve phase information. Computations are based on the wave propagation equation and lead to a complex amplitude image containing information of both amplitude and phase distributions of the input sample diffracted wave front. The prop…
Phase-shifting Gabor holography.
We present a modified Gabor-like setup able to recover the complex amplitude distribution of the object wavefront from a set of inline recorded holograms. The proposed configuration is characterized by the insertion of a condenser lens and a spatial light modulator (SLM) into the classical Gabor configuration. The phase shift is introduced by the SLM that modulates the central spot (dc term) in an intermediate plane, without an additional reference beam. Experimental results validate the proposed method and produce superior results to the Gabor method.
Superresolution digital holographic microscopy for three-dimensional samples.
An approach that allows superresolution imaging of three-dimensional (3-D) samples by numerical refocusing is presented in the field of digital holographic microscopy. Based on the object's spectrum shift produced by tilted illumination, we present a time multiplexing superresolved approach to overcome the Abbe's diffraction limit. The proposed approach uses a microscope in a Mach-Zehnder interferometric architecture with the particularity that the output plane does not coincide with the image plane. Thus, a set of off-axis non-image plane holograms are sequentially recorded for every tilted beam used in the illumination stage. After that and by using simple digital post-processing and nume…
Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level.
The ability to extract different bio-medical parameters from one single wristwatch device can be very applicable. The wearable device that is presented in this paper is based on two optical approaches. The first is the extraction and separation of remote vibration sources and the second is the rotation of linearly polarized light by certain materials exposed to magnetic fields. The technique is based on tracking of temporal changes of reflected secondary speckles produced in the wrist when being illuminated by a laser beam. Change in skin’s temporal vibration profile together with change in the magnetic medium that is generated by time varied glucose concentration caused these temporal chan…
Passive time-multiplexing super-resolved technique for axially moving targets
In this paper we present a super-resolving approach for detecting an axially moving target that is based upon a time-multiplexing concept and that overcomes the diffraction limit set by the optics of an imaging camera by a priori knowledge of the high-resolution background in front of which the target is moving. As the movement trajectory is axial, the approach can be applied to targets that are approaching or moving away from the camera. By recording a set of low-resolution images at different target axial positions, the super-resolving algorithm weights each image by demultiplexing them using the high-resolution background image and provides a super-resolved image of the target. Theoretic…
Toward fast malaria detection by secondary speckle sensing microscopy
Diagnosis of malaria must be rapid, accurate, simple to use, portable and low cost, as suggested by the World Health Organization (WHO). Despite recent efforts, the gold standard remains the light microscopy of a stained blood film. This method can detect low parasitemia and identify different species of Plasmodium. However, it is time consuming, it requires well trained microscopist and good instrumentation to minimize misinterpretation, thus the costs are considerable. Moreover, the equipment cannot be easily transported and installed. In this paper we propose a new technique named "secondary speckle sensing microscopy" ((SM)-M-3) based upon extraction of correlation based statistics of s…
A Novel Marking Reader for Progressive Addition Lenses Based on Gabor Holography
PURPOSE Progressive addition lenses (PALs) are marked with permanent engraved marks (PEMs) at standardized locations. Permanent engraved marks are very useful through the manufacturing and mounting processes, act as locator marks to re-ink the removable marks, and contain useful information about the PAL. However, PEMs are often faint and weak, obscured by scratches, partially occluded, and difficult to recognize on tinted lenses or with antireflection or scratch-resistant coatings. The aim of this article is to present a new generation of portable marking reader based on an extremely simplified concept for visualization and identification of PEMs in PALs. METHODS Permanent engraved marks o…
Automatic fringe pattern enhancement using truly adaptive period-guided bidimensional empirical mode decomposition.
Fringe patterns encode the information about the result of a measurement performed via widely used optical full-field testing methods, e.g., interferometry, digital holographic microscopy, moiré techniques, structured illumination etc. Affected by the optical setup, changing environment and the sample itself fringe patterns are often corrupted with substantial noise, strong and uneven background illumination and exhibit low contrast. Fringe pattern enhancement, i.e., noise minimization and background term removal, at the pre-processing stage prior to the phase map calculation (for the measurement result decoding) is therefore essential to minimize the jeopardizing effect the mentioned error…
Simultaneous dual mode imaging platform in lensless holographic microscopy
We present a novel layout capable of dual mode imaging in real time with different magnifications and resolution capabilities in lensless microscopy based on wavelength multiplexing. Experiments using static and dynamic samples are included.
