0000000000067470

AUTHOR

Salvador Blasco

0000-0002-8142-8337

Modulation of DNA binding by reversible metal-controlled molecular reorganizations of scorpiand-like ligands.

DNA interaction with scorpiand azamacrocycles has been achieved through modulation of their binding affinities. Studies performed with different experimental techniques provided evidence that pH or metal-driven molecular reorganizations of these ligands regulate their ability to interact with calf thymus DNA (ctDNA) through an intercalative mode. Interestingly enough, metal-driven molecular reorganizations serve to increase or decrease the biological activities of these compounds significantly.

research product

Homo- and heterobinuclear Cu2+ and Zn2+ complexes of abiotic cyclic hexaazapyridinocyclophanes as SOD mimics

The new receptor 3,7,11,15,19,23-hexaaza-1(2,6)-pyridinacyclotetracosaphane (L1) containing a complete sequence of propylenic chains has been synthesised. The acid–base behaviour and Cu2+ and Zn2+ coordination have been analysed by potentiometric measurements in 0.15 M NaClO4 for L1 and for the related compounds 3,7,11,14,18,22-hexaaza-1(2,6)-pyridinacyclotricosaphane (L2), 3,7,10,13,16,20-hexaaza-1(2,6)-pyridinacycloheneicosaphane (L3) and 3,7,10,12,15,19-hexaaza-1(2,6)-pyridinacycloicosaphane (L4). The crystal structure of [(CuH4L2)(H2O)(ClO4)](ClO4)5·3H2O shows an interesting combination of a metal ion coordinated by the pyridine nitrogen atom and the adjacent amine groups of the chain, …

research product

In vitro activity of scorpiand-like azamacrocycle derivatives in promastigotes and intracellular amastigotes of Leishmania infantum and Leishmania braziliensis.

The activity of a family scorpiand-like azamacrocycles against Leishmania infantum and Leishmania braziliensis was studied using promastigotes, axenic and intracellular amastigotes forms. All the compounds are more active and less toxic than meglumine antimoniate (Glucantime). Moreover, the data on infection rates and amastigotes showed that compounds P2Py, PN and P3Py are the most active against both species of Leishmania. On the other hand, studies on the inhibitory effect of these compounds on SOD enzymes showed that while the inhibition of the Fe-SOD enzyme of the promastigote forms of the parasites is remarkable, the inhibition of human CuZn-SOD and Mn-SOD from Escherichia coli is negl…

research product

A Binuclear MnIII Complex of a Scorpiand-Like Ligand Displaying a Single Unsupported MnIII–O–MnIII Bridge

The crystal structure of a binuclear Mn(III) complex of a scorpiand-like ligand (L) displays an unsupported single oxo bridging ligand with a Mn(III)-O-Mn(III) angle of 174.7°. Magnetic susceptibility measurements indicate strong antiferromagnetic coupling between the two metal centers. DFT calculations have been carried out to understand the magnetic behavior and to analyze the nature of the observed Jahn-Teller distortion. Paramagnetic (1)H NMR has been applied to rationalize the formation and magnetic features of the complexes formed in solution.

research product

Flowering and fruiting phenology and breeding system ofCistus albidusL.

Summary The flowering and fruiting phenology and breeding system of Cistus albidus L. are studied. Four phases are established for the development of the flower, which remains open for a period of less than 14hrs, although this time—span can be further reduced if environmental conditions are unfavourable. Only 65.6 % flowers develop ripe fruits, the greatest losses occurring in the change from flower to unripe fruit. H is a xenogamous species with a PAD ratio of 5.426 ±816. Experimentally, fruits may be formed by autogamy through manual pollination, although this does not occur spontaneously. There is recognition by the plant of its own pollen tube, which reduced the production of fruits by…

research product

Copper(II) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies

The formation of Cu(II) complexes with two isomeric quinoline-containing scorpiand-type ligands has been studied. The ligands have a tetraazapyridinophane core appended with an ethylamino tail including 2-quinoline (L1) or 4-quinoline (L2) functionalities. Potentiometric studies indicate the formation of stable CuL(2+) species with both ligands, the L1 complex being 3-4 log units more stable than the L2 complex. The crystal structure of [Cu(L1)](ClO(4))(2)·H(2)O shows that the coordination geometry around the Cu(2+) ions is distorted octahedral with significant axial elongation; the four Cu-N distances in the equatorial plane vary from 1.976 to 2.183 Å, while the axial distances are of 2.27…

research product

Water-Soluble Squaramide Dihydrates: N-Methylation Modulates the Occurrence of One- and Two-Dimensional Water Clusters through Hydrogen Bonding and Dipolar Interactions

