0000000000148571

AUTHOR

A. Rizzo

showing 75 related works from this author

Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

2018

In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ([InlineMediaObject not available: see fulltext.]), thoron ([InlineMediaObject not available: see fulltext.]) and krypton ([InlineMediaObject not available: see fulltext.]). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of ∼4years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentr…

data analysis methodPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMPFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsRadonSciences de l'ingénieur01 natural sciencesIonNuclear physicsradon: nuclideXENONlcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)nuclidebackground: radioactivitybackground: suppressionkryptonPhysicsRadionuclidePhysique010308 nuclear & particles physicsKryptonInstrumentation and Detectors (physics.ins-det)Alpha particleAstronomieDark Matter direct search experimentrespiratory tract diseasesRadon DaughtersBackgroundchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

First Axion Results from the XENON100 Experiment

2014

We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matte…

Nuclear and High Energy PhysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics01 natural sciencesCosmologydark matterXenonHigh Energy Physics - Phenomenology (hep-ph)Assioni0103 physical sciences010306 general physicsAxionLiquid XenonCouplingCoupling constantQuantum chromodynamicsPhysics010308 nuclear & particles physicshep-phAstrophysics - Astrophysics of GalaxiesGalaxyHigh Energy Physics - Phenomenologychemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Astrophysics of Galaxies (astro-ph.GA)astro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Results from a calibration of XENON100 using a source of dissolved radon-220

2017

A Rn 220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb 212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn 222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn 222 . Using the delayed coincidence of R…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsDark matterFOS: Physical scienceschemistry.chemical_elementRadon01 natural sciencesCoincidenceNuclear physicsRecoilOpticsXenonXENON DARK MATTER WIMPS CALIBRATION RADON0103 physical sciencesCalibration[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPhysics010308 nuclear & particles physicsbusiness.industryDetectorAstrophysics::Instrumentation and Methods for AstrophysicsOrder (ring theory)Instrumentation and Detectors (physics.ins-det)chemistryHigh Energy Physics::Experimentbusiness
researchProduct

Online 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant 222 Rn background originating from radon emanation. After inserting an auxiliary 222 Rn emanation source in the gas loop, we determined a radon reduction factor of R>27 (95% C.L.) for the distillation column by monitoring the 222 Rn activity concentration inside the XENON100 detector.

XenonPhysics and Astronomy (miscellaneous)WimpDirect SearchDark MatterTPCEngineering (miscellaneous)European Physical Journal C
researchProduct

Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector

2007

The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of live time, 234 neutrino c…

PhysicsNuclear and High Energy PhysicsParticle physicseducation.field_of_studyPhysics::Instrumentation and DetectorsPhysicsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaPopulationDetectorAstrophysics (astro-ph)High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesSolar neutrino problemAstrophysicsNeutrino detectorAstronomiaMeasurements of neutrino speedddc:530High Energy Physics::ExperimentNeutrino astronomyNeutrinoeducation
researchProduct

RESECTION of PRIMARY TUMOR at DIAGNOSIS in STAGE IV-s NEUROBLASTOMA: Does it Affect the Clinical Course?

1996

To determine whether resection of primary tumor has a favorable influence on outcome of infants (age 0 to 11 months) with IV-s Neuroblastoma.

Settore MED/38 - Pediatria Generale E SpecialisticaSettore MED/20 - Chirurgia Pediatrica E InfantilePediatric tumors Neuroblastoma IV.s surgery primart tumor Multicentric reports.
researchProduct

Physics reach of the XENON1T dark matter experiment.

2016

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nu…

dark matter simulationsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsdark matter experimentFOS: Physical scienceschemistry.chemical_elementCosmic ray7. Clean energy01 natural sciencesdark matter simulationNuclear physicsRecoilXenonIonization0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsdark matter experimentsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)dark matter experiments; dark matter simulationschemistryNeutrinoNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

First search for extremely high energy cosmogenic neutrinos with the IceCube Neutrino Observatory.

2010

We report on the results of the search for extremely-high energy (EHE) neutrinos with energies above $10^7$ GeV obtained with the partially ($\sim$30%) constructed IceCube in 2007. From the absence of signal events in the sample of 242.1 days of effective livetime, we derive a 90% C.L. model independent differential upper limit based on the number of signal events per energy decade at $E^2 \phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq 1.4 \times 10^{-6}$ GeV cm$^{-2}$ sec$^{-1}$ sr$^{-1}$ for neutrinos in the energy range from $3\times10^7$ to $3\times10^9$ GeV.

