0000000000096647

AUTHOR

Mauro Paternostro

showing 50 related works from this author

Reading a qubit quantum state with a quantum meter: time unfolding of quantum Darwinism and quantum information flux

2020

Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Physical model for the generation of ideal resources in multipartite quantum networking

2010

We propose a physical model for generating multipartite entangled states of spin-$s$ particles that have important applications in distributed quantum information processing. Our protocol is based on a process where mobile spins induce the interaction among remote scattering centers. As such, a major advantage lies on the management of stationary and well separated spins. Among the generable states, there is a class of $N$-qubit singlets allowing for optimal quantum telecloning in a scalable and controllable way. We also show how to prepare Aharonov, W and Greenberger-Horne-Zeilinger states.

PhysicsQuantum PhysicsQuantum networkFOS: Physical sciencesQuantum PhysicsQuantum entanglementTopologyAtomic and Molecular Physics and OpticsMultipartiteQuantum stateQuantum mechanicsQubitentanglement transport quantum information processingW stateQuantum informationQuantum Physics (quant-ph)Quantum information science
researchProduct

Entanglement replication in driven-dissipative many body systems

2012

We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

Quantum decoherenceFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementquantum networksSquashed entanglement01 natural sciences010305 fluids & plasmasOPERATIONSQUANTUM COMPUTATION0103 physical sciencesCAVITY ARRAYS010306 general physicsTELEPORTATIONQuantum computerPhysicsQuantum PhysicsNANOCAVITIESCANNOTentanglement quantum networks open quantum systems.open quantum systemsQuantum PhysicsCondensed Matter - Other Condensed MatterArbitrarily largeLIGHTClassical mechanicsTRAPPED IONSPHOTONDissipative systemW stateentanglementQuantum Physics (quant-ph)MATTERQuantum teleportationOther Condensed Matter (cond-mat.other)
researchProduct

Reinforcement learning approach to nonequilibrium quantum thermodynamics

2021

We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …

---Computer scienceFOS: Physical sciencesGeneral Physics and AstronomyNon-equilibrium thermodynamics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmassymbols.namesakeQuantum stateSHORTCUTS0103 physical sciencesQuantum systemReinforcement learningStatistical physics010306 general physicsQuantum thermodynamicsCondensed Matter - Statistical MechanicsADIABATICITYQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Entropy productionENTROPYsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct

Resilience of singlet-state extraction against non-optimal resonance conditions

2008

We have recently presented a protocol for extracting the singlet state of two non-interacting high-dimensional spins through post-selection of the internal state of interaction mediators sent in succession [F. Ciccarello et al., arXiv:0710.3855v1]. The scheme requires each mediator's wavevector to obey appropriate resonance conditions. Here we show the robustness of the scheme in the realistic case where such conditions are not sharply fulfilled.

PhysicsFABRY-PEROT-INTERFEROMETERPhysics and Astronomy (miscellaneous)SpinsCondensed matter physicsquantum information theory transport in mesoscopic systemsState (functional analysis)Resonance (particle physics)Robustness (computer science)Quantum mechanicsSCATTERINGWave vectorResilience (materials science)Singlet stateENTANGLEMENT
researchProduct

When Casimir meets Kibble–Zurek

2012

Verification of the dynamical Casimir effect (DCE) in optical systems is still elusive due to the very demanding requirements for its experimental implementation. This typically requires very fast changes in the boundary conditions of the problem. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way for an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral properties of the emitted radiation reflect the critical nature of the system an…

Quantum phase transitionElectromagnetic fieldPhysicsPhotonCritical phenomenadynamical casimir effect cavity QEDCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCasimir effectQuantum mechanicsAtomBoundary value problemMathematical PhysicsBoson
researchProduct

Supervised learning of time-independent Hamiltonians for gate design

2018

We present a general framework to tackle the problem of finding time-independent dynamics generating target unitary evolutions. We show that this problem is equivalently stated as a set of conditions over the spectrum of the time-independent gate generator, thus transforming the task to an inverse eigenvalue problem. We illustrate our methodology by identifying suitable time-independent generators implementing Toffoli and Fredkin gates without the need for ancillae or effective evolutions. We show how the same conditions can be used to solve the problem numerically, via supervised learning techniques. In turn, this allows us to solve problems that are not amenable, in general, to direct ana…

Theoretical computer scienceDiagonalFOS: Physical sciencesGeneral Physics and AstronomyInverseToffoli gate02 engineering and technologysupervised learning01 natural sciencesUnitary statequantum computingSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Computer Science::Hardware Architecturesymbols.namesakeComputer Science::Emerging Technologiesquant-ph020204 information systems0103 physical sciences0202 electrical engineering electronic engineering information engineering010306 general physicsEigenvalues and eigenvectorsQuantum computerMathematicsPhysicsFlexibility (engineering)Discrete mathematicsQuantum PhysicsSupervised learningInverse problemHermitian matrixmachine learningQubitsymbolsPairwise comparisonquantum circuitsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Generator (mathematics)Quantum Information and Measurement (QIM) V: Quantum Technologies
researchProduct

Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model

2015

We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.