Water confined in molecular size domains is distinct to bulk water. The altered interactions between adjacent water molecules, and between water molecules and molecular wall components of the confinement system, determine aspects of important phenomena in material science, biology, and nanotechnology. The structural determination of confined water, however, has proven to be challenging. Here, we describe the crystal structures of three related squaramides 1–3 whose molecular structures are modulated by the gradual incorporation of N-methyl groups to the squaramide moiety. The three squaramides differ in their hydrogen bonding capabilities due to the different degree of N-methylation of each…

research product

Correlation between the molecular structure and the kinetics of decomposition of azamacrocyclic copper(II) complexes

The formation of copper(II) complexes with symmetrical dinucleating macrocyclic ligands containing two either monomethylated (L1) or trimethylated (L2) diethylenetriamine (Medien or Me3dien) subunits linked by pyridine spacers has been studied by potentiometry. Potentiometric studies show that L1 has larger basicity than L2 as well as higher stability of its mono- and binuclear complexes. The crystal structures of L1·6HCl (1), [Cu2(L1)Cl2](CF3SO3)2 (2), [Cu2(L1)(OH)](ClO4)3·3H2O (3) and [Cu(L1)](ClO4)2 (4) show that L1 adopts different coordination modes when bound to copper(II). Whereas in 2, each copper(II) is bound to one Medien subunit and to one pyridine group, in 3 each metal center i…

research product

CO 2 Fixation and Activation by Cu II Complexes of 5,5″‐Terpyridinophane Macrocycles

An aza-terpyridinophane receptor containing the polyamine 4,7,10,13-tetraazahexadecane-1,16-diamine linked through methylene groups to the 5,5″ positions of a terpyridine unit has been prepared and characterized (L). The acid-base behaviour, CuII speciation and ability to form ternary complexes (CuII-L-carbonate) have been explored by potentiometric titrations in 0.15 M NaClO4 and by UV/Vis and paramagnetic NMR spectroscopy. Comparisons are made with a previously reported terpyridinophane containing the polyamine 4,7,10-triazatridecane-1,13-diamine (L1). For this latter receptor, reductive coupling between indigo and carbon dioxide at indigo-modified electrodes produces carboxylated derivat…

research product

Hydrogen and copper ion-induced molecular reorganizations in scorpionand-like ligands. A potentiometric, mechanistic, and solid-state study.

Two aza scorpionand-like macrocycles (L2 and L3) have been prepared. L2 consists of a tren amine with two of its arms cyclizized with a 2,6-bis(bromomethyl)pyridine. In L3, the remaining pendant arm has been further functionalized with a fluorophoric naphthalene group. X-ray data on the compounds [H(L3)]ClO4.H2O (1) and [H3(L3)](H2PO4)3.H2O (2) as well as solution studies (pH-metry, UV-vis, and fluorescence data) show the movement of the pendant arm as a result of the protonation degree of the macrocycles and of the formation of intramolecular hydrogen bonds. X-ray data on the complexes [Cu(L2)](ClO4)2]2.H2O (3) and [Cu(L3)](ClO4)2 (4) and solution studies on Cu2+ coordination show the impl…

research product

Macrocyclic Pyclen-Based Gd3+ Complex with High Relaxivity and pH Response

We report the synthesis and characterization of the macrocyclic ligand 2,2'-((2-(3,9-bis(carboxymethyl)-3,6,9-triaza-1(2,6)-pyridinacyclodecaphane-6-yl)ethyl)azanediyl)diacetic acid (H4L) and several of its complexes with lanthanide ions. The structure of the free ligand was determined using X-ray diffraction measurements. Two N atoms of the pyclen moiety in the trans position are protonated in the solid state, together with the exocyclic N atom and one of the carboxylate groups of the ligand. The relaxivity of the Gd3+ complex was found to increase from 6.7 mM-1 s-1 at pH 8.6 to 8.5 mM-1 s-1 below pH ≈ 6.0. Luminescence lifetime measurements recorded from H2O and D2O solutions of the Eu3+ …

research product

Pb2+complexes of small-cavity azamacrocyclic ligands: thermodynamic and kinetic studies