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayElementary particleAstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciencesIceCube Neutrino Observatory[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]cosmic raysSpectrummuon0103 physical sciencesNeutrinoddc:530010306 general physicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::Phenomenologypionand other elementary particlesCosmic-RaysMassless particleNeutrino detectorHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

2014

XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…

axionsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov and transition radiationCherenkov detectorPhysics::Instrumentation and DetectorsDark matterDetector modelling and simulations I (interaction of radiation with matterchemistry.chemical_elementFOS: Physical sciences01 natural scienceslaw.inventionNuclear physicsXenonWIMPlawCherenkov and transition radiation Detector modelling and simulations Cherenkov detectors Dark Matter detectorsetc.)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Dark Matter detectors (WIMPsMathematical PhysicsCherenkov radiationetc)PhysicsMuonTime projection chamber010308 nuclear & particles physicsCherenkov detectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)Cherenkov and transition radiation; Cherenkov detectors; Dark Matter detectors (WIMPs axions etc.); Detector modelling and simulations I (interaction of radiation with matter; interaction of hadrons with matter etc); interaction of photons with matter[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]interaction of hadrons with matterchemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsJOURNAL OF INSTRUMENTATION
researchProduct

The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

2010

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2 - 200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

Particle physicsAMANDA[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Solar neutrinoAstrophysics::High Energy Astrophysical PhenomenaAMANDA; Atmospheric neutrinos; Cherenkov radiation; Neural net; Unfoldingneural netFOS: Physical sciencesAetiology screening and detection [ONCOL 5]01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsunfoldingPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cherenkov radiationHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsSolar neutrino problematmospheric neutrinosCosmic neutrino backgroundNeutrino detectorddc:540Measurements of neutrino speedHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T

2019

We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of 6.3 × 10−42 cm2 at 30 GeV/c2 and 90% confidence level. The results are compared with those from collider searches and used to exclude new paramet…

WIMP nucleon: interactionWIMP nucleon: scatteringParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)IsoscalarDark matterNuclear TheoryMassive particleGeneral Physics and AstronomyFOS: Physical sciencesParameter spacedark matter: direct detectionGravitation and Astrophysicsspin: dependence01 natural scienceslaw.inventionHigh Energy Physics - Phenomenology (hep-ph)WIMPlawisoscalar0103 physical sciencesS046DM1mediation010306 general physicsColliderPseudovectorPhysicsS030DN2S030DN1S030DP3S030DN3S030DP2S030DP1WIMP nucleon: cross sectionaxial-vectorHigh Energy Physics - PhenomenologyWIMPs Spin Dependent Cross Sections Neutron Cross Sections Likelihood methoddark matter: scattering[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of 27 December 2004 with the AMANDA-II detector.

2006

On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater 1806-20 saturated many satellite gamma-ray detectors. This event was by more than two orders of magnitude the brightest cosmic transient ever observed. If the gamma emission extends up to TeV energies with a hard power law energy spectrum, photo-produced muons could be observed in surface and underground arrays. Moreover, high-energy neutrinos could have been produced during the SGR giant flare if there were substantial baryonic outflow from the magnetar. These high-energy neutrinos would have also produced muons in an underground array. AMANDA-II was used to search for downgoing muons indicative of high-energy gamm…

Astroparticle physicsPhysicsMuonSolar flarePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Gamma rayGeneral Physics and AstronomyAstronomyFOS: Physical sciencesAstrophysicsAstrophysicsGalaxylaw.inventionPulsarlawAstronomiaHigh Energy Physics::ExperimentNeutrinoFlarePhysical review letters
researchProduct

First year performance of the IceCube neutrino telescope

2006

The first sensors of the IceCube neutrino observatory were deployed at the South Pole during the austral summer of 2004-2005 and have been producing data since February 2005. One string of 60 sensors buried in the ice and a surface array of eight ice Cherenkov tanks took data until December 2005 when deployment of the next set of strings and tanks began. We have analyzed these data, demonstrating that the performance of the system meets or exceeds design requirements. Times are determined across the whole array to a relative precision of better than 3 ns, allowing reconstruction of muon tracks and light bursts in the ice, of air-showers in the surface array and of events seen in coincidence…

Astroparticle physicsPhysicsPhotomultiplierMuonPerformanceDetectorAstrophysics (astro-ph)AstronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsIceCube Neutrino ObservatoryAmandaIceCubeDetectionData acquisitionFirst yearAmanda; Detection; First year; IceCube; IceTop; Neutrino; Performance; South poleNeutrinoSouth poleAstronomiaIceTopNeutrinoCherenkov radiation
researchProduct

NEOPLASIE EPITELIALI MALIGNE DEL FEGATO IN ETA' PEDIATRICA: Analisi dello Studio Cooperativo Nazionale HEPA 88

1992

The Authors analyze the preliminary results of the first Italian Cooperative Research program on childhood malignant epithelial liver tumors. The value of radical surgery and the effectiveness of cisplatin and adriamycin in inducing tumor response are undelined.