Quantum phase transitionPhysicsPhase transitionQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)General Physics and AstronomyFOS: Physical sciencesNanotechnologyOptimal controlSettore FIS/03 - Fisica Della Materiashortcut to adiabaticity Lipkin-Meshkov-Glick Model many body hamiltoniansymbols.namesakesymbolsStatistical physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)QuantumShortcut to adiabaticity in the Lipkin-Meshkov-Glick modelCondensed Matter - Statistical Mechanics
researchProduct

The role of environmental correlations in the non-Markovian dynamics of a spin system

2011

We put forward a framework to study the dynamics of a chain of interacting quantum particles affected by individual or collective multi-mode environment, focussing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environmental system magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as entanglement and purity that are not observed under a separable multi-mode environment. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.

PhysicsQuantum discordQuantum PhysicsQuantum dynamicsFOS: Physical sciencesCIRCUITQuantum entanglementRESONANCESettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQuantum technologyOpen quantum systemQuantum processQuantum mechanicsCAVITYStatistical physicsQuantum Physics (quant-ph)Quantum dissipationAmplitude damping channel
researchProduct

Entanglement generation and protection by detuning modulation

2006

We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.

PhysicsQuantum PhysicsQuantum discordCavity quantum electrodynamicsSENSITIVE POPULATION DECAYFOS: Physical sciencesTheoryofComputation_GENERALSPONTANEOUS EMISSIONQuantum PhysicsQuantum entanglementTopologyAtomic and Molecular Physics and Optics2-ATOM DICKE-MODELPostselectionQuantum mechanicsQubitDECOHERENCE-FREE SUBSPACESW stateQuantum Physics (quant-ph)Amplitude damping channelBAND SQUEEZED VACUUMQuantum teleportationPhysical Review A
researchProduct

Optomechanical to mechanical entanglement transformation

2008

We present a scheme for generating entanglement between two mechanical oscillators that have never interacted with each other by using an entanglement-swapping protocol. The system under study consists of a Michelson-Morley interferometer comprising mechanical systems embodied by two cantilevers. Each of them is coupled to a field mode via the radiation pressure mechanism. Entanglement between the two mechanical systems is set by measuring the output modes of the interferometer. We also propose a control mechanism for the amount of entanglement based on path-length difference between the two arms. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

PhysicsCantileverField (physics)General Physics and AstronomyQuantum PhysicsQuantum entanglementMOVING MIRRORMICROMIRRORoptomechanical syetems quantum optics quantum information theoryMOVABLE MIRRORSMechanism (engineering)Mechanical systemInterferometryTransformation (function)Classical mechanicsRadiation pressureQuantum mechanicsRADIATION-PRESSURECAVITYNew Journal of Physics
researchProduct

Ultrafast critical ground state preparation via bang-bang protocols

2020

The fast and faithful preparation of the ground state of quantum systems is a challenging task but crucial for several applications in the realm of quantum-based technologies. Decoherence poses a limit to the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in critical systems, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard opti…

Quantum phase transitionQuantum decoherenceGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Topology01 natural sciences010305 fluids & plasmasquantum optimal protocols/dk/atira/pure/subjectarea/asjc/31000103 physical sciencesQuantum information010306 general physicsAdiabatic processQuantumPhysicsquantum phase transitionsQuantum PhysicsTime evolutionOptimal controlquantum control quantum optimal protocols quantum phase transitionsQuantum Gases (cond-mat.quant-gas)Ground statequantum controlQuantum Physics (quant-ph)Condensed Matter - Quantum Gases
researchProduct

Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks

2019

The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in p…

qudit statesPhotonLightComputer scienceFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesSettore FIS/03 - Fisica Della MateriaDegrees of freedom (mechanics)symbols.namesakeQuantum statequantum information0103 physical sciencesquantum walksphotonsQuantum walkStatistical physics010306 general physicsQuantum information scienceQuantumQuantum computerQuantum PhysicsQuantum opticsHilbert spacequatum walks; qudit states; photonsQuantum computersQuantum technologysymbolsQuantum Physics (quant-ph)quatum walks
researchProduct

Role of information backflow in the emergence of quantum Darwinism

2019

Quantum Darwinism attempts to explain the emergence of objective reality of the state of a quantum system in terms of redundant information about the system acquired by independent non interacting fragments of the environment. The consideration of interacting environmental elements gives rise to a rich phenomenology, including the occurrence of non-Markovian features, whose effects on objectification {\it a' la} quantum Darwinism needs to be fully understood. We study a model of local interaction between a simple quantum system and a multi-mode environment that allows for a clear investigation of the interplay between information trapping and propagation in the environment and the emergence…

Physics[PHYS]Physics [physics]---Quantum PhysicsQuantum channels Quantum correlations in quantum information Quantum Information Quantum Darwinism/dk/atira/pure/subjectarea/asjc/3100/3107FOS: Physical sciencesQuantum Darwinism01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasTheoretical physics0103 physical sciencesQuantum systemObjectification010306 general physicsQuantum Physics (quant-ph)Phenomenology (particle physics)
researchProduct

