0000000000036969
AUTHOR
Martins Zubkins
A comprehensive study of structure and properties of nanocrystalline zinc peroxide
Abstract Nanocrystalline zinc peroxide (nano-ZnO2) was synthesized through a hydrothermal process and comprehensively studied using several experimental techniques. Its crystal structure was characterized by X-ray diffraction, and the average crystallite size of 22 nm was estimated by Rietveld refinement. The temperature-dependent local environment around zinc atoms was reconstructed using reverse Monte Carlo (RMC) analysis from the Zn K-edge X-ray absorption spectra. The indirect band gap of about 4.6 eV was found using optical absorption spectroscopy. Lattice dynamics of nano-ZnO2 was studied by infrared and Raman spectroscopy. In situ Raman measurements indicate the stability of nano-ZnO…
Investigation of temperature dependence of magnetic properties of Cr$_2$O$_3$ thin film structure using a magnetic field imaging technique based on Nitrogen-Vacancy centres in diamond crystal
This work presents a magnetic field imaging method based on color centres in diamond crystal applied to thin film structure. To demonstrate the capacity of our device we have used it for characterization of magnetic properties in microscopic scale of Cr$_2$O$_3$ thin film structure above and below N\'eel temperature. The obtained measurement results clearly identify the detection of the magnetic phase transition of Cr$_2$O$_3$ thin film with an unexpected diamagnetic like behaviour at 19$^{\circ}$C (below the N\'eel temperature of Cr$_2$O$_3$). To have better insights in the magnetic fields created by the thin films we present simulations of the magnetic fields near the thin film surface. W…
Structure and Doping Determined Thermoelectric Properties of Bi2Se3Thin Films Deposited by Vapour–Solid Technique
In this work, a simple catalyst-free vapour-solid deposition method was applied for controlled deposition of two types (planar and disordered) of continuous Bi 2 Se 3 nanostructured thin films on different (fused quartz/glass, mica, graphene) substrates. Characterisation of electron transport (type, concentration and mobility of the main charge carriers) and thermoelectric properties (Seebeck coefficient and power factor) showed that proposed in this work deposition method allows to obtain Bi 2 Se 3 thin films with power factor comparable and even higher than reported for the Bi 2 Se 3 thin films grown by molecular beam epitaxy technique. Power factor of the best obtained thin films can be …
Structural, electrical and optical characteristics of Al-doped zinc oxide thin films deposited by reactive magnetron sputtering
ZnO:Al (AZO) thin films on glass were deposited by DC reactive magnetron sputtering at approximately 300°C substrate temperature. Structural, electrical and optical properties were investigated as a function of oxygen flow. XRD data shows that AZO thin films are polycrystalline with pronounced c-axis orientation and the grain size increasing with the oxygen flow. The lowest achieved resistivity within the deposited set of samples was 7.6·10 -4 Ωcm. The transmittance of AZO films was above 80 % at 550 nm with the optical band gap between 3.4 and 3.8 eV.
High power impulse magnetron sputtering of Zn/Al target in an Ar and Ar/O2 atmosphere: The study of sputtering process and AZO films
Financial support provided by Scientific Research Project for Students and Young Researchers Nr. SJZ/2017/4 realised at the Institute of Solid State Physics, University of Latvia is greatly acknowledged.
A comparative study of heterostructured CuO/CuWO4 nanowires and thin films
Authors are grateful to Reinis Ignatans for XRD measurements.
Amorphous p-Type Conducting Zn-x Ir Oxide (x > 0.13) Thin Films Deposited by Reactive Magnetron Cosputtering
Zinc-iridium oxide (Zn-Ir-O) thin films have been demonstrated as a p-type conducting material. However, the stability of p-type conductivity with respect to chemical composition or temperature is still unclear. In this study we discuss the local atomic structure and the electrical properties of Zn-Ir-O films in the large Ir concentration range. The films are deposited by reactive DC magnetron co-sputtering at two different substrate temperatures-without intentional heating and at 300 {\deg}C. Extended X-ray absorption fine structure (EXAFS) analysis reveals that strongly disordered ZnO4 tetrahedra are the main Zn complexes in Zn-Ir-O films with up to 67.4 at% Ir. As the Ir concentration in…
Structural, electrical and optical properties of zinc‐iridium oxide thin films deposited by DC reactive magnetron sputtering
ZnO-IrO2 thin films were deposited on glass by DC reactive magnetron sputtering at room tem-perature. Structural, electrical and optical properties were investigated as a function of iridium atomic concentra-tion in the films. XRD data shows that ZnO-IrO2 thin films are X-ray amorphous and Raman spectrum resembles the spectrum of IrO2, without any distinct features of wurtzite ZnO structure. The lowest film resistivity and the highest transmittance achieved in the present study were 1.4 × 10-3 Ωcm and 33% at 550 nm, respectively. However, resistivity and transmittance are inversely related to the iridium concentration in the films.