Settore MED/38 - Pediatria Generale E SpecialisticaSettore MED/20 - Chirurgia Pediatrica E Infantileliver tumors hepatoblastoma heparocellular carcinoma
researchProduct

A low-mass dark matter search using ionization signals in XENON100

2016

We perform a low-mass dark matter search using an exposure of 30\,kg$\times$yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7\,keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7\,keV to 9.1\,keV, we derive a limit on …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSignalHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMPIonization0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPhysicsScintillation010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Physics and Astronomy (miscellaneous) DARK MATTER XENON TPC WIMPHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Scintillation counterEnergy (signal processing)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Search for Neutrino‐induced Cascades from Gamma‐Ray Bursts with AMANDA

2007

Using the neutrino telescope AMANDA-II, we have conducted two analyses searching for neutrino-induced cascades from gamma-ray bursts. No evidence of astrophysical neutrinos was found, and limits are presented for several models. We also present neutrino effective areas which allow the calculation of limits for any neutrino production model. The first analysis looked for a statistical excess of events within a sliding window of 1 or 100 seconds (for short and long burst classes, respectively) during the years 2001-2003. The resulting upper limit on the diffuse flux normalization times E^2 for the Waxman-Bahcall model at 1 PeV is 1.6 x 10^-6 GeV cm^-2 s^-1 sr^-1 (a factor of 120 above the the…

Gamma rays: burstsNormalization (statistics)PhysicsRange (particle radiation)MuonAstrophysics::High Energy Astrophysical PhenomenaGamma rays: bursts; Neutrinos; TelescopesAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsCoincidenceSpace and Planetary ScienceCascadeAstronomiaDiffuse fluxHigh Energy Physics::ExperimentNeutrinosNeutrinoGamma-ray burstTelescopesThe Astrophysical Journal
researchProduct

The IceCube data acquisition system: Signal capture, digitization, and timestamping

2008

IceCube is a km-scale neutrino observatory under construction at the South Pole with sensors both in the deep ice (InIce) and on the surface (IceTop). The sensors, called Digital Optical Modules (DOMs), detect, digitize and timestamp the signals from optical Cherenkov-radiation photons. The DOM Main Board (MB) data acquisition subsystem is connected to the central DAQ in the IceCube Laboratory (ICL) by a single twisted copper wire-pair and transmits packetized data on demand. Time calibration is maintained throughout the array by regular transmission to the DOMs of precisely timed analog signals, synchronized to a central GPS-disciplined clock. The design goals and consequent features, func…

AMANDANuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstronomyFOS: Physical sciencesAstrophysicsNeutrino telescopeSignalHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryNuclear physicsHigh Energy Physics - Experiment (hep-ex)IcecubeData acquisitionSignal digitizationddc:530Nuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationPhysicsbusiness.industryAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAMANDA; Icecube; Neutrino telescope; Signal digitizationTimestampingInstrumentation and Detectors (physics.ins-det)Analog signalTransmission (telecommunications)Systems designTimestampbusinessComputer hardware
researchProduct

Measurement of acoustic attenuation in South Pole ice

2010

Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient alpha = 3.20 \pm 0.57 km^(-1) between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for lambda = 1/alpha of ~1/300 m with 20% uncertainty. No significant depth or …

Acoustic attenuation; Acoustics; Ice; Neutrino astronomy; South Pole[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]010504 meteorology & atmospheric sciences[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]iceFOS: Physical sciencesAetiology screening and detection [ONCOL 5]Lambda01 natural sciencesneutrino astronomy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]OpticsSpectrum0103 physical sciencesacousticsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesPhysicsSouth Pole010308 nuclear & particles physicsbusiness.industryAttenuation[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TransmitterAttenuation lengthAstronomy and AstrophysicsGeodesy004AmplitudeAttenuation coefficientddc:540NeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsbusinessAcoustic attenuationinfo:eu-repo/classification/ddc/004acoustic attenuation
researchProduct

The neutron background of the XENON100 dark matter search experiment

2013

TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENO…

Nuclear and High Energy PhysicsParticle physicsLarge Underground Xenon experimentPhysics::Instrumentation and DetectorsDark matterGeant4Astrophysics::Cosmology and Extragalactic AstrophysicsWIMP Argon Programme01 natural sciencesNuclear physicsWIMPNuclear and High Energy Physics Neutron Background Dark Matter Search XENON TPC0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)ComputingMilieux_MISCELLANEOUSSpontaneous fissionPhysicsElastic scatteringFluxMuons010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsDetectorsWeakly interacting massive particlesHigh Energy Physics::ExperimentSimulation
researchProduct