Dynamical entanglement-transfer for quantum information networks

2004

A key element in the architecture of a quantum information processing network is a reliable physical interface between fields and qubits. We study a process of entanglement transfer engineering, where two remote qubits respectively interact with entangled two-mode continuous variable (CV) field. We quantify the entanglement induced in the qubit state at the expenses of the loss of entanglement in the CV system. We discuss the range of mixed entangled states which can be obtained with this set-up. Furthermore, we suggest a protocol to determine the residual entangling power of the light fields, inferring, thus, the entanglement left in the field modes which, after the interaction, are no lon…

PhysicsBell stateQuantum PhysicsQuantum information; Entanglement; Cavity QED; Josephson devicesQuantum informationCondensed Matter - Mesoscale and Nanoscale PhysicsCluster stateJosephson devicesFOS: Physical sciencesTheoryofComputation_GENERALCavity QEDQuantum entanglementQuantum PhysicsSquashed entanglementMultipartite entanglementAtomic and Molecular Physics and OpticsEntanglementQuantum mechanicsQubitMesoscale and Nanoscale Physics (cond-mat.mes-hall)Statistical physicsW stateQuantum informationQuantum Physics (quant-ph)
researchProduct

Competition between memory-keeping and memory-erasing decoherence channels

2014

We study the competing effects of simultaneous Markovian and non-Markovian decoherence mechanisms acting on a single spin. We show the existence of a threshold in the relative strength of such mechanisms above which the spin dynamics becomes fully Markovian, as revealed by the use of several non-Markovianity measures. We identify a measure-dependent nested structure of such thresholds, hinting at a causality relationship among the various non-Markovianity witnesses used in our analysis. Our considerations are then used to argue the unavoidably non-Markovian evolution of a single-electron quantum dot exposed to both intrinsic and Markovian technical noise, the latter of arbitrary strength. 

Quantum decoherenceNON-MARKOVIAN DYNAMICSMarkov processFOS: Physical sciencesRelative strengthSPINS01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasCausality (physics)symbols.namesakeSYSTEMSQuantum mechanics0103 physical sciencesStatistical physicsQuantum information010306 general physicsSpin-½PhysicsQuantum Physics/dk/atira/pure/subjectarea/asjc/3100/3107Atomic and Molecular Physics and OpticsQuantum dotsymbolsSEMICONDUCTOR QUANTUM DOTSQuantum Physics (quant-ph)
researchProduct

Quantum state engineering using one-dimensional discrete-time quantum walks

2017

Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin, and providing …

Angular momentumComputer scienceQuantum dynamicsQuantum technologiesFOS: Physical sciencesQuantum simulator02 engineering and technologyTopologySpace (mathematics)01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Open quantum systemQuantum statequantum informationQuantum mechanics0103 physical sciencesExperimental platformquantum walksQuantum walk010306 general physicsPhysicsQuantum networkQuantum PhysicsHigh-dimensional systemsQuantum state preparationbusiness.industryOrbital angular momentumQuantum-state engineeringArbitrary superpositionOne-way quantum computer021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsArbitrary quantum stateQuantum technologyDiscrete time and continuous timeLine (geometry)PhotonicsQuantum Physics (quant-ph)0210 nano-technologybusiness
researchProduct

Photon Production from the Vacuum Close to the Superradiant Transition: Linking the Dynamical Casimir Effect to the Kibble-Zurek Mechanism

2012

The dynamical Casimir effect (DCE) predicts the generation of photons from the vacuum due to the parametric amplification of the quantum fluctuations of an electromagnetic field. The verification of such an effect is still elusive in optical systems due to the very demanding requirements of its experimental implementation. We show that an ensemble of two-level atoms collectively coupled to the electromagnetic field of a cavity, driven at low frequencies and close to a quantum phase transition, stimulates the production of photons from the vacuum. This paves the way to an effective simulation of the DCE through a mechanism that has recently found experimental demonstration. The spectral prop…

Quantum phase transitionKibble-Zurek mechanismElectromagnetic fieldPhysicsPhotonCavity quantum electrodynamicsGeneral Physics and AstronomyDynamical Casimir Effect Cold Atoms Cavity QEDRadiation01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasCasimir effectQuantum mechanics0103 physical sciences010306 general physicsQuantum fluctuation
researchProduct

Reducing quantum control for spin - spin entanglement distribution.

2009

We present a protocol that sets maximum stationary entanglement between remote spins through scattering of mobile mediators without initialization, post-selection or feedback of the mediators' state. No time-resolved tuning is needed and, counterintuitively, the protocol generates two-qubit singlet states even when classical mediators are used. The mechanism responsible for such effect is resilient against non-optimal coupling strengths and dephasing affecting the spins. The scheme uses itinerant particles and scattering centres and can be implemented in various settings. When quantum dots and photons are used a striking result is found: injection of classical mediators, rather than quantum…

PhysicsQuantum PhysicsPhotonCondensed Matter - Mesoscale and Nanoscale PhysicsSpinsDephasingquantum information theory transport in mesoscopic systemsFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementQuantum dotQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Singlet stateQuantum Physics (quant-ph)QuantumSpin-½
researchProduct

A deeper insight into quantum state transfer from an information flux viewpoint

2008

We use the recently introduced concept of information flux in a many-body register in order to give an alternative viewpoint on quantum state transfer in linear chains of many spins.