Two-dimensional temporal coherence coding for super resolved imaging
In this paper, we present an approach that can be used for transmission of 2D spatial information through space-limited systems capable of transmitting even only a single spatial pixel. The input 2D object is illuminated with temporally incoherent illumination. The axial coherence length is very short and it equals only a few microns. Attached to the input object spatial random phase mask generates different axial shift for every pixel of the input. The temporal delays of the encoding (axial shifts) of every pixel are longer than the coherence length of the illuminating source. Therefore no temporal correlation exists between the various pixels of the input. A lens combines all spatial pixe…
Remote estimation of blood pulse pressure via temporal tracking of reflected secondary speckles pattern
We present a novel technique for remote noncontact blood pulse pressure measurement. It is based on tracking both temporal and amplitude changes of reflected secondary speckle produced in human skin when illuminated by a laser beam. The implemented technique extracts the difference between the systolic and the diastolic blood pressure. Experimental results are presented showing good agreement when compared with conventional measurement methods.
Superresolved and field-of-view extended digital holography with particle encoding
We present a new configuration for superresolution (SR) as well as for field-of-view (FOV) extension in a digital holography concept based on random movement of sparse metallic particles. In the SR configuration, the particles are in proximity to the recorded object, while in the FOV configuration, the particles are in proximity to the hologram plane. The particles' movement encodes the high spatial features in the plane of their movement. This high-resolution information can later be decoded by proper numerical postprocessing that either remedies the resolution limitations in the object plane (or the limited NA of the lens) or extends the FOV in the object plane.
Versatile optimization-based speed-up method for autofocusing in digital holographic microscopy
We propose a speed-up method for the in-focus plane detection in digital holographic microscopy that can be applied to a broad class of autofocusing algorithms that involve repetitive propagation of an object wave to various axial locations to decide the in-focus position. The classical autofocusing algorithms apply a uniform search strategy, i.e., they probe multiple, uniformly distributed axial locations, which leads to heavy computational overhead. Our method substantially reduces the computational load, without sacrificing the accuracy, by skillfully selecting the next location to investigate, which results in a decreased total number of probed propagation distances. This is achieved by…
Four channels multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy
Abstract MISHELF microscopy [Opt. Express 23, 21352 (2015)] has been recently reported as the background technology of a new concept of compact, cost-effective and field-portable lensless microscope [Sci. Rep. 7, 43291 (2017)] based on wavelength multiplexing and a fast and robust algorithm for twin image minimization and noise reduction. In this manuscript, MISHELF microscopy is expanded beyond its actual configuration by considering 4 illumination/detection channels while retaining its working principle concerning single-shot, twin image mitigation and noise averaging. Proof of principle validation of the proposed improvement is conducted through experiments with a resolution test target …
Superresolved phase-shifting Gabor holography by CCD shift
Holography in the Gabor regime is restricted to weak diffraction assumptions. Otherwise, diffraction prevents an accurate recovery of the object's complex wavefront. We have recently proposed a modified Gabor-like setup to extend Gabor's concept to any sample provided that it be non-diffusive. However, the resolution of the final image becomes limited as a consequence of the additional elements considered in the proposed setup. In this paper we present an experimental approach to overcome such a limitation in which the former configuration is used while the CCD camera is shifted to different off-axis positions in order to generate a synthetic aperture. Thus, once the whole image set is reco…
Holography and Superresolution