First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

2011

We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of $8.3\pm 3.6$. At 90% confidence we set an upper limit of $E^2\Phi_{90%CL}<3.6\times10^{-7} GeV \cdot cm^{-2} \cdot s^{-1}\cdot sr^{-1} $ on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that $\Phi \propto E^{-2}$ and that the flavor composition of the $\nu_e : \nu_\mu : \nu…

HIGH-ENERGY NEUTRINOSSELECTIONNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaHigh-energy neutrinosFOS: Physical sciencesFluxCosmic rayElementary particleAstrophysicsParticle detectorIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)SCATTERINGddc:530High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMICEHigh Energy Physics::Phenomenology004Massless particlePhysics and AstronomyNeutrino detectorAMANDA-IIHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomenainfo:eu-repo/classification/ddc/004LeptonPhysical Review D
researchProduct

Real-life impact of early interferon beta therapy in relapsing multiple sclerosis.

2009

OBJECTIVE: Recent findings support greater efficacy of early vs. delayed interferon beta (IFNbeta) treatment in patients with a first clinical event suggestive of multiple sclerosis (MS). We aimed to evaluate the effectiveness of early IFNbeta treatment in definite relapsing-remitting MS (RRMS) and to assess the optimal time to initiate IFNbeta treatment with regard to the greatest benefits on disability progression. METHODS: A cohort of 2,570 IFNbeta-treated RRMS patients was prospectively followed for up to 7 years in 15 Italian MS Centers. A Cox proportional hazards regression model adjusted for propensity score (PS) quintiles was used to assess differences between groups of patients wit…

AdultMaleTime FactorsMultiple Sclerosis; Interferon betaInterferon-beta.Interferon betaCohort StudiesYoung AdultMultiple Sclerosis Relapsing-RemittingTreatment Outcomeobservational study multiple sclerosis interferon treatment earlySickness Impact ProfileMultiple SclerosiQuality of LifeHumansFemaleSettore MED/26 - NeurologiaProspective StudiesFollow-Up Studies
researchProduct

A Search for a Diffuse Flux of Astrophysical Muon Neutrinos with the IceCube 40-String Detector

2011

The IceCube Neutrino Observatory is a 1 km$^{3}$ detector currently taking data at the South Pole. One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could manifest itself as a detectable signal that may be differentiated from the atmospheric neutrino background by spectral measurement. This analysis uses data from the IceCube detector collected in its half completed configuration which operated between April 2008 and May 2009 to search for a diffuse flux of astrophysical muon neutrinos. A to…

SELECTIONAMANDANuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesAmandaIceCube Neutrino ObservatoryHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesddc:530Selection010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsICEIceHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsCosmic-RaysSolar neutrino problemCOSMIC-RAYS004MODELPhysics and AstronomyNeutrino detectorTELESCOPESHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomenainfo:eu-repo/classification/ddc/004ModelTelescopesLepton
researchProduct

An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts

2012

Gamma-Ray Bursts (GRBs) have been proposed as a leading candidate for acceleration of ultra high-energy cosmic rays, which would be accompanied by emission of TeV neutrinos produced in proton-photon interactions during acceleration in the GRB fireball. Two analyses using data from two years of the IceCube detector produced no evidence for this neutrino emission, placing strong constraints on models of neutrino and cosmic-ray production in these sources.

Physics::Instrumentation and DetectorsAstronomyAstrophysics::High Energy Astrophysical PhenomenaElectronvoltFOS: Physical sciencesFluxhigh-energy neutrinosCosmic rayddc:500.2AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesddc:070IcecubeAccelerationPioncosmic rays0103 physical sciencesTelescope010303 astronomy & astrophysicsVery EnergeticHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFluxMultidisciplinary010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySearchAstrophysics::Instrumentation and Methods for Astrophysics13. Climate actionGamma Ray BurstsHigh Energy Physics::ExperimentNeutrinoGamma-ray burstAstrophysics - High Energy Astrophysical PhenomenaNATURE
researchProduct

Online $$^{222}$$ 222 Rn removal by cryogenic distillation in the XENON100 experiment