PhysicsQuantum PhysicsPhysics and Astronomy (miscellaneous)SpinsOrder (business)quantum information theoryQuantum mechanicsQuantum state transferFOS: Physical sciencesFluxMathematics::Metric GeometryQuantum Physics (quant-ph)
researchProduct

Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit-qudit dynamics

2020

The generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies. Achieving such non-classical high-dimensional resources will potentially unlock enhanced capabilities for quantum cryptography, communication and computation. We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based {\it transfer \& accumulate} mechanism involving coin and walker degrees of freedom. The choice of investigating quantum walks is motivated by their generality and versatility, complemented by their successful implementation in several physical systems. Hence, given t…

Physical systemGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementPhysics and Astronomy(all)Topology01 natural sciences010305 fluids & plasmasquantum information/dk/atira/pure/subjectarea/asjc/31000103 physical sciencesquantum walksQuantum walkentanglement accumulationQuantum information010306 general physicsQuantumPhysicsQuantum Physicsentanglement accumulation; entanglement transfer; high-dimensional entanglement; quantum walksTheoryofComputation_GENERALentanglement transferQuantum technologyQuantum cryptographyQubitentanglement transfer; entanglement accumulation; high-dimensional entanglement; quantum walksQuantum Physics (quant-ph)entanglementhigh-dimensional entanglement
researchProduct

Rising time of entanglement between scattering spins,

2009

We investigate the time evolution of entanglement in a process where a mobile particle is scattered by static spins. We show that entanglement increases monotonically during a transient and then saturates to a steady-state value. For a quasi-monochromatic mobile particle, the transient time depends only on the group-velocity and width of the incoming wavepacket and is insensitive to the interaction strength and spin-number of the scattering particles. These features do not depend on the interaction model and can be seen in various physical settings.

PhysicsQuantum Physicsquantum information theory transport in mesoscopic structuresSpinsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringWave packetTime evolutionFOS: Physical sciencesQuantum entanglementCondensed Matter PhysicsSpin quantum numberElectronic Optical and Magnetic MaterialsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)ParticleGroup velocityQuantum Physics (quant-ph)
researchProduct

Landauer’s Principle in Multipartite Open Quantum System Dynamics

2015

We investigate the link between information and thermodynamics embodied by Landauer's principle in the open dynamics of a multipartite quantum system. Such irreversible dynamics is described in terms of a collisional model with a finite temperature reservoir. We demonstrate that Landauer's principle holds, for such a configuration, in a form that involves the flow of heat dissipated into the environment and the rate of change of the entropy of the system. Quite remarkably, such a principle for {\it heat and entropy power} can be explicitly linked to the rate of creation of correlations among the elements of the multipartite system and, in turn, the non-Markovian nature of their reduced evol…

PhysicsQuantum PhysicsQuantum decoherenceCondensed Matter - Mesoscale and Nanoscale PhysicsStatistical Mechanics (cond-mat.stat-mech)Open Quantum System DynamicsFOS: Physical sciencesGeneral Physics and AstronomyLandauer's principle01 natural sciences010305 fluids & plasmasPhysics and Astronomy (all)Open quantum systemMultipartiteLandauer's Principle in MultipartiteClassical mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesQuantum systemQuantum informationQuantum Physics (quant-ph)010306 general physicsQuantum statistical mechanicsCondensed Matter - Statistical MechanicsPhysical Review Letters
researchProduct

Accumulation of entanglement in a continuous variable memory

2007

We study the accumulation of entanglement in a memory device built out of two continuous variable (CV) systems. We address the case of a qubit mediating an indirect joint interaction between the CV systems. We show that, in striking contrast with respect to registers built out of bidimensional Hilbert spaces, entanglement superior to a single ebit can be efficiently accumulated in the memory, even though no entangled resource is used. We study the protocol in an immediately implementable setup, assessing the effects of the main imperfections.

PhysicsQuantum PhysicsQuantum discordGeneral Physics and AstronomyFOS: Physical sciencesMASERQuantum PhysicsQuantum capacityQuantum entanglementTopologyCondensed Matter - Other Condensed MatterPOVMSTATESQuantum stateQuantum mechanicsQubitQuantum convolutional code2 CAVITIESAmplitude damping channelQuantum Physics (quant-ph)QUANTUMTELEPORTATIONOther Condensed Matter (cond-mat.other)
researchProduct

Hybrid optomechanics for Quantum Technologies

2014

We review the physics of hybrid optomechanical systems consisting of a mechanical oscillator interacting with both a radiation mode and an additional matter-like system. We concentrate on the cases embodied by either a single or a multi-atom system (a Bose-Einstein condensate, in particular) and discuss a wide range of physical effects, from passive mechanical cooling to the set-up of multipartite entanglement, from optomechanical non-locality to the achievement of non-classical states of a single mechanical mode. The reviewed material showcases the viability of hybridised cavity optomechanical systems as basic building blocks for quantum communication networks and quantum state-engineering…

Physicsquantum technologiesQuantum PhysicsTechnologyCondensed Matter - Mesoscale and Nanoscale PhysicsThybrid quantum mechanicsFOS: Physical sciencesPhysics::Opticsquantum optomechanics7. Clean energyEngineering physicsSettore FIS/03 - Fisica Della MateriaQuantum technologyquantum state engineeringMesoscale and Nanoscale Physics (cond-mat.mes-hall)quantum communicationQuantum Physics (quant-ph)Quantum information scienceQuantum state engineeringOptomechanics
researchProduct

Geometrical characterization of non-Markovianity

2013

We introduce a new tool for the quantitative characterisation of the departure form Markovianity of a given dynamical process. Our tool can be applied to a generic $N$-level system and extended straightforwardly to Gaussian continuous-variable systems. It is linked to the change of the volume of physical states that are dynamically accessible to a system and provides qualitative expectations in agreement with some of the analogous tools proposed so far. We illustrate its prediticve power by tackling a few canonical examples.

