0000000000021164
AUTHOR
D. Kang
Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries
The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong depende…
A Search for IceCube Events in the Direction of ANITA Neutrino Candidates
During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…
Follow-up of Astrophysical Transients in Real Time with the IceCube Neutrino Observatory
In multi-messenger astronomy, rapid investigation of interesting transients is imperative. As an observatory with a 4$\pi$ steradian field of view and $\sim$99\% uptime, the IceCube Neutrino Observatory is a unique facility to follow up transients, and to provide valuable insight for other observatories and inform their observing decisions. Since 2016, IceCube has been using low-latency data to rapidly respond to interesting astrophysical events reported by the multi-messenger observational community. Here, we describe the pipeline used to perform these follow up analyses and provide a summary of the 58 analyses performed as of July 2020. We find no significant signal in the first 58 analys…
Time-integrated Neutrino Source Searches with 10 years of IceCube Data
Physical review letters 124(5), 051103 (1-9) (2020). doi:10.1103/PhysRevLett.124.051103
Large-scale genotyping identifies 41 new loci associated with breast cancer risk
Journal article Breast cancer is the most common cancer among women. Common variants at 27 loci have been identified as associated with susceptibility to breast cancer, and these account for ~9% of the familial risk of the disease. We report here a meta-analysis of 9 genome-wide association studies, including 10,052 breast cancer cases and 12,575 controls of European ancestry, from which we selected 29,807 SNPs for further genotyping. These SNPs were genotyped in 45,290 cases and 41,880 controls of European ancestry from 41 studies in the Breast Cancer Association Consortium (BCAC). The SNPs were genotyped as part of a collaborative genotyping experiment involving four consortia (Collaborat…
IceCube-Gen2: The Window to the Extreme Universe
The observation of electromagnetic radiation from radio to $\gamma$-ray wavelengths has provided a wealth of information about the universe. However, at PeV (10$^{15}$ eV) energies and above, most of the universe is impenetrable to photons. New messengers, namely cosmic neutrinos, are needed to explore the most extreme environments of the universe where black holes, neutron stars, and stellar explosions transform gravitational energy into non-thermal cosmic rays. The discovery of cosmic neutrinos with IceCube has opened this new window on the universe. In this white paper, we present an overview of a next-generation instrument, IceCube-Gen2, which will sharpen our understanding of the proce…
EV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory
Physical review letters 125(14), 141801 (1-11) (2020). doi:10.1103/PhysRevLett.125.141801
Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering
First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication …
IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog
Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …
A search for time-dependent astrophysical neutrino emission with IceCube data from 2012 to 2017
Abstract High-energy neutrinos are unique messengers of the high-energy universe, tracing the processes of cosmic ray acceleration. This paper presents analyses focusing on time-dependent neutrino point-source searches. A scan of the whole sky, making no prior assumption about source candidates, is performed, looking for a space and time clustering of high-energy neutrinos in data collected by the IceCube Neutrino Observatory between 2012 and 2017. No statistically significant evidence for a time-dependent neutrino signal is found with this search during this period, as all results are consistent with the background expectation. Within this study period, the blazar 3C 279, showed strong var…
LeptonInjector and LeptonWeighter: A neutrino event generator and weighter for neutrino observatories
We present a high-energy neutrino event generator, called LeptonInjector, alongside an event weighter, called LeptonWeighter. Both are designed for large-volume Cherenkov neutrino telescopes such as IceCube. The neutrino event generator allows for quick and flexible simulation of neutrino events within and around the detector volume, and implements the leading Standard Model neutrino interaction processes relevant for neutrino observatories: neutrino-nucleon deep-inelastic scattering and neutrino-electron annihilation. In this paper, we discuss the event generation algorithm, the weighting algorithm, and the main functions of the publicly available code, with examples.
Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0
The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…
Leading order determination of the gluon polarisation from DIS events with high-pThadron pairs
We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with Q(2) > 1 (GeV/c)(2) including a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised (LiD)-Li-6 target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x(g) covering the range 0.04 < x(g) < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x(g). Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (sy…
Exclusive muoproduction on transversely polarised protons and deuterons
The transverse target spin azimuthal asymmetry A(UT)(sin(phi-phi s)) in hard exclusive production of rho(0) mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E-q, which are related to the orbital angular momentum of quarks in the nucleon. The Q(2), x-B-j and p(T)(2) dependence of A(UT)(sin(phi-phi s)) is presented in a wide kinematic range: 1 (GeV/c)(2) < Q(2) < 10 (GeV/c)(2), 0.003 < xB(j) < 0.3 and 0.05 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for protons or 0.10 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for deuterons. Results for deuteron…
Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk.
Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regressionmodels adjusting for stud…
Study of doubly strange systems using stored antiprotons
Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …
Spin asymmetry A1d and the spin-dependent structure function g1d of the deuteron at low values of x and Q2
Abstract We present a precise measurement of the deuteron longitudinal spin asymmetry A 1 d and of the deuteron spin-dependent structure function g 1 d at Q 2 1 ( GeV / c ) 2 and 4 × 10 −5 x 2.5 × 10 −2 based on the data collected by the COMPASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A 1 d and g 1 d are found to be consistent with zero in the whole range of x.
The spin-dependent structure function of the proton g1p and a test of the Bjorken sum rule
Abstract The inclusive double-spin asymmetry, A 1 p , has been measured at COMPASS in deep-inelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q 2 > 1 ( GeV / c ) 2 , 0.004 x 0.7 and improve the statistical precision of g 1 p ( x ) by a factor of two in the region x 0.02 . The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g 1 NS ( x , Q 2 ) . The isovector quark density, Δ q 3 ( x , Q 2 ) , is evaluated from a NLO QCD fit of g 1 NS . The first moment of Δ q 3 is in good agreement with the value predicted by the Bjorken su…
Flavour Separation of Helicity Distributions from Deep Inelastic Muon-Deuteron Scattering
We present a LO evaluation of helicity densities of valence, \Delta u_v+\Delta d_v, non-strange sea, \Delta\bar{u}+\Delta\bar{d}, and strange quarks, \Delta s (assumed to be equal to \Delta\bar{s}). They have been obtained from the inclusive asymmetry A_{3,d} and the semi-inclusive asymmetries A^{\pi+}_{1,d}, A^{\pi-}_{1,d}, A^{K+}_{1,d}, A^{K-}_{1,d} measured in polarised deep inelastic muon-deuteron scattering. The full deuteron statistics of COMPASS (years 2002-2004 and 2006) has been used. The data cover the range Q^2 > 1 (GeV/c)^2 and 0.004<x<0.3. Both non-strange densities are found to be in a good agreement with previous measurements. The distribution of \Delta s(x) is compatible wit…
The Polarised Valence Quark Distribution from semi-inclusive DIS
The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of opposite charge has been measured by the COMPASS experiment at CERN. The data were collected in the years 2002-2004 using a 160 GeV polarised muon beam scattered off a large polarised ^6LiD target and cover the range 0.006 < x < 0.7 and 1 < Q^2 < 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an evaluation of the first moment of Delta u_v + Delta d_v which is found to be equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously measured …
Collins and Sivers asymmetries for pions and kaons in muon-deuteron DIS
The measurements of the Collins and Sivers asymmetries of identified hadrons produced in deep-inelastic scattering of 160 GeV/c muons on a transversely polarised 6LiD target at COMPASS are presented. The results for charged pions and charged and neutral kaons correspond to all data available, which were collected from 2002 to 2004. For all final state particles both the Collins and Sivers asymmetries turn out to be small, compatible with zero within the statistical errors, in line with the previously published results for not identified charged hadrons, and with the expected cancellation between the u- and d-quark contributions.