2017

researchProduct

Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data

2013

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129-Xe and 131-Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV, with a minimum cross section of 3.5 x 10^{-40} cm^2 at a WIMP mass of 45 GeV, at 90% confidence level.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Dark matterGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesdark matterParticle detectorHigh Energy Physics - ExperimentNuclear physicsCross section (physics)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsPseudovectorInstrumentation and Methods for Astrophysics (astro-ph.IM)Spin-½Physics010308 nuclear & particles physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Astrophysics - Instrumentation and Methods for AstrophysicsNucleonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Background studies for acoustic neutrino detection at the South Pole

2011

The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the tiny flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to …

SignalsTELESCOPEAbsolute noise levelAstrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesAstrophysics7. Clean energy01 natural sciencesIceCube Neutrino Observatorylaw.inventionIceCubeTelescopeAbsolute noise level; Acoustic neutrino detection; Neutrino flux limitNeutrino flux limitlawSIGNALS0103 physical sciencesWATERDetection theory010306 general physicsTelescopeInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsAcoustic neutrino detector010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsWaterAstronomy and AstrophysicsGeodesyAcoustic neutrino detectionNoiseNeutrino detectorPhysics and Astronomy13. Climate actionddc:540NeutrinoAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006)

2008

IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006) Weihai, China - August 15-22

PhysicsNuclear and High Energy PhysicsHigh energyCosmic rayAstrophysicsChinaAtomic and Molecular Physics and OpticsNuclear Physics B - Proceedings Supplements
researchProduct

A Snapshot on MRSA Epidemiology in a Neonatal Intensive Care Unit Network, Palermo, Italy

2016

Objectives. We performed a one-year prospective surveillance study on MRSA colonization within the five NICUs of the metropolitan area of Palermo, Italy. The purpose of the study was to assess epidemiology of MRSA in NICU from a network perspective. Methods. Transfer of patients between NICUs during 2014 was traced based on the annual hospital discharge records. In the period February 2014 – January 2015, in the NICU B, at the University teaching hospital, nasal swabs from all infants were collected weekly, whereas in the other four NICUs (A, C, D, E) at four week-intervals of time. MRSA isolates were submitted to antibiotic susceptibility testing, SCCmec typing, PCR to detect lukS-PV and l…

0301 basic medicineMicrobiology (medical)medicine.medical_specialtyNeonatal intensive care unithealth care facilities manpower and services030106 microbiologylcsh:QR1-502MRSAMicrobiologylcsh:Microbiology03 medical and health sciencesInternal medicineEpidemiologyMedicineInfection controlnetwork approachOriginal ResearchNICuActive surveillance; Molecular typing; MRSA; Network approach; NICu; Microbiology; Microbiology (medical)business.industryMRSA colonizationactive surveillancemolecular typingSequence typesVariable number tandem repeat030104 developmental biologyMultilocus sequence typingUniversity teachingbusinessFrontiers in Microbiology
researchProduct

Calibration and Characterization of the IceCube Photomultiplier Tube

2010

Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resoluti…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhotonPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)AstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciencesIceCube Neutrino Observatory[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Optics0103 physical sciencesNeutrinoCherenkovddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysCherenkov radiationPhysicsCherenkov; Cosmic rays; Ice; Neutrino; PMT010308 nuclear & particles physicsbusiness.industry[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IceAstrophysics::Instrumentation and Methods for AstrophysicsPMTNeutrinoPhotonicsAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

First Results on the Scalar WIMP-Pion Coupling, Using the XENON1T Experiment

2018

We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, …

Nuclear TheoryPhysics::Instrumentation and DetectorsNuclear TheoryGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMPPions[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentS030UDMPhysicsStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsnucleonsuppressionHigh Energy Physics - PhenomenologyWeakly interacting massive particlesmedicine.anatomical_structureWeakly interacting massive particlesNucleonCoherence (physics)Astrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesWIMP: massspin: dependenceGravitation and Astrophysicsoperator: nonrelativisticDark matter Particle dark matter Pions Weakly interacting massive particles Dark matter detectorsNuclear Theory (nucl-th)PionParticle dark matter0103 physical sciencesmedicineDark mattercross section: upper limit010306 general physicsCouplingDark matter detectorsnucleusScalar (physics)coherenceDark Matter WIMP-Pion coupling Xenon Direct seartch[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Nucleus
researchProduct

Response of the XENON100 dark matter detector to nuclear recoils

2013

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy are presented. Data from measurements with an external 241AmBe neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy dependent charge-yield Qy and relative scintillation efficiency Leff. A very good level of absolute spectral matching is achieved in both observable signal channels - scintillation S1 and ionization S2 - along with agreement in the 2-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matte…

Nuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsMonte Carlo methodDark matterFOS: Physical sciences01 natural sciencesdark matterParticle detectorNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]RecoilIonization0103 physical sciences010306 general physicsNuclear ExperimentInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsScintillation010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron sourceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Observation and applications of single-electron charge signals in the XENON100 experiment