PhysicsQuantum PhysicsN-LEVEL SYSTEMSQuantum decoherenceGaussianProcess (computing)FOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCharacterization (materials science)DYNAMICAL SEMIGROUPSsymbols.namesakeN-LEVEL SYSTEMS; DYNAMICAL SEMIGROUPSMeasurement theorysymbolsStatistical physicsQuantum Physics (quant-ph)
researchProduct

Geometric-phase backaction in a mesoscopic qubit-oscillator system

2012

We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro- and nanomechanical devices coupled to an effective two-level system. © 2012 American Physical Society.

Quantum phase transitionPhysicsNANOMECHANICAL RESONATOR; BACK-ACTION; QUANTUM; OPTOMECHANICS; MECHANICS; EVOLUTION; MODEAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaPhase qubitOptical phase spaceClassical mechanicsGeometric phaseQuantum harmonic oscillatorPhase spaceQubitQuantum mechanicsGeometric phases atomic physics quantum interferometryHarmonic oscillator
researchProduct

Machine Learning-Based Classification of Vector Vortex Beams.

2020

Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the non-trivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods -- namely convolutional neural networks and principal component analysis -- to recognize and classify specific polarization patterns. O…

Angular momentumComputer sciencequantum opticquanutm informationphotonicsPrincipal component analysisGeneral Physics and AstronomyFOS: Physical sciencesMachine learningcomputer.software_genre01 natural sciencesConvolutional neural networkSettore FIS/03 - Fisica Della Materiaquant-phPolarization0103 physical sciencesQuantum walk010306 general physicsQuantum opticsorbital angular momentum; machine learning; vector vortex beamsQuantum PhysicsQuantum opticsbusiness.industryVortex flowOptical polarizationVectorsVortexmachine learningConvolutional neural networksArtificial intelligencePhotonicsbusinessQuantum Physics (quant-ph)computerStructured lightPhysical review letters
researchProduct

Dynamical learning of a photonics quantum-state engineering process

2021

Abstract. Experimental engineering of high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of the noisy experimental apparatus is required to apply existing quantum-state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. We implement, experimentally, an automated adaptive optimization protocol to engineer photonic orbital angular momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determine…

/dk/atira/pure/subjectarea/asjc/2200/2204/dk/atira/pure/subjectarea/asjc/2500/2504Biomedical EngineeringphotonicsFOS: Physical sciencesquantum mechanicSettore FIS/03 - Fisica Della MateriaQuantum walkquantum informationquantum state engineeringqunatum informationblack-box optimizationQuantum Physicsquantum information; orbital angular momentum; black-box optimization; quantum state engineering; photonics/dk/atira/pure/subjectarea/asjc/3100/3107Orbital angular momentumState engineeringGeneral MedicineAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAlgorithmmachine learningorbital angular momentumBlack-box optimizationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsAdvanced Photonics
researchProduct

Transitionless quantum driving in open quantum systems

2014

Abstract We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.

PhysicsDDC 530 / PhysicsGeneral Physics and Astronomyquantum control; quantum open system; superadiabatic dynamics; Physics and Astronomy (all)Physics and Astronomy(all)Settore FIS/03 - Fisica Della Materiasuperadiabatic dynamicsQuantum SystemsPhysics and Astronomy (all)Formalism (philosophy of mathematics)Classical mechanics/dk/atira/pure/subjectarea/asjc/3100quantum open systemMaster equationtransitionless quantum driving adiabatic theorem optima control open quantum systemddc:530quantum controlQuantumQuantenmechanisches System
researchProduct

Entanglement between two superconducting qubits via interaction with nonclassical radiation

2003

We propose a scheme to physically interface superconducting nano-circuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a non-classical state of a continuous-variable system to a pair of superconducting charge qubits. This set-up is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.

PhysicsQuantum PhysicsBell stateNonlinear opticsQuantum informationCondensed Matter - Mesoscale and Nanoscale PhysicsCluster stateQuantum information; Josehson devices; Cavity QED; Nonlinear opticsFOS: Physical sciencesTheoryofComputation_GENERALCavity QEDQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsComputer Science::Emerging TechnologiesQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Josehson devicesQuantum informationW stateQuantum Physics (quant-ph)Superconducting quantum computingEntanglement distillationQuantum teleportationPhysical Review B
researchProduct

Approximate supervised learning of quantum gates via ancillary qubits

2018

We present strategies for the training of a qubit network aimed at the ancilla-assisted synthesis of multi-qubit gates based on a set of restricted resources. By assuming the availability of only time-independent single and two-qubit interactions, we introduce and describe a supervised learning strategy implemented through momentum-stochastic gradient descent with automatic differentiation methods. We demonstrate the effectiveness of the scheme by discussing the implementation of non-trivial three qubit operations, including a Quantum Fourier Transform (QFT) and a half-adder gate.