The capability of improving the spatial resolution of imaging systems is usually known as superresolution. Some methods provide improve resolution by playing with the imaging part of the system and without modifying the optical parameters of the imaging lenses. And others act over the geometry, shape and size of sampling pixels in the detection array. The former strategy allows optical superresolution while the latter provide geometrical superresolution. In this contribution, we will review the state of the art in optical superresolution approaches understood as the possibility to overcome the limited resolving power of imaging systems beyond the bounds imposed by Abbe's diffraction theory.…
Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one
We report on an extremely simple, low cost and highly stable way to convert a standard microscope into a holographic one. The proposed architecture is based on a common-path interferometric layout where the input plane is spatially-multiplexed to allow reference beam transmission in a common light-path with the imaging branch. As consequence, the field of view provided by the layout is reduced. The use of coherent illumination (instead of the broadband one included in the microscope) and a properly placed one-dimensional diffraction grating (needed for the holographic recording) complete the experimental layout. The proposed update is experimentally validated in a regular Olympus BX-60 upri…
Axial superresolution by synthetic aperture generation
The use of tilted illumination onto the input object in combination with time multiplexing is a useful technique to overcome the Abbe diffraction limit in imaging systems. It is based on the generation of an expanded synthetic aperture that improves the cutoff frequency (and thus the resolution limit) of the imaging system. In this paper we present an experimental validation of the fact that the generation of a synthetic aperture improves not only the lateral resolution but also the axial one. Thus, it is possible to achieve higher optical sectioning of three-dimensional (3D) objects than that defined by the theoretical resolution limit imposed by diffraction. Experimental results are provi…
Single-shot two-frame π-shifted spatially multiplexed interference phase microscopy
Single-shot, two-frame, π-shifted spatially multiplexed interference microscopy (π-SMIM) is presented as an improvement to previous SMIM implementations, introducing a versatile, robust, fast, and accurate method for cumbersome, noisy, and low-contrast phase object analysis. The proposed π-SMIM equips a commercially available nonholographic microscope with a high-speed (video frame rate) enhanced quantitative phase imaging (QPI) capability by properly placing a beam-splitter in the microscope embodiment to simultaneously (in a single shot) record two holograms mutually phase shifted by π radians at the expense of reducing the field of view. Upon subsequent subtractive superimposition of hol…
Optical module for single-shot quantitative phase imaging based on the transport of intensity equation with field of view multiplexing
We present a cost-effective, simple, and robust method that enables single-shot quantitative phase imaging (QPI) based on the transport of intensity equation (TIE) using an add-on optical module that can be assembled into the exit port of any regular microscope. The module integrates a beamsplitter (BS) cube (placed in a non-conventional way) for duplicating the output image onto the digital sensor (field of view – FOV – multiplexing), a Stokes lens (SL) for astigmatism compensation (introduced by the BS cube), and an optical quality glass plate over one of the FOV halves for defocusing generation (needed for single-shot TIE algorithm). Altogether, the system provides two laterally separate…
Variable zoom digital in-line holographic microscopy
Abstract We report on a novel layout providing variable zoom in digital in-line holographic microscopy (VZ-DIHM). The implementation is in virtue of an electrically tunable lens (ETL) which enables to slightly shift the illumination source axial position without mechanical movement of any system component. Magnifications ranging from ~15X to ~35X are easily achievable using the same layout and resulting in a substantial variation of the total field of view (FOV). The performance of the proposed setup is, first, validated using a resolution test target where the main parameters are analyzed (theoretically and experimentally) and, second, corroborated analyzing biological sample (prostate can…
SMIM in reflection imaging mode
We present reflective SMIM (initials incoming from Spatially-Multiplexed Interferometric Microscopy) as an extremely simple and low cost way to convert a standard white-light microscope into a holographic one working under reflection imaging mode.