2014

The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experim…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsDrift velocity[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsDark matterchemistry.chemical_elementFOS: Physical sciencesdouble phase TPC01 natural sciencesdark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonWIMPdouble phase TPC; photoionization; single electron; xenon0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsphotoionizationInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsTime projection chamber010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)single electron3. Good health[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]xenonchemistryWeakly interacting massive particlesAtomic physicsAstrophysics - Instrumentation and Methods for AstrophysicsJ. Phys.
researchProduct

XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection

2019

The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In pa…

xenon: targetWIMP nucleon: interactiondata analysis methodPhysics - Instrumentation and Detectorsinteraction: modelPhysics::Instrumentation and DetectorsDark matterchemistry.chemical_elementFOS: Physical sciencesdark matter: direct detection01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONXenon0103 physical sciencesCalibration[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark MatterParticle Physics Experiments[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentDark Matter Direct Search Signal reconstruction calibratiuonPhysicsxenon: liquidTime projection chamber010308 nuclear & particles physicsScatteringSignal reconstructionDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)calibrationtime projection chamberEvent selectionchemistryHigh Energy Physics::Experimentperformance
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β -emitter 85 Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe&lt;200ppq (parts per quadrillion, 1 ppq =10−15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4⋅10⁵ with thermodynamic stabili…

7. Clean energy
researchProduct

XENON100 dark matter results from a combination of 477 live days

2016

We report on WIMP search results of the XENON100 experiment, combining three runs summing up to 477 live days from January 2010 to January 2014. Data from the first two runs were already published. A blind analysis was applied to the last run recorded between April 2013 and January 2014 prior to combining the results. The ultra-low electromagnetic background of the experiment, ~$5 \times 10^{-3}$ events/(keV$_{\mathrm{ee}}\times$kg$\times$day) before electronic recoil rejection, together with the increased exposure of 48 kg $\times$ yr improves the sensitivity. A profile likelihood analysis using an energy range of (6.6 - 43.3) keV$_{\mathrm{nr}}$ sets a limit on the elastic, spin-independe…

Scattering cross-sectionPhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsProton010308 nuclear & particles physicsDark matterFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciences7. Clean energyXENON DARK MATTER WIMP TPCNuclear physicsRecoilWIMPLikelihood analysis0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Sensitivity (control systems)010306 general physicsEnergy (signal processing)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100

2017

We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe…

Physics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XenonRecoilWIMP[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark MatterNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]nucleus: recoilPhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsWIMP nucleon: cross sectionInstrumentation and Detectors (physics.ins-det)Excited stateWeakly interacting massive particlesTPCNucleonchannel cross section: measuredsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPchemistry.chemical_elementFOS: Physical sciencesInelastic scatteringspin: dependenceNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emission0103 physical sciencescross section: inelastic scattering[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsWIMP nucleon: inelastic scattering010308 nuclear & particles physicsS030DP2WIMP nucleus: interactionGran SassochemistryDirect Searchtime projection chamber: xenonHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data

2017

We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 years, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of $431^{+16}_{-14}$ days in the low energy region of $(2.0-5.8)$ keV in the single scatter event sample, with a global significance of $1.9\,\sigma$, however no other more significant modulation is observed. The expected annual modulation of a dark matt…

Physics and Astronomy (all) XENON DARK MATTER MODULATION TPCPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterGeneral Physics and AstronomyFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Recoil0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPseudovectorInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)Coupling (probability)ModulationAstrophysics - Instrumentation and Methods for AstrophysicsEvent (particle physics)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Disseminated non-Hodgkin's lymphoma and chronic hepatitis C: a case report.

2003

Hepatitis C virus (HCV) infection is occasionally associated to B-cell type non-Hodgkin's lymphoma. Evidence showing a possible etiological link between HCV and lymphoma has been reported from areas of high HCV prevalence. We describe the case of a 68-year-old woman with B-cell non-Hodgkin's lymphoma mainly involving the skin. Typical manifestations of disease were cutaneous nodules, red-violet in color, scattered on the entire body and adherent to the subcutaneous tissue. A 3-cm nodule excised from the leg was found at histology to consist of centroblastic-like B cells, which stained positively for CD45, CD20 and CD79a. Although the patient was treated with different chemotherapy schedules…

