0000000000142885
AUTHOR
Massimo Gurioli
Reduction of the internal electric field in GaN/AlN quantum dots grown on the a ‐plane of SiC substrates
We present a study of the emission of a multi-layer stack of self-assembled GaN/AlN quantum dots grown on the a -plane of 6H-SiC. We look for signatures of the internal electric field in the power dependence of the time-integrated and time-resolved photoluminescence spectra. The lack of a dynamical red-shift reveals that internal electric fields are significantly reduced in these dots. A band on the low energy side of the emission is observed whose intensity quenches fast when increasing the temperature. The polarization selection rules of the emission are examined in order to determine the physical nature of this band. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Dielectric Microspheres: Quantum Dots Luminescence Collection Enhancement and Nanoscopy by Dielectric Microspheres (Part. Part. Syst. Charact. 1/2020)
Resonant rayleigh scattering in semiconductor structures
A detailed study of the relative role played by localized and/or propagating intermediate excitonic states in, resonant Rayleigh scattering (RRS) is presented for a large set of GaAs quantum well (QW) and bulk structures. We show that the two kinds of states contribute to RRS through different mechanisms. We concluded that RRS occurs via localized states in QW heterostructures, very likely due to localization by the interface roughness, while bulk, crystals turn out to be better candidates for RRS via propagating states.
Magneto-optical Investigations of Nanostructured Materials Based on Single Molecule Magnets Monitor Strong Environmental Effects
The determination of the magnetic properties of molecular magnets in environments similar to those used in spintronic devices is fundamental for the development of applications. Single-molecule magnets (SMMs) are molecular cluster systems that display magnetic hysteresis of dynamical origin at low temperature. As they behave like perfectly monodisperse nanomagnets and show clear macroscopic quantum effects in their magnetic properties, they are extremely appealing candidates for the forthcoming generation of molecular devices: they have been proposed as efficient systems for quantum computation, ultra-high-density magnetic recording media, and molecular spintronic systems. These attractive …
Single photon emission from impurity centers in AlGaAs epilayers on Ge and Si substrates
We show that the epitaxial growth of thin layers of AlGaAs on Ge and Si substrates allows to obtain single photon sources by exploiting the sparse and unintentional contamination with acceptors of the AlGaAs. Very bright and sharp single photoluminescence lines are observed in confocal microscopy. These lines behave very much as single excitons in quantum dots, but their implementation is by far much easier, since it does not require 3D nucleation. The photon antibunching is demonstrated by time resolved Hanbury Brown and Twiss measurements.
Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas
We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…
Elastic light scattering from semiconductor structures: Localized versus propagating intermediate electronic excitations
We present a theoretical study of the relative role of localized and propagating intermediate electronic states in the processes of elastic scattering of light. Only localized excitations lead to isotropic scattering in lowest-order perturbation theory. Inhomogeneous broadening of the optical transition affects the scattering efficiency from the ordered and disordered array of localized states in a qualitatively different way. The propagating electronic excitations may only contribute to elastic light scattering via higher-order processes. The scattering of excitons by impurities or the interface roughness potential is suggested as a mechanism for the contribution of propagating excitations…
Type II narrow double barrier quantum well structures : Γ-X coupling and interface effects
Photoluminescence (PL), PL excitation and time resolved PL experiments have been performed on Al0.42Ga0.58As/AlAs/GaAs symmetric double barrier quantum wells (DBQW) with only one or two AlAs monolayers constituting the intermediate barriers. In agreement with the envelope function predictions we show that such DBQW's undergo a type I - type II transition when the GaAs thickness is reduced below 7 and 5 monolayers for 2 and 1 AlAs molecular planes respectively. In type II configuration the PL decay time is found to be strongly dependent on the energy difference between AlAs Xz - and GaAs Γ - electron confined states and the coupling parameter of the Γ and Xz valleys can be deduced (4.2 meV o…
Resonant Rayleigh scattering in quantum well structures
Abstract We report continuous wave experiments on resonant Rayleigh scattering (RRS) performed on high quality GaAs AlGaAs quantum well structures. The simultaneous measurement of the resonant Rayleigh scattering and of the photoluminescence excitation (PLE) allows us to resolve very small differences between the two spectra. We show that, even in very good samples, there is a small but detectable Stokes shift of the RRS profile with respect to the PLE. It is also found that the RRS profile has a smaller linewidth and is sensitive to bound exciton transitions which are not detectable in the PLE. We compare our data with previous findings and discuss possible origins of the Stokes shift.
Optical characterization of individual GaAs quantum dots grown with height control technique
We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar morphology. Besides the height controlled quantum dots, we observe nanodisks formation. Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling between quantum dots and nanodisks and demonstrate the high optical properties of the individual quantum dots, despite the processing steps needed for height control. © 2013 AIP Publishing LLC.
Controlled type-I–type-II transition in GaAs/AlAs/AlxGa1−xAs double-barrier quantum wells
We show that the insertion of extremely narrow AlAs layers in double-barrier GaAs/AlAs/${\mathrm{Al}}_{\mathrm{x}}$${\mathrm{Ga}}_{1\mathrm{\ensuremath{-}}\mathrm{x}}$As quantum wells results in a variety of electronic configurations, thus providing a powerful tool for tailoring the electronic transitions in GaAs heterostructures. In particular, the transition from type-I to type-II recombination is shown to occur in correspondence with variations by a single monolayer in the thickness of the AlAs and/or GaAs layers. Drastic changes in the recombination lifetimes are correspondingly observed; at the same time, the photoluminescence efficiency is found to be almost independent of the type-I-…
Quantum Dots Luminescence Collection Enhancement and Nanoscopy by Dielectric Microspheres
In recent years, dielectric microspheres have been used in conjunction with optical microscopes to beat the diffraction limit and to obtain superresolution imaging. The use of microspheres on quantum dots (QDs) is investigated, for the first time, to enhance the light coupling efficiency. The enhancement of the QD luminescence collection in terms of extraction and directionality is demonstrated, as well as the enhancement of spatial resolution. In particular, it is found that a dielectric microsphere, placed on top of an epitaxial QD, increases the collected radiant energy by about a factor of 42, when a low numerical aperture objective is used. Moreover, if two or more QDs are present belo…
Anisotropic polarization of non‐polar GaN quantum dot emission
We report on experimental and theoretical studies of the polarization selection rules of the emission of non-polar GaN/AlN self-assembled quantum dots. Time-integrated and time-resolved photoluminescence measurements have been performed to determine the degree of polarization. It is found that the emission of some samples can be predominantly polarized parallel to the wurtzite c axis, in striking difference with the previously reported results for bulk GaN and its heterostructures, in which the emission was preferentially polarized perpendicular to the c axis. Theoretical calculations based on an 8-band k·p model are used to analyze the relative importance of strain, confinement and quantum…
Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates
The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device. © 2013 AIP Publishing LLC.