The synthesis, acid-base behavior and Pb2+ coordination chemistry of the new aza-scorpiand like ligand 5-[2-(N-2-fluorenyl)ethylamino]-2,5,8-triaza[9]-2,6-pyridinophane (L1) have been studied by potentiometry, NMR and spectrofluorimetric titrations, and the results are compared with those obtained for the related compounds L2, lacking the fluorenyl group, and L3, the macrocycle lacking the pendant arm. The crystal structures obtained for complexes [PbL1][PbL1Cl](NO3)Cl2·4H2O (1) and [PbL3](ClO4)2 (2) reveal that the metal ion is located over the plane defined by the nitrogen atoms of the macrocyclic core due to its inability to accommodate the large Pb2+ ion in the macrocyclic cavity. For L…

research product

Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity

Manganese complexes of polyamines consisting of an aza-pyridinophane macrocyclic core functionalised with side chains containing quinoline or pyridine units have been characterised by a variety of solution techniques and single crystal x-ray diffraction. Some of these compounds have proved to display interesting antioxidant capabilities in vitro and in vivo in prokaryotic (bacteria) and eukaryotic (yeast and fish embryo) organisms. In particular, the Mn complex of the ligand containing a 4-quinoline group in its side arm which, as it happens in the MnSOD enzymes, has a water molecule coordinated to the metal ion that shows the lowest toxicity and highest functional efficiency both in vitro …

research product

Hydrogen and Copper Ion Induced Molecular Reorganizations in Two New Scorpiand-Like Ligands Appended with Pyridine Rings

The synthesis of two new ligands constituted of a tris(2-aminoethyl)amine moiety linked to the 2,6 positions of a pyridine spacer through methylene groups in which the hanging arm is further functionalized with a 2-pycolyl (L1) or 3-pycolyl (L2) group is presented. The protonation of L1 and L2 and formation of Cu(2+) complexes have been studied using potentiometric, NMR, X-ray, and kinetic experiments. The results provide new information about the relevance of molecular movements in the chemistry of this kind of so-called scorpiand ligand. The comparison between these two ligands that only differ in the position of the substituent at the arm reveals important differences in both thermodynam…

research product

Intermolecular binding modes in a novel [1 + 1] condensation 1H-pyrazole azamacrocycle: a solution and solid state study with evidence for CO2 fixation.

The synthesis of a novel cyclophane (L1) consisting of a 1H-pyrazole moiety linked through methylene groups to a 1,5,9,13-tetraazadecane chain is described. As far as we know, this is one of the first reported syntheses of a [1 + 1] condensation 1H-pyrazole azamacrocyclic ligand. The crystal structures of the complexes [Cu2(H(H(-1)L1))(H(-1)L1)](ClO4)3·3.75H2O (1) and ([Cu2(H(H(-1)L1))(0.5)(H(-1)L1)(1.5)]2(ClO4)3Br2·4.2H2O (2) show that Cu(2+) coordination leads to formation of 2:2 Cu(2+):L dinuclear dimeric complexes in which the 1H-pyrazole units lose a proton behaving as bis(monodentate) bridging ligands. Unlike previously reported complexes of [2 + 2] pyrazole azamacrocycles, the pyrazo…

research product

A water molecule in the interior of a 1H-pyrazole Cu2+ metallocage

Water has a great tendency to associate through hydrogen bonding with water molecules or other hydrogen bond donor or acceptor groups. Here the case of a water molecule encapsulated in the interior of a metallocage receptor is presented. The association of four copper(II) ions and two aza-macrocyclic receptors in which two 1H-pyrazole units are connected by cadaverine diamines leads to the inclusion of a water molecule into the cage, as proved by X-ray analysis and infrared spectroscopy. The included water molecule shows no hydrogen bonding with any component of the cage presenting only a weak hydrogen bond with an oxygen atom of a perchlorate counter-anion. The IR stretching vibrations pre…

research product

Influence of the chain length and metal : ligand ratio on the self-organization processes of Cu2+ complexes of [1 + 1] 1H-pyrazole azamacrocycles

Three new [1 + 1] macrocycles formed by the reaction of 1H-3,5-bis(chloromethyl)pyrazole with the tosylated amines 1,4,7,10-tetraazadecane (L1), 1,4,8,11-tetraazaundecane (L2) and 1,5,10,14-tetraazatetradecane (L3) are described. Potentiometric studies and HR-ESI-Mass spectrometry show the formation of dimeric binuclear Cu2+ complexes whose organization depends on the type of hydrocarbon chains connecting the amine groups. Furthermore, trinuclear or/and tetranuclear complexes are formed depending also on the length of the polyaminic bridge and on the sequence of the hydrocarbon chains. The crystal structures of the [2 + 2] [Cu2(H(H−1L2))2](ClO4)4·4H2O (1) and [Cu2(H−1L2)2](ClO4)2 (2) comple…

research product

Protonation, coordination chemistry, cyanometallate "supercomplex" formation and fluorescence chemosensing properties of a bis(2,2'-bipyridino)cyclophane receptor.