Theoretical computer sciencePhysics and Astronomy (miscellaneous)Computer scienceSupervised learningQuantum Physicsquantum-computation01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Quantum-informationComputer Science::Emerging TechnologiesQuantum gatemachine learningquantum informationQubit0103 physical sciences/dk/atira/pure/subjectarea/asjc/3100/3101Hardware_ARITHMETICANDLOGICSTRUCTURESQuantum informationquantum-gates010306 general physicsQuantum computer
researchProduct

Structural change in multipartite entanglement sharing: a random matrix approach

2010

We study the typical entanglement properties of a system comprising two independent qubit environments interacting via a shuttling ancilla. The initial preparation of the environments is modeled using random-matrix techniques. The entanglement measure used in our study is then averaged over many histories of randomly prepared environmental states. Under a Heisenberg interaction model, the average entanglement between the ancilla and one of the environments remains constant, regardless of the preparation of the latter and the details of the interaction. We also show that, upon suitable kinematic and dynamical changes in the ancilla-environment subsystems, the entanglement-sharing structure u…

PhysicsQuantum PhysicsQuantum decoherencequantum information theory open quantum systemsFOS: Physical sciencesQuantum entanglementQuantum PhysicsSquashed entanglementMultipartite entanglementAtomic and Molecular Physics and OpticsQuantum mechanicsQubitStatistical physicsW stateQuantum Physics (quant-ph)Random matrixRandomness
researchProduct

Cold-Atom-Induced Control of an Optomechanical Device

2010

We consider a cavity with a vibrating end mirror and coupled to a Bose-Einstein condensate. The cavity field mediates the interplay between mirror and collective oscillations of the atomic density. We study the implications of this dynamics and the possibility of an indirect diagnostic. Our predictions can be observed in a realistic setup that is central to the current quest for mesoscopic quantumness.

Field (physics)General Physics and AstronomyFOS: Physical sciencesQuantum entanglementPhysics and Astronomy(all)01 natural sciences010305 fluids & plasmaslaw.invention/dk/atira/pure/subjectarea/asjc/3100lawUltracold atomQuantum mechanics0103 physical sciencesCold Atoms nanodevices entanglement open systemsQuantum information010306 general physicsPhysicsCondensed Matter::Quantum GasesMesoscopic physicsQuantum PhysicsCavity quantum electrodynamicsNonlinear opticsQuantum Gases (cond-mat.quant-gas)Physics::Accelerator PhysicsAtomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Bose–Einstein condensate
researchProduct

Non-classicality of optomechanical devices in experimentally realistic operating regimes

2013

Enforcing a non-classical behavior in mesoscopic systems is important for the study of the boundaries between quantum and classical world. Recent experiments have shown that optomechanical devices are promising candidates to pursue such investigations. Here we consider two different setups where the indirect coupling between a three-level atom and the movable mirrors of a cavity is achieved. The resulting dynamics is able to conditionally prepare a non-classical state of the mirrors by means of projective measurements operated over a pure state of the atomic system. The non-classical features are persistent against incoherent thermal preparation of the mechanical systems and their dissipati…

PhysicsQuantum PhysicsMesoscopic physicsQuantum decoherencequantum optomechanical systems entanglement open quantum systems mesoscopic quantum systemsCavity quantum electrodynamicsFOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsMechanical systemChemical couplingQuantum mechanicsThermalAtomQuantum Physics (quant-ph)Quantum
researchProduct

Anti-Zeno-based dynamical control of the unfolding of quantum Darwinism

2020

We combine the collisional picture for open system dynamics and the control of the rate of decoherence provided by the quantum (anti-)Zeno effect to illustrate the temporal unfolding of the redundant encoding of information into a multipartite environment that is at the basis of Quantum Darwinism, and to control it. The rate at which such encoding occurs can be enhanced or suppressed by tuning the dynamical conditions of system-environment interaction in a suitable and remarkably simple manner. This would help the design of a new generation of quantum experiments addressing the elusive phenomenology of Quantum Darwinism and thus its characterization.

Physics---Quantum PhysicsQuantum decoherenceFOS: Physical sciencesPhysics and Astronomy(all)Quantum DarwinismOpen system (systems theory)Settore FIS/03 - Fisica Della MateriaMultipartiteopen quantum system quantum darwinism collision models zeno effectClassical mechanics/dk/atira/pure/subjectarea/asjc/3100Zeno's paradoxesQuantum Physics (quant-ph)Phenomenology (particle physics)QuantumQuantum Zeno effect
researchProduct

Information-flux approach to multiple-spin dynamics

2007

We introduce and formalize the concept of information flux in a many-body register as the influence that the dynamics of a specific element receive from any other element of the register. By quantifying the information flux in a protocol, we can design the most appropriate initial state of the system and, noticeably, the distribution of coupling strengths among the parts of the register itself. The intuitive nature of this tool and its flexibility, which allow for easily manageable numerical approaches when analytic expressions are not straightforward, are greatly useful in interacting many-body systems such as quantum spin chains. We illustrate the use of this concept in quantum cloning an…