Erratum to: Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/ $$c$$ c
Author(s): Adolph, C; Alekseev, MG; Alexakhin, VY; Alexandrov, Y; Alexeev, GD; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, SU; Cicuttin, A; Crespo, ML; Dalla Torre, S; Dasgupta, SS; Dasgupta, S; Denisov, OY; Donskov, SV; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, PD; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger Jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedri…
A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory
Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …
Characteristics of the diffuse astrophysical electron and Tau neutrino flux with six years of IceCube high energy cascade data
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of φastro=1.66-0.27+0.25 at E0=100 TeV, in agreement with IceCube's complementary muon neutrino results and wit…
Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering
Large samples of \Lambda, \Sigma(1385) and \Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \Sigma(1385)^+, \Sigma(1385)^-, \bar{\Sigma}(1385)^-, \bar{\Sigma}(1385)^+, \Xi(1321)^-, and \bar{\Xi}(1321)^+ hyperons decaying into \Lambda(\bar{\Lambda})\pi were measured. The heavy hyperon to \Lambda and heavy antihyperon to \bar{\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.
Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU
Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006
The COMPASS experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both…
The Deuteron Spin-dependent Structure Function g1(d) and its First Moment
We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.
A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target
New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.
Feasibility study for the measurement of pi N transition distribution amplitudes at (P)over-barANDA in (P)over-barp -> J/psi pi(0)
The exclusive charmonium production process in pp¯ annihilation with an associated π0 meson pp¯ → J=ψπ0 is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J=ψ → eþe− decay channel with the AntiProton ANnihilation at DArmstadt (PANDA ¯ ) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the pp¯ → πþπ−π0 and pp¯ → J=ψπ0π0 reactions are performed with PANDAROOT, the simulation and analysis software framework of the PANDA ¯ experiment. It is shown that the measurement can be done at PANDA ¯ with significant constraining power under the assu…
Constraints on neutrino emission from nearby galaxies using the 2MASS redshift survey and IceCube
The distribution of galaxies within the local universe is characterized by anisotropic features. Observatories searching for the production sites of astrophysical neutrinos can take advantage of these features to establish directional correlations between a neutrino dataset and overdensities in the galaxy distribution in the sky. The results of two correlation searches between a seven-year time-integrated neutrino dataset from the IceCube Neutrino Observatory, and the 2MASS Redshift Survey (2MRS) catalog are presented here. The first analysis searches for neutrinos produced via interactions between diffuse intergalactic Ultra-High Energy Cosmic Rays (UHECRs) and the matter contained within …
Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments
The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…
IceCube Search for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae
Pulsar wind nebulae (PWNe) are the main gamma-ray emitters in the Galactic plane. They are diffuse nebulae that emit nonthermal radiation. Pulsar winds, relativistic magnetized outflows from the central star, shocked in the ambient medium produce a multiwavelength emission from the radio through gamma-rays. Although the leptonic scenario is able to explain most PWNe emission, a hadronic contribution cannot be excluded. A possible hadronic contribution to the high-energy gamma-ray emission inevitably leads to the production of neutrinos. Using 9.5 yr of all-sky IceCube data, we report results from a stacking analysis to search for neutrino emission from 35 PWNe that are high-energy gamma-ray…
Measurement of the Spin Structure of the Deuteron in the DIS Region
We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.
Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.
Measurement of the Collins and Sivers asymmetries on transversely polarised protons
The Collins and Sivers asymmetries for charged hadrons produced in deeply inelastic scattering on transversely polarised protons have been extracted from the data collected in 2007 with the CERN SPS muon beam tuned at 160 GeV/c. At large values of the Bjorken x variable non-zero Collins asymmetries are observed both for positive and negative hadrons while the Sivers asymmetry for positive hadrons is slightly positive over almost all the measured x range. These results nicely support the present theoretical interpretation of these asymmetries, in terms of leading-twist quark distribution and fragmentation functions.
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
Abstract We present a determination of the gluon polarization Δ G / G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q 2 1 ( GeV / c ) 2 , with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6 LiD target. The helicity asymmetry for the selected events is 〈 A ∥ / D 〉 = 0.002 ± 0.019 ( stat ) ± 0.003 ( syst ) . From this value, we obtain in a leading-order QCD analysis Δ G / G = 0.024 ± 0.089 ( stat ) ± 0.057 ( syst ) at x g = 0.095 and μ 2 ≃ 3 ( GeV / c ) 2 .