Common-path phase-shifting lensless holographic microscopy
We present an approach capable of high-NA imaging in a lensless digital in-line holographic microscopy layout even outside the Gabor's regime. The method is based on spatial multiplexing at the sample plane, allowing a common-path interferometric architecture, where two interferometric beams are generated by a spatial light modulator (SLM) prior to illuminating the sample. The SLM allows phase-shifting interferometry by phase modulation of the SLM diffracted beam. After proper digital processing, the complex amplitude distribution of the diffracted object wavefront is recovered and numerically propagated to image the sample. Experimental results are reported that validate the proposed metho…
Single-shot, dual-mode, water-immersion microscopy platform for biological applications
A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use o…
Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor
Single-exposure superresolved interferometric microscopy (SESRIM) by RGB multiplexing has recently been proposed as a way to achieve one-dimensional superresolved imaging in digital holographic microscopy by a single-color CCD snapshot [Opt. Lett. 36, 885 (2011)]. Here we provide the mathematical basis for the operating principle of SESRIM, while we also present a different experimental configuration where the color CCD camera is replaced by a monochrome (B&W) CCD camera. To maintain the single-exposure working principle, the object field of view (FOV) is restricted and the holographic recording is based on image-plane wavelength-dispersion spatial multiplexing to separately record the thre…
Depth sensing using coherence mapping
A method for depth sensing based on sensing the visibility associated with the coherence function of a laser source is presented. The setup is based on an electronic speckle pattern interferometric (ESPI) setup, where the object depth is encoded into the amplitude of the interference pattern without the need for depth scanning. After performing phase-shifting method, the object three-dimensional (3-D) shape is reconstructed by means as a range image from the visibility of the image set of interferograms and where each gray level represents a given object depth. Experimental results validate the proposed approach for reflective diffuse objects at different measurement distances.
Super-resolved or field of view enlarged imaging based upon spatial depolarization of light
Abstract In this paper we present a new approach allowing the surpassing of the diffraction based limitation for the achievable resolution provided by imaging systems. It is based on an encoding–decoding process of various spatial pixels or regions in the field of view of the imaged object by orthogonal and differently time varying polarization states. The reconstruction of the original spatial information is obtained by applying a decoding process in a way similar to the encoding one. Although all the spatial information is summed and mixed together by the system, the decoding provides super-resolved imaging since in every spatial position the undesired spatial information having time vary…
An alternative clinical routine for subjective refraction based on power vectors with trial frames.
PURPOSE Subjective refraction determines the final point of refractive error assessment in most clinical environments and its foundations have remained unchanged for decades. The purpose of this paper is to compare the results obtained when monocular subjective refraction is assessed in trial frames by a new clinical procedure based on a pure power vector interpretation with conventional clinical refraction procedures. METHODS An alternative clinical routine is described that uses power vector interpretation with implementation in trial frames. Refractive error is determined in terms of: (i) the spherical equivalent (M component), and (ii) a pair of Jackson Crossed Cylinder lenses oriented …
Synthetic aperture superresolution with multiple off-axis holograms
An optical setup to achieve superresolution in microscopy using holographic recording is presented. The technique is based on off-axis illumination of the object and a simple optical image processing stage after the imaging system for the interferometric recording process. The superresolution effect can be obtained either in one step by combining a spatial multiplexing process and an incoherent addition of different holograms or it can be implemented sequentially. Each hologram holds the information of each different frequency bandpass of the object spectrum. We have optically implemented the approach for a low-numerical-aperture commercial microscope objective. The system is simple and rob…
Optical technique for classification, recognition and identification of obscured objects
Abstract The capability to classify, recognize and to identify objects from spatially low resolution images has high significance in security related applications especially in a case that recognition of camouflaged object is required. In this paper we present a novel approach in which the scenery containing obscured objects which we wish to classify, recognize or identify is illuminated by spatially coherent beam (e.g. laser) and therefore secondary speckles pattern is reflected from the objects. By special image processing algorithm developed for this research and which is basically based upon temporal tracking of the random speckle pattern one may extract the temporal signature of the ob…
Super-resolved Imaging based upon spatial depolarization of light
In this paper we present a new approach allowing the surpassing of the diffraction based limitation for the achievable resolution provided by imaging systems. It is based on an encoding-decoding process of various spatial pixels or regions in the field of view of the imaged object by orthogonal and differently time varying polarization states. The reconstruction of the original spatial information is obtained by applying a decoding process in a way similar to the encoding one. Although all the spatial information is summed and mixed together by the system, the decoding provides super resolved imaging since in every spatial position the undesired spatial information having time varying polar…
Transversal superresolution with noncontact axial movement of periodic structures
We present an innovative approach that allows superresolved images to be obtained by axial moving of two gratings and time integrating in the detector plane. The two gratings do not have to be in contact with either the object or the detector, and both are positioned between the object and the image planes. One of the main applications for the proposed approach in contrast to previously discussed time multiplexing superresolving methods is that it may fit well to superresolved imaging of remote objects, since both gratings are not in contact with either the object or the detector planes.