A new polyazamacrocycle (L) containing two 2,2'-bipyridino (bpy) units, where the heteroaromatic nitrogen atoms point outwards from the macrocyclic cavity, was synthesized and characterized by elemental analysis, ESI-MS, (1)H and (13)C NMR, FTIR and TGA. Five protonation constants involving aliphatic nitrogens with log K in the range 9.39-3.07 were determined by potentiometry and NMR and a sixth protonation (log K = 2.2) involving a bipyridine moiety could be detected by UV-Vis and NMR titrations. The interaction of L with the cyanometallate anions [Pt(CN)4](2-) and [Co(CN)6](3-) was studied by potentiometry yielding respectively log K values in the ranges 4.0-6.4 and 5.2-10.5, covering pro…

research product

Water and oxoanion encapsulation chemistry in a 1H-pyrazole azacryptand

Anion complexes of the cryptand built with the tripodal amine tris(2-aminoethyl)amine, known as tren, with water and several oxoanions of biological and environmental interest (nitrate, sulfate, phosphate, perchlorate and arsenate) have been crystallized from aqueous solution and resolved with single-crystal X-ray diffraction. All crystals show guest species encapsulated in the interior of the cavity as well as, in some cases, sitting in the grooves defined by the arms of the macrocycle. Hydrogen bonding and electrostatic interactions play a major role in anion binding to the host. The macrocycle is able to encapsulate anions in a wide range of protonation degrees. Solution studies have bee…

research product

Iron(II) Complexes with Scorpiand-Like Macrocyclic Polyamines: Kinetico-Mechanistic Aspects of Complex Formation and Oxidative Dehydrogenation of Coordinated Amines.

The Fe(II) coordination chemistry of a pyridinophane tren-derived scorpiand type ligand containing a pyridine ring in the pendant arm is explored by potentiometry, X-ray, NMR, and kinetics methods. Equilibrium studies in water show the formation of a stable [FeL]2+ complex that converts to monoprotonated and monohydroxylated species when the pH is changed. A [Fe(H–2L)]2+ complex containing an hexacoordinated dehydrogenated ligand has been isolated, and its crystal structure shows the formation of an imine bond involving the aliphatic nitrogen of the pendant arm. This complex is low spin Fe(II) both in the solid state and in solution, as revealed by the Fe–N bond lengths and by the NMR spect…

research product

Scorpiand-like azamacrocycles prevent the chronic establishment of Trypanosoma cruzi in a murine model.

Chagas disease is today one of the most important neglected diseases for its upcoming expansion to non-endemic areas and has become a threat to blood recipients in many countries. In this study, the trypanocidal activity of ten derivatives of a family of aza-scorpiand like macrocycles is evaluated against Trypanosoma cruzi in vitro and in vivo murine model in which the acute and chronic phases of Chagas disease were analyzed. The compounds 4, 3 and 1 were found to be more active against the parasite and less toxic against Vero cells than the reference drug benznidazole, 4 being the most active compound, particularly in the chronic phase. While all these compounds showed a remarkable degree …

research product

Fluorescent 3-amino-1,8-naphthalimide Tröger’s bases (3-amino-TBNaps) incorporating protected α-amino acids

Abstract The synthesis of 3-amino-1,8-naphthalimide Troger’s base’s (TBNaps) 2–4, possessing several amino acids at the imide terminus, from the corresponding 3-amino-1,8-naphthalimide (Naps) units is described. The solid-state X-ray crystal structure of the related 3-amino-TBNaps piperidino-ethyl derivative 1, and its supramolecular packing is also outlined. In these molecules (as demonstrated from the X-ray structure of 1), the two Naps units have an orthogonal arrangement that makes them potentially attractive β-turn mimics for incorporation into peptide and polypeptide structures. The ground and the excited state properties of these systems were evaluated in a range of solvents that var…

research product

A thermodynamic insight into the recognition of hydrophilic and hydrophobic amino acids in pure water by aza-scorpiand type receptors.