Tribovoltaic Device Based on the W/WO3 Schottky Junction Operating through Hot Carrier Extraction
Raman, electron microscopy and electrical transport studies of x-ray amorphous Zn-Ir-O thin films deposited by reactive DC magnetron sputtering
Zn-Ir-O thin films on glass and Ti substrates were deposited by reactive DC magnetron sputtering at room temperature. Structural and electrical properties were investigated as a function of iridium concentration in the films. Raman spectrum of Zn-Ir-O (61.5 at.% Ir) resembles the spectrum of rutile IrO2, without any distinct features of wurtzite ZnO structure. SEM images indicated that morphology of the films surface improves with the iridium content. EDX spectroscopy and cross-section SEM images revealed that the films growing process is homogeneous. Crystallites with approximately 2-5 nm size were discovered in the TEM images. Thermally activated conductivity related to the variable range…
Understanding the Conversion Process of Magnetron-Deposited Thin Films of Amorphous ReO$_x$ to Crystalline ReO$_3$ upon Thermal Annealing
Crystal growth & design 20(9), 6147 - 6156 (2020). doi:10.1021/acs.cgd.0c00848
Unraveling the Structure and Properties of Layered and Mixed ReO3–WO3 Thin Films Deposited by Reactive DC Magnetron Sputtering
Tungsten trioxide (WO3) is a well-known electrochromic material with a wide band gap, while rhenium trioxide (ReO3) is a “covalent metal” with an electrical conductivity comparable to that of pure metals. Since both WO3 and ReO3 oxides have perovskite-type structures, the formation of their solid solutions (ReO3–WO3 or RexW1–xO3) can be expected, which may be of significant academic and industrial interest. In this study, layered WO3/ReO3, ReO3/WO3, and mixed ReO3–WO3 thin films were produced by reactive DC magnetron sputtering and subsequent annealing in air at 450 °C. The structure and properties of the films were characterized by X-ray diffraction, optical spectroscopy, Hall conductivity…
The local atomic structure and thermoelectric properties of Ir-doped ZnO: hybrid DFT calculations and XAS experiments
We greatly acknowledge the financial support via the ERAF Project No. 1.1.1.1/18/A/073. Calculations have been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. A. C. gratefully acknowledges the technical support received from KTH-PDC. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2
Changes in structure and conduction type upon addition of Ir to ZnO thin films
Zn-Ir-O (Zn/Ir ≈ 1/1) thin films have been reported to be a potential p-type TCO material. It is, however, unknown whether it is possible to achieve p-type conductivity at low Ir content, and how the type and the magnitude of conductivity are affected by the film structure. To investigate the changes in properties taking place at low and moderate Ir content, this study focuses on the structure, electrical and optical properties of ZnO:Ir films with iridium concentration varying between 0.0 and 16.4 at.%. ZnO:Ir thin films were deposited on glass, Si, and Ti substrates by DC reactive magnetron co-sputtering at room temperature. Low Ir content (up to 5.1 at.%) films contain both a nano-crysta…
Preparation and Characterization of Tin Tungstate Thin Films
Tin tungstate thin films were prepared by dc magnetron sputtering method and studied by x-ray diffraction, confocal microscopy and Raman spectroscopy. It is shown that the films are composed mainly of nanocrystalline α-SnWO4 phase. The possibility to use these films as write-once optical recording media is demonstrated.
Amorphous ultra-wide bandgap ZnOx thin films deposited at cryogenic temperatures
Crystalline wurtzite zinc oxide (w-ZnO) can be used as a wide band gap semiconductor for light emitting devices and for transparent or high temperature electronics. The use of amorphous zinc oxide (a-ZnO) can be an advantage in these applications. In this paper we report on X-ray amorphous a-ZnOx thin films (~500 nm) deposited at cryogenic temperatures by reactive magnetron sputtering. The substrates were cooled by a nitrogen flow through the copper substrate holder during the deposition. The films were characterized by X-ray diffraction (XRD), Raman, infrared, UV-Vis-NIR spectroscopies, and ellipsometry. The a-ZnOx films on glass and Ti substrates were obtained at the substrate holder temp…
Structure-determined thermoelectric properties of Bi2Se3 thin films deposited by vapour-solid technique
International audience; In this work, a simple catalyst-free vapour-solid deposition method is applied for controlled obtaining of two types (planar and disordered) continuous Bi2Se3 nanostructured thin films on different (fused quartz/glass, mica, graphene) substrates. Performed for the deposited thin films transport and thermoelectric characterization (type, concentration and mobility of the main charge carriers, Seebeck coefficient and power factor) showed that proposed deposition method allows to fabricate “low-doped” Bi2Se3 thin films with power factor comparable and even higher than reported for the Bi2Se3 thin films fabricated by molecular beam epitaxy technique.
Optical properties of zinc-iridium oxide thin films
We present the results of an investigation of ultraviolet, visible, near-infrared (UV-Vis-NIR) and X-ray absorption spectroscopy absorption spectra for zinc-iridium oxide (Zn-Ir- O) thin films with various iridium concentrations deposited by reactive DC magnetron sputtering. It is found that the absorption spectra of zinc-iridium oxide thin films contain a broad band with maxima at 446 nm and 710 nm in the visible region, bands with maxima at about 1100 nm and 3300 nm, and a low-intensity absorption band at 1570 nm in the near-infrared region. The obtained absorption bands are associated with iridium ions at valences of Ir3+, Ir4+ and Ir5+. Changes in the oxidation state of iridium ions fro…
Enhanced Reflectivity Change and Phase Shift of Polarized Light: Double Parameter Multilayer Sensor
Herein, the concept of point of darkness based on polarized light phase difference and absorption of light is demonstrated by simulations using low refractive index and extinction coefficient semiconductor and dielectric, and high refractive index nonoxidizing metal multilayer thin film structures. Several multilayer sensor configurations show great sensitivity to thickness and refractive index variation of the detectable material by measuring the reflectivity ratio {\Psi} and phase shift {\Delta}. Focus is on such multilayers, which have sensitivity to both parameters ({\Psi}, {\Delta}) in the visible spectral range, thus opening the possibility for further research on a new biomedical sen…