One-dimensional wavelength multiplexed microscope without objective lens
A new approach aimed to achieve microscopic imaging without objective lenses and based on wavelength multiplexing of the spatial object information is presented. The proposed method is used to develop, construct and experimentally validate a new type of optical microscope having no objective lens and no numerical reconstruction algorithms to allow imaging process. In order to extract the collected spatial information we use a spectrometer as part of our microscope system. Preliminary results are presented while considering two different types of one-dimensional (1-D) objects.
Variable magnification digital in-line holographic microscopy
We present a new layout providing different magnifications and resolution capabilities in lensless imaging by using an electrically tunable lens (ETL). Experimental validation is reported using a resolution test target and prostate cancer cells.
Vectofocimetry: Dioptric power measurement in manual focimeters using power vectors
Abstract Dioptric power measurement is classically achieved using manual focimeters. In this contribution, we present vectofocimetry as a novel methodology to be easily implemented in manual focimeters for improving their capabilities regarding dioptric power measurement. The new procedure is conceptually based on power vector formalism of dioptric power which represents the dioptric power as three values in the form of [M, J0, J45], it uses an iterative process of blur reduction, and it only requires a few modifications in the device that are easy-to-adapt and cost-effective. As a result, dioptric power measurements are easily and quickly obtained with comparable results to the reported on…
Design, Calibration, and Application of a Robust, Cost-Effective, and High-Resolution Lensless Holographic Microscope
Lensless holographic microscope (LHM) is an emerging very promising technology that provides high-quality imaging and analysis of biological samples without utilizing any lens for imaging. Due to its small size and reduced price, LHM can be a very useful tool for the point-of-care diagnosis of diseases, sperm assessment, or microfluidics, among others, not only employed in advanced laboratories but also in poor and/or remote areas. Recently, several LHMs have been reported in the literature. However, complete characterization of their optical parameters remains not much presented yet. Hence, we present a complete analysis of the performance of a compact, reduced cost, and high-resolution LH…
New method for remote and repeatable monitoring of intraocular pressure variations
We present initial steps toward a new measurement device enabling high-precision, noncontact remote and repeatable monitoring of intraocular pressure (IOP)-based on an innovative measurement principle. Using only a camera and a laser source, the device measures IOP by tracking the secondary speckle pattern trajectories produced by the reflection of an illuminating laser beam from the iris or the sclera. The device was tested on rabbit eyes using two different methods to modify IOP: via an infusion bag and via mechanical pressure. In both cases, the eyes were stimulated with increasing and decreasing ramps of the IOP. As IOP variations changed the speckle distributions reflected back from th…
Wavefront holoscopy: application of digital in-line holography for the inspection of engraved marks in progressive addition lenses
Progressive addition lenses (PALs) are engraved with permanent marks at standardized locations in order to guarantee correct centering and alignment throughout the manufacturing and mounting processes. Out of the production line, engraved marks provide useful information about the PAL as well as act as locator marks to re-ink again the removable marks. Even though those marks should be visible by simple visual inspection with the naked eye, engraving marks are often faint and weak, obscured by scratches, and partially occluded and difficult to recognize on tinted or antireflection-coated lenses. Here, we present an extremely simple optical device (named as wavefront holoscope) for visualiza…
New key based on tilted lenses for optical encryption
A novel concept based on tilted spherical lenses for optical encryption using Lohmann’s type I systems is presented. The tilt angle of the spherical lenses is used as an encrypted key and the decryption performance is studied both qualitatively (visual image degradation) and quantitatively (mean squared error analysis) by numerical simulations. The paper presents a general mathematical framework in virtue of the dioptric power matrix formalism and oblique central refraction used in the optometry field. Computer simulations show that image information cannot be retrieved after a few degrees of tilt on both spherical lenses in the encryption system. In addition, a preliminary experiment is pr…
Upgrading a brightfield optical microscope into a robust numerically advanced interference-based phase imager
The approach to convert a brightfield microscope into an interference-based versatile quantitative phase imaging unit is presented. It employs partially coherent illumination and diffraction grating. Enhanced interferogram bio-phase retrieval is performed by two-shot numerically-robust Hilbert-Huang method.