Interactions of different hydrophilic (His, Asp, Glu,) and hydrophobic (Ala, Phe, Tyr, Trp) amino acids in water with a scorpiand aza-macrocycle (L1) containing a pyridine group in the ring and its derivative (L2) bearing a naphthalene group in the tail have been analysed by potentiometric and calorimetric measurements. Theoretical calculations corroborate that major attractive forces that hold the adduct together are hydrogen bonds and salt-bridges, even though other interactions such as π-stacking or NH(+)⋯π may contribute in the case of hydrophobic amino acids and L2. Calorimetric measurements indicate that the interactions between L1 and the different amino acids are principally driven …

research product

Selective encapsulation of a chloride anion in a 1H-pyrazole Cu2+ metallocage

A self-assembled metallobox from copper(ii) and two macrocycles containing 1H-pyrazole ligands has been prepared. The internal cavity of the box is able to selectively encapsulate a single chloride anion over any other halide anion.

research product

Sulfate-Templated 2D Anion-Layered Supramolecular Self-Assemblies

Summary Using solution and solid-state analyses, we demonstrate that the tripodal N-methylated(1,3,5-benzene-tricarboxamide)-tris(phenylurea) BTA ligands, possessing urea functionalities in the meta position, are able to form extended self-assembly 2D networks via hydrogen bonding templated by sulfate (SO42–). The divergence of the urea binding sites confers a propeller-like conformation to the ligands and is key to formation of the self-assemblies. Studies in solution and in the solid state as well as scanning electron microscopy (SEM) on the self-assembly properties of the ligands showed that the convergence also leads to the formation of hierarchical structures, including porous films an…

research product

Synthesis, Protonation and Cu II Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies

The synthesis and coordination chemistry of two novel ligands, 2,6,9,12,16-pentaaza[17]metacyclophane (L1) and 2,6,9,12,16-pentaaza[17]paracyclophane (L2), is described. Potentiometric studies indicate that L1 and L2 form a variety of mononuclear complexes the stability constants of which reveal a change in the denticity of the ligand when moving from L1 to L2, a behaviour that can be qualitatively explained by the inability of the paracyclophanes to simultaneously use both benzylic nitrogen atoms for coordination to a single metal centre. In contrast, the formation of dinuclear hydroxylated complexes is more favoured for the paraL2 ligand. DFT calculations have been carried out to compare …

research product

Coordination of Cu2+ Ions to C2 Symmetric Pseudopeptides Derived from Valine

The acid-base and coordination properties of a family of pseudopeptidic ligands with C(2) symmetry derived from valine (4a-e) have been studied using a variety of techniques as a model for metal coordination in peptides and proteins. The Cu(2+) cation has been selected for coordination studies, although, for comparison, some results for Zn(2+) are also presented. Good agreement has been obtained between the results obtained by potentiometric titrations, spectroscopic analysis, and mass spectrometry (ESI) studies. These results highlight the potential for the use of ESI MS for characterizing the nature of the complex species formed. Clearly, the Cu(2+) complexes are much more stable than the…

research product

Unveiling the reaction mechanism of novel copper N-alkylated tetra-azacyclophanes with outstanding superoxide dismutase activity.

Quantum chemical and multiscale calculations reveal the mechanistic pathway of two superoxide dismutase mimetic N-alkylated tetra-azacyclophane copper complexes with remarkable activity. The arrangement of the binding site afforded by the bulky alkyl substituents and the coordinated water molecule as a proton source play key roles in the reaction mechanism.

research product

Dual role of silver in a fluorogenic N-squaraine probe based on Ag(i)–π interactions

In the presence of Ag(I), the monoanion of cyano-N-squaraine (I) generates an intense fluorescence turn-on response. Experimental evidence and DFT calculations reveal a sequence of deprotonation-coordination events in which the Ag(I) ions play a dual role as a Lewis acid and coordinating metal. The observed effect is highly selective for Ag(I) compared to other metals.

research product

Assembly of Polyiodide Networks with Cu(II) Complexes of Pyridinol-Based Tetraaza Macrocycles

Polyiodide networks are currently of great practical interest for the preparation of new electronic materials. The participation of metals in the formation of these networks is believed to improve their mechanical performance and thermal stability. Here we report the results on the construction of polyiodide networks obtained using Cu(II) complexes of a series of pyridinol-based tetraazacyclophanes as countercations. The assembly of these crystalline polyiodides takes place from aqueous solutions on the basis of similar structural elements, the [CuL]2+ and [Cu(H–1L)]+ (L = L2, L2-Me, L2-Me3) complex cations, so that the peculiarities induced by the increase of N-methylation of ligands, the …

research product

Kinetics of Zn2+ complexation by a ditopic phenanthroline-azamacrocyclic scorpiand-like receptor.