PhysicsUNIVERSALQuantum networkQuantum PhysicsQuantum dynamicsFOS: Physical sciencesQuantum channelMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterOpen quantum systemQUANTUM CLONINGQuantum processQuantum mechanicsSTATE TRANSFERStatistical physicsCHAINSQuantum informationQuantum cloningQuantum information scienceQuantum Physics (quant-ph)Mathematical PhysicsOther Condensed Matter (cond-mat.other)
researchProduct

Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction

2014

We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field…

Josephson effectDe factoAtomic systemPopulationFOS: Physical sciences-01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionsymbols.namesakequant-phlawQuantum mechanics0103 physical sciences:Science::Physics::Atomic physics::Quantum theory [DRNTU]010306 general physicseducationQuantumCondensed Matter::Quantum GasesPhysicsQuantum Physicseducation.field_of_studyCondensed Matter::OtherEstimation theoryAtomic and Molecular Physics and OpticsQuantum Gases (cond-mat.quant-gas)Optical cavitysymbolsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)cond-mat.quant-gasPhysical Review A
researchProduct

Probing mechanical quantum coherence with an ultracold-atom meter

2011

We propose a scheme to probe quantum coherence in the state of a nano-cantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and it is thus suitable for a continuous detection of the cantilever'…

Angular momentumCantileverRadiation-pressureResonatorNanocantileverFOS: Physical sciences01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmaslaw.inventionSpinlawUltracold atomQuantum mechanics0103 physical sciencesMicromirrorOptical cavity010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsQuantum PhysicsBose-Einstein condensateCondensed Matter::OtherCavity quantum electrodynamicsBose Einstein Condensate Atomic physics quantum measurementOptomechanicsAtomic and Molecular Physics and OpticsComputer Science::OtherDynamicsQuantum Gases (cond-mat.quant-gas)Quantum Physics (quant-ph)Condensed Matter - Quantum GasesStateBose–Einstein condensateCoherence (physics)Physical Review A
researchProduct

Entanglement control in hybrid optomechanical systems

2012

We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.

Condensed Matter::Quantum GasesPulsed laserPhysicsQuantum PhysicsMesoscopic physicsbusiness.industryFOS: Physical sciencesPhysics::OpticsQuantum entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticslaw.inventionOpticsQuantum Gases (cond-mat.quant-gas)lawOptical cavityquantum control optomechanical systems cavity QEDOptoelectronicsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesbusinessLaser lightPhysical Review A
researchProduct

Extraction of Singlet States from Noninteracting High-Dimensional Spins

2008

We present a scheme for the extraction of singlet states of two remote particles of arbitrary quantum spin number. The goal is achieved through post-selection of the state of interaction mediators sent in succession. A small number of iterations is sufficient to make the scheme effective. We propose two suitable experimental setups where the protocol can be implemented.

FABRY-PEROT-INTERFEROMETERPhysicsQuantum PhysicsSpinsScatteringSmall numberExtraction (chemistry)entanglement generation; quantum map; scatteringCavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and AstronomyState (functional analysis)Quantum mechanicsSCATTERINGSinglet stateQuantum Physics (quant-ph)Quantum information scienceentanglement generationquantum mapQUANTUMENTANGLEMENT
researchProduct

Regression of high-dimensional angular momentum states of light

2023

The Orbital Angular Momentum (OAM) of light is an infinite-dimensional degree of freedom of light with several applications in both classical and quantum optics. However, to fully take advantage of the potential of OAM states, reliable detection platforms to characterize generated states in experimental conditions are needed. Here, we present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce. To obviate issues arising from intrinsic symmetry of Laguerre-Gauss modes, we employ a pair of intensity profiles per state projecting it only on two distinct bases, showing how this allows to uniquely recover input states from the collect…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Machine Learningphotonicquantum opticFOS: Physical sciencesGeneral Physics and Astronomyorbital angular momentum of lightSettore FIS/03 - Fisica Della MateriaMachine Learning (cs.LG)machine learningquantum informationQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsPhysical Review Research
researchProduct

Entanglement generation between two spin-s magnetic impurities in a solid via electron scattering

2009

Abstract We present a scheme for generating entanglement between two magnetic impurities in a solid-state system via electron scattering. The scheme applies to impurities of arbitrary quantum spin number. We show that resonance conditions yield generation of a maximally entangled state of the impurities' spins, regardless of the value of the electron–impurity coupling constant and the impurity spin quantum number. The mechanism behind the scheme is explained in terms of resonance-induced selection rules.

Coupling constantPhysicsCondensed matter physicsquantum information theory transport in mesoscopic systemsSpin engineeringGeneral ChemistryQuantum entanglementCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsQuantum numberSpin quantum numberCondensed Matter::SuperconductivityQubitCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceQuantum informationSpin (physics)
researchProduct

Quantum state transfer in imperfect artificial spin networks

2005

High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbors coupling is no more valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how pre-engineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.