Exceeding the resolving imaging power using environmental conditions
We present two approaches that use the environmental conditions in order to exceed the classical Abbe's limit of resolution of an aperture-limited imaging system. At first we use water drops in order to improve the resolving capabilities of an imaging system using a time-multiplexing approach. The limit for the resolution improvement capabilities is equal to the size of the rain drops. The rain drops falling close to the imaged object act as a sparse and random high-resolution mask attached to it. By applying proper image processing, the center of each falling drop is located, and the parameters of the encoding grating are extracted from the captured set of images. The decoding is done digi…
Super resolved optical system for objects with finite sizes using circular gratings
We present a real time all optical super resolution method for exceeding the diffraction limit of an imaging system which has a circular aperture. The resolution improvement is obtained using two fixed circular gratings which are placed in predetermined positions. The circular gratings generate synthetic circular duplications of the aperture, thus they are the proper choice for a circular aperture optical system. The method is applicable for both spatially coherent and incoherent illuminations, as well as for white light illumination. The resolution improvement is achieved by limiting the object field of view. The proposed method is presented analytically, demonstrated via numerical simulat…
Single-step superresolution by interferometric imaging
The use of vertical-cavity surface-emitting laser (VCSEL) arrays for implementation of incoherent source superresolution is presented. The method uses an interferometer setup to obtain superresolution in a single step. The novelty of the method relies on the use of a VCSEL array as the light source, which provides a set of coherent sources which are mutually incoherent. The technique accomplishes the transmission of several spatial frequency bands of the object's spectrum in parallel by use of spatial multiplexing that occurs because of the tilted illumination of the source array. The recording process is done by interference of each frequency band with a complementary set of reference plan…
Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm.
We report on a novel algorithm for high-resolution quantitative phase imaging in a new concept of lensless holographic microscope based on single-shot multi-wavelength illumination. This new microscope layout, reported by Noom et al. along the past year and named by us as MISHELF (initials incoming from Multi-Illumination Single-Holographic-Exposure Lensless Fresnel) microscopy, rises from the simultaneous illumination and recording of multiple diffraction patterns in the Fresnel domain. In combination with a novel and fast iterative phase retrieval algorithm, MISHELF microscopy is capable of high-resolution (micron range) phase-retrieved (twin image elimination) biological imaging of dynam…
Remote optical sensor of blood coagulation, oximetry and dehydration
An optical approach for remote extraction of vibrations has recently been proposed. We demonstrate the method's ability to continuously monitor three biomedical indicators: blood oximetry, blood coagulation and dehydration of the body.
Surpassing digital holography limits by lensless object scanning holography.
We present lensless object scanning holography (LOSH) as a fully lensless method, capable of improving image quality in reflective digital Fourier holography, by means of an extremely simplified experimental setup. LOSH is based on the recording and digital post-processing of a set of digital lensless holograms and results in a synthetic image with improved resolution, field of view (FOV), signal-to-noise ratio (SNR), and depth of field (DOF). The superresolution (SR) effect arises from the generation of a synthetic aperture (SA) based on the linear movement of the inspected object. The same scanning principle enlarges the object FOV. SNR enhancement is achieved by speckle suppression and c…
Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube
Slightly off-axis digital holographic microscopy (SO-DHM) has recently emerged as a novel experimental arrangement for quantitative phase imaging (QPI). It offers improved capabilities in conventional on-axis and off-axis interferometric configurations. In this contribution, we report on a single-shot SO-DHM approach based on an add-on module adapted to the exit port of a regular microscope. The module employs a beamsplitter (BS) cube interferometer and includes, in addition, a Stokes lens (SL) for astigmatism compensation. Each recorded frame contains two fields of view (FOVs) of the sample, where each FOV is a hologram which is phase shifted by π rads with respect to the other. These two …
Full field of view super-resolution imaging based on two static gratings and white light illumination.