Internal Medicine
researchProduct

Material radioassay and selection for the XENON1T dark matter experiment

2017

The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsDark matterMonte Carlo methodmeasurement methodsFOS: Physical scienceschemistry.chemical_elementRadiopuritylcsh:AstrophysicsWIMP: detectorSciences de l'ingénieur01 natural sciencesgamma ray: energy spectrumNuclear physicsmass spectrumXENONXenonWIMPlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSpectroscopy[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Engineering (miscellaneous)background: radioactivityPhysicsRange (particle radiation)Physique010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)AstronomiesensitivitychemistryWeakly interacting massive particleslcsh:QC770-798TPCnumerical calculations: Monte Carlo
researchProduct

Determination of the atmospheric neutrino flux and searches for new physics with AMANDA-II

2009

The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-…

Nuclear and High Energy PhysicsParticle physicsOscillationsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaConfidence-IntervalsGravityFOS: Physical sciencesGeneratorLorentz covariance01 natural sciences7. Clean energyHigh Energy Physics - ExperimentScatteringHigh Energy Physics - Experiment (hep-ex)SensitivityQuantum Decoherence0103 physical sciencesddc:530Muon neutrino010306 general physicsNeutrino oscillationTelescopeAstroparticle physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemNeutrino detector13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSmall SignalsLorentz Invariance Violation
researchProduct

Search for dark matter from the Galactic halo with the IceCube neutrino telescope

2011

Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22 cm3 s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.

Nuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaDark matterAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesIceCubeGalactic halo0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsGamma-Ray EmissionHot dark matterAstronomyCosmic-Rays004Dark matter haloParticlesNeutrino detectorAnisotropyHigh Energy Physics::ExperimentHaloDwarf Spheroidal GalaxiesNeutrinoNeutrino astronomyinfo:eu-repo/classification/ddc/004
researchProduct

Dark matter results from 225 live days of XENON100 data

2012

We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso (LNGS) for 13 months during 2011 and 2012. XENON100 features an ultra-low electromagnetic background of (5.3 \pm 0.6) \times 10^-3 events (kg day keVee)^-1 in the energy region of interest. A blind analysis of 224.6 live days \times 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the pre-defined nuclear recoil energy range of 6.6-30.5 keVnr are consistent with the background expectation of (1.0 \pm 0.2) events. A Profile Likelihood analysis using a 6.6-43.3 keVnr energy range sets the most stringent limit o…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsLarge Underground Xenon experimentDark matterFOS: Physical sciencesGeneral Physics and AstronomyWIMP Argon Programme01 natural sciences7. Clean energyParticle detectorHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsLiquid XenonPhysicsRange (particle radiation)010308 nuclear & particles physicsDARK MATTERInstrumentation and Detectors (physics.ins-det)High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]DAMA/NaITPCPandaXDirect search for Dark MatterAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

High incidence and increasing prevalence of MS in Enna (Sicily), southern Italy

2001

Twenty years after a first survey, a follow-up study was performed on the prevalence of MS in Enna (Sicily), southern Italy. The prevalence of definite MS rose from 53 to 120.2 per 100,000 population. The incidence of definite MS for the period 1986 to 1995 was 5.7 per 100,000 per year. The innermost part of Sicily shows an elevated prevalence of MS, second only to Sardinia in the Mediterranean area.

AdultMaleMultiple SclerosisAdolescentCross-sectional studyPopulationHumansChildeducationSicilyAgededucation.field_of_studyNeuroscience (all)IncidenceIncidence (epidemiology)Follow up studiesMiddle AgedHealth SurveysCross-Sectional StudiesGeographyMediterranean areaFemaleTopography MedicalSettore MED/26 - NeurologiaNeurology (clinical)High incidenceFollow-Up StudiesDemography
researchProduct

The IceCube prototype string in Amanda

2006

The Antarctic Muon And Neutrino Detector Array (Amanda) is a high-energy neutrino telescope. It is a lattice of optical modules (OM) installed in the clear ice below the South Pole Station. Each OM contains a photomultiplier tube (PMT) that detects photons of Cherenkov light generated in the ice by muons and electrons. IceCube is a cubic-kilometer-sized expansion of Amanda currently being built at the South Pole. In IceCube the PMT signals are digitized already in the optical modules and transmitted to the surface. A prototype string of 41 OMs equipped with this new all-digital technology was deployed in the Amanda array in the year 2000. In this paper we describe the technology and demonst…

Antarctic Muon And Neutrino Detector ArrayAstroparticle physicsPhysicsNuclear and High Energy PhysicsPhotomultiplierPhotonMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Neutrino telescopeAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomyAstrophysicsNeutrino telescopeAmandaIceCubeData acquisitionSignal digitizationAmanda; IceCube; Neutrino telescope; Signal digitizationInstrumentationCherenkov radiation
researchProduct

Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA

2006

A search has been performed for nearly vertically upgoing neutrino-induced muons with the Antarctic Muon And Neutrino Detector Array (AMANDA), using data taken over the three year period 1997–99. No excess above the expected atmospheric neutrino background has been found. Upper limits at 90% confidence level have been set on the annihilation rate of neutralinos at the center of the Earth, as well as on the muon flux at AMANDA induced by neutrinos created by the annihilation products.