PhysicsQuantum opticsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesQuantum numberAtomic and Molecular Physics and OpticsQubitQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin networkQuantum information scienceSuperconducting quantum computingQuantum Physics (quant-ph)Quantum computerSpin-½
researchProduct

Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes

2021

Abstract The orbital angular momentum (OAM) of light has been at the center of several classical and quantum applications for imaging, information processing and communication. However, the complex structure inherent in OAM states makes their detection and classification nontrivial in many circumstances. Most of the current detection schemes are based on models of the OAM states built upon the use of Laguerre–Gauss (LG) modes. However, this may not in general be sufficient to capture full information on the generated states. In this paper, we go beyond the LG assumption, and employ hypergeometric-Gaussian (HyGG) modes as the basis states of a refined model that can be used—in certain scenar…

PhysicsPaperAngular momentumQuantum PhysicsLaguerre–Gaussian modehypergeometric-Gaussian modeGeneral Physics and AstronomyPhysics::OpticsFOS: Physical sciencesSettore FIS/03 - Fisica Della Materiamachine learningorbital angular momentumQuantum mechanicsvector vortex beamOrbital angular momentum machine learning vector vortex beam Laguerre–Gaussian mode hypergeometric-Gaussian modeorbital angular momentum; machine learning; vector vortex beam; Laguerre-Gaussian mode; hypergeometric-Gaussian modeQuantum Physics (quant-ph)QuantumLaguerre-Gaussian modePhysics - OpticsOptics (physics.optics)
researchProduct

Controllable Gaussian-Qubit Interface for Extremal Quantum State Engineering

2010

We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.

PhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Cluster stateGaussianFOS: Physical sciencesGeneral Physics and AstronomyQuantum PhysicsQuantum entanglementMultipartite entanglementsymbols.namesakeQubitQuantum mechanicssymbolsW stateQuantum Physics (quant-ph)Condensed Matter - Statistical MechanicsQuantum teleportationPeres–Horodecki criterion
researchProduct

Entanglement detection in hybrid optomechanical systems

2011

We study a device formed by a Bose Einstein condensate (BEC) coupled to the field of a cavity with a moving end-mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.

Field (physics)FOS: Physical sciencesQuantum entanglementSquashed entanglement01 natural sciences010305 fluids & plasmaslaw.inventionlawQuantum mechanics0103 physical sciencesPoint (geometry)010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsQuantum PhysicsHybrid deviceCondensed Matter::OtherQuantum PhysicsAtomic and Molecular Physics and OpticsBose Einstein Condensate entanglement mesoscopic systemsQuantum Gases (cond-mat.quant-gas)BOSE-EINSTEIN CONDENSATE; OPTICAL CAVITYQuantum Physics (quant-ph)Condensed Matter - Quantum GasesBose–Einstein condensatePhysical Review A
researchProduct

Programmable linear quantum networks with a multimode fibre

2019

Reconfigurable quantum circuits are fundamental building blocks for the implementation of scalable quantum technologies. Their implementation has been pursued in linear optics through the engineering of sophisticated interferometers. While such optical networks have been successful in demonstrating the control of small-scale quantum circuits, scaling up to larger dimensions poses significant challenges. Here, we demonstrate a potentially scalable route towards reconfigurable optical networks based on the use of a multimode fibre and advanced wavefront-shaping techniques. We program networks involving spatial and polarisation modes of the fibre and experimentally validate the accuracy and ro…

Computer sciencequantum opticPhysics::OpticsFOS: Physical sciences02 engineering and technology01 natural sciencesSettore FIS/03 - Fisica Della Materia010309 opticsQuantum stateRobustness (computer science)quantum information0103 physical sciencesElectronic engineeringQuantumlinear opticsWavefrontQuantum networkQuantum PhysicsReconfigurability021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyScalability0210 nano-technologyQuantum Physics (quant-ph)Optics (physics.optics)Physics - OpticsNature Photonics
researchProduct

Tuning non-Markovianity by spin-dynamics control

2013

We study the interplay between forgetful and memory-keeping evolution enforced on a two-level system by a multi-spin environment whose elements are coupled to local bosonic baths. Contrarily to the expectation that any non-Markovian effect would be buried by the forgetful mechanism induced by the spin-bath coupling, one can actually induce a full Markovian-to-non-Markovian transition of the two-level system's dynamics, controllable by parameters such as the mismatch between the energy of the two-level system and of the spin environment. For a symmetric coupling, the amount of non-Markovianity surprisingly grows with the number of decoherence channels.

PhysicsQuantum PhysicsQuantum decoherenceSpin dynamicsCondensed matter physicsFOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCoupling (physics)Quantum mechanicsQuantum open sytem markovianitySymmetric couplingQuantum informationQuantum Physics (quant-ph)Quantum statistical mechanicsControl (linguistics)Spin-½
researchProduct

Reading a Qubit Quantum State with a Quantum Meter: Time Unfolding of Quantum Darwinism and Quantum Information Flux

2019

Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.

Statistics and ProbabilityPhysicsReading (computer)FluxStatistical and Nonlinear PhysicsQuantum Darwinism01 natural sciencesSettore FIS/03 - Fisica Della Materiaquantum non-Markovianity010305 fluids & plasmasQuantum stateQuantum mechanicsQubit0103 physical sciencesQuantum DarwinismQuantum systemcollision modelQuantum information010306 general physicsdecoherenceQuantumMathematical Physics
researchProduct