The usage of two static gratings for obtaining super-resolved imaging dates back to the work by Bachl and Lukosz in 1967. However, in their approach a severe reduction in the field of view was the necessary condition for improving the resolution. We present an approach based on two static gratings without sacrificing the field of view. The key idea for not paying with the field of view is to use white light illumination to average the ghost images obtained outside the region of interest since the positions of those images are wavelength dependent. Moreover, large magnification is achieved by using a commercial microscope objective instead of a test system with a unity magnification as prese…
Synthetic Aperture Lensless Digital Holographic Microscopy (SALDHM) for Superresolved Biological Imaging
Lensless digital holographic microscopy (LDHM) relates with the capability to achieve microscopic imaging working without lenses in the regime of holography. LDHM uses an extremely simplified setup and provides micron-range lateral and depth resolutions in three-dimensional (3D) imaging. Typically, LDHM uses a pinhole to provide spherical divergent illumination over the sample. Then, two different basic schemes are usually adopted for providing holographic recording. The first one assumes the interference between two in-line waves since diffraction by the sample can be considered as a perturbation of the reference wave. The second scheme uses an external reference beam in an off-line config…
Speckle-based configuration for simultaneous in vitro inspection of mechanical contractions of cardiac myocyte cells.
An optical lensless configuration for a remote noncontact measuring of mechanical contractions of a vast number of cardiac myocytes is proposed. All the myocytes were taken from rats, and the measurements were done in an in vitro mode. The optical method is based on temporal analysis of secondary reflected speckle patterns generated in lensless microscope configuration. The processing involves analyzing the movement and the change in the statistics of the secondary speckle patterns that are created on top of the cell culture when it is illuminated by a spot of laser beam. The main advantage of the proposed system is the ability to measure many cells simultaneously (∼1000 cells) and to extra…
Full field of view super-resolution imaging via two static masks
The usage of two static gratings for obtaining super resolved imaging dates back to the work by Bachl and Lukosz in 1967. However, in that approach, a severe reduction in the field of view was the necessary condition for improving the resolution. In this paper we present two approaches that are also based upon two static gratings but without the need to sacrifice in the field of view. The key idea for not paying with the field of view is performed in two ways: First, by using white light illumination that averages the ghost images obtained outside the region of interest since the positions of those images are wavelength dependent. Second, by using two random functions for the encoding and t…
Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration
Abstract Single-Exposure Super-Resolved Interferometric Microscopy (SESRIM) reports on a way to achieve one-dimensional (1-D) superresolved imaging in digital holographic microscopy (DHM) by a single illumination shot and digital recording. SESRIM provides color-coded angular multiplexing of the accessible sample׳s range of spatial frequencies and it allows their recording in a single CCD (color or monochrome) snapshot by adding 3 RGB coherent reference beams at the output plane. In this manuscript, we extend the applicability of SESRIM to the field of digital in-line holographic microscopy (DIHM), that is, working without lenses. As consequence of the in-line configuration, an additional r…
Resolution and field of view improvement in digital holography using a VCSEL source array
We describe a new implementation capable to produce superresolution (SR) and object field of view (FOV) improvement in digital lensless Fourier holography. The method provides synthetic aperture (SA) generation using angular multiplexing incoming from a Vertical Cavity Surface Emitting Laser (VCSEL) source array. SR imaging in a single exposure is obtained after proper digital processing of a multiplexed hologram coming from the incoherent addition of multiple sub-holograms, each one corresponding with a different source of the VCSEL array. FOV improvement in addition with SR imaging is achieved by recording a set of individual holograms obtained by sequential activation of the VCSEL source…
Novel image processing approach to detect malaria
In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach. S.F. acknowledges the grant from Area Science Park of Trieste. J.G. acknowledges the support he got from project FIS2013-47548-P. D.M. and B.F. acknowl…
Phase imaging microscopy under the Gabor regime in a minimally modified regular bright-field microscope
Quantitative phase imaging (QPI) is nowadays a powerful tool for visualization and analysis of biological processes. QPI is usually attained from specifically designed optical microscopes retrieving phase information in a quantitative way. In this paper we report on an extremely simple, low cost and compact way to update a standard bright-field microscope with coherent sensing capabilities. It is based on the in-line Gabor holography concept and only needs to replace the illumination broadband source of the regular microscope with a coherent one. The proposed methodology is completed by the recording of a digital in-line Gabor hologram instead of regular imaging conditions and by the numeri…
Geometrical super resolved lensless imaging
In the field of super resolution researchers are trying to overcome both the diffraction as well as the geometrical bounds of an imaging system. In this paper we present a recently developed approach that aims to overcome the geometrical bounds while using a unified spatial light modulator (SLM) based lensless configuration.