Coordination of Zn(2+) to a ditopic phenanthroline-macrocycle receptor takes place in three steps, the first one being the coordination to the phenanthroline, followed by the slow movement of the metal to the polyamine macrocycle and a final re-arrangement to coordinate the pendent arm.

research product

Manganese(II) complexes of scorpiand-like azamacrocycles as MnSOD mimics.

Mn(II) complexes of scorpiand-type azamacrocycles constituted by a tretrazapyridinophane core appended with an ethylamino tail including 2- or 4-quinoline functionalities show very appealing in vitro SOD activity. The observed behaviour is related to structural and electrochemical parameters.

research product

Cluster dirhenium(III) cis-dicarboxylates with α-amino acids ligands as mighty selective G4s binders.

The synthesis of four dirhenium(III) cis-dicarboxylates with the α-amino acids residues Asp (I), Glu (II), Phe (III) and Tyr (IV) is presented. The G-quadruplex stabilization potential was evaluated by fluorescence resonance energy transfer - melting analysis. All derivatives show specific binding to c-kit1 quadruplex, while II and IV have also strong stabilization activity to HTelo21 quadruplex. At the same time, the compounds do not show any stabilization activity for ds26 DNA, which suggests unique mechanisms of molecular DNA recognition for these complexes.

research product

Squaramide-based reagent for selective chromogenic sensing of Cu(II) through a zwitterion radical.

A minimalist squaramide-based chemodosimeter for Cu(2+) is described. Upon selective chelation to 2, Cu(2+) induces the formation of a highly colored zwitterionic radical, which is kinetically stable for hours. The presence of a radical is confirmed by EPR and ESI-MS. It is then possible to use reagent 2 for visual and selective sensing of Cu(2+) at neutral pH.

research product

Imidazolate bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) complexes of a terpyridinophane azamacrocycle: a solution and solid state study.

The dinuclear Cu2+ and Zn2+ as well as the mixed Cu2+-Zn2+ complexes of a 5,5''-pentaazaterpyridinophane ligand (L) are able to incorporate imidazolate (Im-) as a bridging ligand. The crystal structure of [Cu(2)L(Im)(Br)(H2O)](CF(3)SO(3))(2).3H2O (1) shows one copper coordinated by the three pyridine nitrogens of the terpyridine unit, one nitrogen of the imidazolate bridge (Im-) and one bromide anion occupying the axial position of a distorted square pyramid. The second copper atom is coordinated by the remaining imidazolate nitrogen, the three secondary nitrogens at the centre of the polyamine bridge and one water molecule that occupies the axial position. Magnetic measurements have been p…

research product

Molecular recognition of nucleotides in water by scorpiand-type receptors based on nucleobase discrimination.

Abstract: The detection of nucleotides is of crucial impor-tance because they are the basic building blocks of nucleicacids. Scorpiand-based polyamine receptors functionalizedwith pyridine or anthracene units are able to form stablecomplexes with nucleotides in water, based on coulombic,p–p stacking, and hydrogen-bonding interactions. This be-havior has been rationalized by means of an explorationwith NMR spectroscopy and DFT calculations. Binding con-stants were determined by potentiometry. Fluorescencespectroscopy studies have revealed the potential of these re-ceptors as sensors to effectively and selectively distinguishguanosine-5’-triphosphate (GTP) from adenosine-5’-triphos-phate (ATP…

research product

CCDC 1912383: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

research product

CCDC 973978: Experimental Crystal Structure Determination

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

research product

CCDC 2062422: Experimental Crystal Structure Determination

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

research product

CCDC 2092211: Experimental Crystal Structure Determination

Related Article: Samantha A. Murphy, Caroline Phelan, Sankarasekaran Shanmugaraju, Salvador Blasco, Thorfinnur Gunnlaugsson|2021|Tetrahedron Lett.|83|153405|doi:10.1016/j.tetlet.2021.153405

research product

CCDC 1009322: Experimental Crystal Structure Determination

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

research product

CCDC 953539: Experimental Crystal Structure Determination

Related Article: Sandra Gago, Jorge González, Salvador Blasco, A. Jorge Parola, M. T. Albelda, Enrique García-España, Fernando Pina|2014|Dalton Trans.|43|2437|doi:10.1039/C3DT52061G

research product

CCDC 2094998: Experimental Crystal Structure Determination

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

research product

CCDC 973974: Experimental Crystal Structure Determination

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

research product

CCDC 1468808: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

research product

CCDC 1884191: Experimental Crystal Structure Determination

Related Article: Juan C. Frías, José Soriano, Salvador Blasco, Enrique García-España, Aurora Rodríguez-Rodríguez, David Esteban-Gómez, Fabio Carniato, Mauro Botta, Carlos Platas-Iglesias, M. Teresa Albelda|2020|Inorg.Chem.|59|7306|doi:10.1021/acs.inorgchem.0c00690

research product

CCDC 2071315: Experimental Crystal Structure Determination

Related Article: Manel Vega, Salvador Blasco, Enrique García-España, Bartolomé Soberats, Antonio Frontera, Carmen Rotger, Antonio Costa|2021|Dalton Trans.|50|9367|doi:10.1039/D1DT01408K

research product

CCDC 934155: Experimental Crystal Structure Determination

Related Article: Raquel Belda,Salvador Blasco,Begona Verdejo,Hermas R. Jimenez,Antonio Domenech-Carbo,Conxa Soriano,Julio Latorre,Carmen Terencio,Enrique Garcia-Espana|2013|Dalton Trans.|42|11194|doi:10.1039/C3DT51012C

research product

CCDC 973976: Experimental Crystal Structure Determination

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

research product

CCDC 1953932: Experimental Crystal Structure Determination

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

research product

CCDC 1814073: Experimental Crystal Structure Determination

Related Article: Marta Ximenis, Javier Pitarch-Jarque, Salvador Blasco, Carmen Rotger, Enrique García-España, Antonio Costa|2018|Cryst.Growth Des.|18|4420|doi:10.1021/acs.cgd.8b00401

research product

CCDC 1521794: Experimental Crystal Structure Determination

Related Article: M. Paz Clares, Laura Acosta-Rueda, Carmen E. Castillo, Salvador Blasco, Hermas R. Jiménez, Enrique García-España, and Manuel G. Basallote|2017|Inorg.Chem.|56|4400|doi:10.1021/acs.inorgchem.6b03070

research product

CCDC 1009323: Experimental Crystal Structure Determination

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

research product

CCDC 1009325: Experimental Crystal Structure Determination

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

research product

CCDC 1874341: Experimental Crystal Structure Determination

Related Article: Anna B. Aletti, Salvador Blasco, Savyasachi J. Aramballi, Paul E. Kruger, Thorfinnur Gunnlaugsson|2019|Chem Cell mPress|5|2617|doi:10.1016/j.chempr.2019.06.023

research product

CCDC 1814074: Experimental Crystal Structure Determination

Related Article: Marta Ximenis, Javier Pitarch-Jarque, Salvador Blasco, Carmen Rotger, Enrique García-España, Antonio Costa|2018|Cryst.Growth Des.|18|4420|doi:10.1021/acs.cgd.8b00401

research product

CCDC 892312: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

research product

CCDC 1982975: Experimental Crystal Structure Determination

Related Article: Álvaro Martínez-Camarena, Pedro A. Sánchez-Murcia, Salvador Blasco, Leticia González, Enrique García-España|2020|Chem.Commun.|56|7511|doi:10.1039/D0CC01926G

research product

CCDC 1020483: Experimental Crystal Structure Determination

Related Article: M. Paz Claresa, Carolina Serena, Salvador Blasco, Aida Nebot, Lucas del Castillo, Conxa Soriano, Antonio Domènech, Ana Virginia Sánchez-Sánchez, Laura Soler-Calero, José Luis Mullor, Antonio García-España, Enrique García-España|2015|J.Inorg.Biochem.|143|1|doi:10.1016/j.jinorgbio.2014.11.001

research product

CCDC 1814075: Experimental Crystal Structure Determination

Related Article: Marta Ximenis, Javier Pitarch-Jarque, Salvador Blasco, Carmen Rotger, Enrique García-España, Antonio Costa|2018|Cryst.Growth Des.|18|4420|doi:10.1021/acs.cgd.8b00401