Resolution Enhancement in Phase Microscopy: a Review
Quantitative phase microscopy (QPM), a technique combining phase imaging and microscopy, enables visualization of the 3-D topography in reflective samples as well as the inner structure or refractive index distribution of transparent and translucent samples. However, as in conventional optical microscopy, QPM provides either a large field of view (FOV) or a high resolution but not both. Many approaches such as oblique illumination, structured illumination and speckle illumination have been proposed to improve the spatial resolution of phase microscopy by restricting other degrees of freedom (mostly time). Therefore, the space bandwidth product (SBP) of QPM becomes enlarged. This paper aims …
Multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy using 4 channels
MISHELF microscopy is generalized by considering 4 illumination/detection channels while retaining single-shot working principle, twin image mitigation and noise averaging. Proof of principle validation is included considering a resolution test target.
Lensless Object Scanning Holography
Lensless object scanning holography (LOSH), a method for improving image quality in digital holography by combination of a set of digital holograms for different object positions is presented.
Characterization of a compact low-cost Stokes lens for astigmatism compensation in optical instruments
Variable power cross-cylinder lenses (or Stokes lenses) have been widely known in the literature for decades. In this paper, we describe how to build a low-cost Stokes lens and discuss its calibration and its application to two significant cases. The construction is in virtue of a phoropter’s Risley prism mount for assembling a couple of equal but opposite sign cylindrical lenses (we have selected ± 1.50 D). Thus, variable astigmatic power is achieved by relative rotation of the lenses in opposite directions, and the resulting astigmatic axis is defined by the global rotation of the device. Calibration measurements are performed using an automatic lensmeter (Topcon CL-300) and an aberromete…
Step-along power vector method for astigmatic wavefront propagation
Purpose To propose both a new algebraic solution and a graphical monitoring method for astigmatic wavefront propagation in the framework provided by power vectors. Methods The generalised propagation equation describing the propagation of astigmatic wavefronts from one plane to another is adapted to the power vectors formalism using a novel algorithm based on a step-along method. The step-along procedure is directly applied to the tuple of power vectors [M, J0, J45] representing an arbitrary astigmatic wavefront and it permits the calculation of the tuple of power vectors [M′, J′0, J′45] after a given propagation distance. This is achieved mathematically first by temporarily rotating the as…
Spatial information transmission using axial temporal coherence coding
We present an approach that can be used for transmission of information through space-limited systems or for superresolution. The spatial information is coded with different axial temporal coherence by interfering every spatial region in the input with the same region, but with a certain known delay in the longitudinal axis. Every spatial region has different delay. After mixing all of the spatial information, it is transmitted through the space-limited system. At the detection the information is passed through a similar interference setup containing certain axial delay. By temporally scanning along the longitudinal axis, each time a different spatial region that was coded with the correspo…
Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator.
Common-path phase-shifting lensless holographic microscopy has been recently proposed as a novel approach capable of high numerical aperture imaging in a lensless digital inline holographic microscopy layout [Opt. Lett.35, 3919 (2010)]. Here we present proof-of-concept validation for improving the resolution limit imposed by diffraction in such a setup. This is accomplished by shifting the phase lens displayed at the spatial light modulator, which moves the illumination point source to different off-axis positions. For each off-axis position, a set of inline phase-shifted holograms are recorded by the digital sensor and stored at the computer’s memory for later digital postprocessing. As a …