research product

CCDC 1874342: Experimental Crystal Structure Determination

Related Article: Anna B. Aletti, Salvador Blasco, Savyasachi J. Aramballi, Paul E. Kruger, Thorfinnur Gunnlaugsson|2019|Chem Cell mPress|5|2617|doi:10.1016/j.chempr.2019.06.023

research product

CCDC 1953930: Experimental Crystal Structure Determination

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

research product

CCDC 1990725: Experimental Crystal Structure Determination

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

research product

CCDC 1874344: Experimental Crystal Structure Determination

Related Article: Anna B. Aletti, Salvador Blasco, Savyasachi J. Aramballi, Paul E. Kruger, Thorfinnur Gunnlaugsson|2019|Chem Cell mPress|5|2617|doi:10.1016/j.chempr.2019.06.023

research product

CCDC 999624: Experimental Crystal Structure Determination

Related Article: M. Paz Claresa, Carolina Serena, Salvador Blasco, Aida Nebot, Lucas del Castillo, Conxa Soriano, Antonio Domènech, Ana Virginia Sánchez-Sánchez, Laura Soler-Calero, José Luis Mullor, Antonio García-España, Enrique García-España|2015|J.Inorg.Biochem.|143|1|doi:10.1016/j.jinorgbio.2014.11.001

research product

CCDC 1468807: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

research product

CCDC 892315: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

research product

CCDC 1994847: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

research product

CCDC 1912382: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

research product

CCDC 1953929: Experimental Crystal Structure Determination

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

research product

CCDC 953540: Experimental Crystal Structure Determination

Related Article: Sandra Gago, Jorge González, Salvador Blasco, A. Jorge Parola, M. T. Albelda, Enrique García-España, Fernando Pina|2014|Dalton Trans.|43|2437|doi:10.1039/C3DT52061G

research product

CCDC 892316: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Raquel Belda, Salvador Blasco, Pilar Navarro, Roberto Tejero, José Miguel Junquera-Hernández, Vicente Pérez-Mondéjar, Enrique García-España|2016|New J.Chem.|40|5670|doi:10.1039/C5NJ03234B

research product

CCDC 1912384: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

research product

CCDC 2094997: Experimental Crystal Structure Determination

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

research product

CCDC 1994844: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

research product

CCDC 1009324: Experimental Crystal Structure Determination

Related Article: Laura Acosta-Rueda, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Alexis Rodríguez, Salvador Blasco, Jorge González, Manuel G. Basallote, Enrique García-España|2015|Dalton Trans.|44|8255|doi:10.1039/C5DT00408J

research product

CCDC 973975: Experimental Crystal Structure Determination

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

research product

CCDC 1423684: Experimental Crystal Structure Determination

Related Article: Salvador Blasco, Begoña Verdejo, M. Paz Clares, Carmen E. Castillo, Andrés G. Algarra, Julio Latorre, M. Angeles Máñez, Manuel G. Basallote, Conxa Soriano and Enrique García-España|2010|Inorg.Chem.|49|7016|doi:10.1021/ic100609h

research product

CCDC 1994845: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

research product

CCDC 1994846: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Hermas R. Jiménez, Elina Kalenius, Salvador Blasco, Alberto Lopera, M. Paz Clares, Kari Rissanen, Enrique García-España|2021|Dalton Trans.|50|9010|doi:10.1039/D1DT01302E

research product

CCDC 1953933: Experimental Crystal Structure Determination

Related Article: Alberto Lopera, Ariadna Gil-Martínez, Javier Pitarch-Jarque, Begoña Verdejo, Salvador Blasco, M. Paz Clares, Hermas R. Jiménez, Enrique García-España|2020|Dalton Trans.|49|8614|doi:10.1039/D0DT01056A

research product

CCDC 1912380: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

research product

CCDC 2062421: Experimental Crystal Structure Determination

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

research product

CCDC 1912379: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

research product

CCDC 973977: Experimental Crystal Structure Determination

Related Article: Raquel Belda, Javier Pitarch-Jarque, Conxa Soriano, José M. Llinares, Salvador Blasco, Jesús Ferrando-Soria, and Enrique García-España|2013|Inorg.Chem.|52|10795|doi:10.1021/ic400645t

research product

CCDC 1912378: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

research product

CCDC 1912381: Experimental Crystal Structure Determination

Related Article: Javier Pitarch-Jarque, Kari Rissanen, Santiago García-Granda, Alberto Lopera, M. Paz Clares, Enrique García-España, Salvador Blasco|2019|New J.Chem.|43|18915|doi:10.1039/C9NJ05231C

research product