Astroparticle physicsPhysicsAntarctic Muon And Neutrino Detector ArrayParticle physicsAMANDAAnnihilationMuonAMANDA; Dark matter; IceCube; Neutralino; Neutrino telescopesPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyDark matterNeutralinoAstronomy and AstrophysicsIceCubeNuclear physicsWIMPNeutralinoDark matterHigh Energy Physics::ExperimentNeutrinoNeutrino telescopes
researchProduct

Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II

2007

A search for TeV - PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E^{2}\Phi_{90% C.L.} < 7.4 x 10^{-8} GeV cm^{-2} s^{-1} sr^{-1} is placed on the diffuse flux of muon neutrinos with a \Phi \propto E^{-2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive…

Astroparticle physicsPhysicsNuclear and High Energy PhysicsRange (particle radiation)MuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesFluxCosmic rayAstrophysicsAstrophysicsSpectral lineAstronomiaNeutron detectionddc:530High Energy Physics::ExperimentNeutrino
researchProduct

Search for Event Rate Modulation in XENON100 Electronic Recoil Data

2015

We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phas…

Dark Matter Wimps ModulationPhysicsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 PhysicsDetectorDark matterPhase (waves)FOS: Physical sciencesGeneral Physics and AstronomySigmaInstrumentation and Detectors (physics.ins-det)AstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)RecoilModulation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Event (particle physics)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct

Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

2010

A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillation models, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. A discrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improve constraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by oth…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsParticle physicsMuonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciencesSolar neutrino problemHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Sidereal timeMeasurements of neutrino speedddc:530High Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaNeutrino oscillation
researchProduct

Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

2007

We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \Phi^{0}=(E/…

Astroparticle physicsPhysicsNuclear and High Energy PhysicsMuonAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectSolar neutrinoAstrophysics (astro-ph)High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSolar neutrino problemAstrophysicsSkyAstronomiaMeasurements of neutrino speedHigh Energy Physics::Experimentddc:530NeutrinoNeutrino astronomymedia_common
researchProduct

ERRATUM: "Search for High-Energy Muon Neutrinos from the "Naked-Eye" GRB 080319B with the Icecube Neutrino Telescope" (2009, ApJ, 701, 1721)

2009

We have noticed some mistakes in formulae (A2) and (A5) in the appendix of our paper. The errors are not present in the code used in the analysis and hence none of the plots or results is affected. The correct formulae are below.

Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Muon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Solar neutrino[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyAstronomyAstronomy and AstrophysicsAstrophysicsSolar neutrino problem01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Neutrino detectorSpace and Planetary Science0103 physical sciencesNaked eyeNeutrinoNeutrino astronomy010306 general physicsGamma-ray burstGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)
researchProduct

Melt inclusions constrain S behaviour and redox conditions in Etnean magmas

2016

Mount Etna is a complex magmatic system characterized by a continuous variability both in terms of eruptive style and composition of erupted products. Currently, its volcanic activity is marked by high gas fluxes (of above all SO2), both during eruptive and non-eruptive periods. In this study, we have studied the volatile contents and Fe speciation of olivine-hosted melt inclusions from 6 eruptions of the last 15 ky, mainly to investigate the behaviour of S during ascent and differentiation of Etnean magmas. Samples selected come from the FS eruption which is the oldest and most primitive (picritic composition, Fo91), the Mt Spagnolo and from more recent eruptions: 2002/3, 2006, 2008, and 2…

[SDU] Sciences of the Universe [physics][SDU]Sciences of the Universe [physics]Settore GEO/07 - Petrologia E PetrografiaEtna sulphur
researchProduct

Limits on a muon flux from Kaluza-Klein dark matter annihilations in the Sun from the IceCube 22-string detector

2010

A search for muon neutrinos from Kaluza-Klein dark matter annihilations in the Sun has been performed with the 22-string configuration of the IceCube neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured lightest Kaluza-Klein particle (LKP) WIMPs in the Sun and converted to limits on the LKP-proton cross-sections for LKP masses in the range 250 -- 3000 GeV. These results are the most stringent limits to date on LKP annihilation in the Sun.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsSolar neutrinoDark matterFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesDark matterddc:530010306 general physicsCosmic raysHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAnnihilationMuon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Massless particleNeutrino detectorHigh Energy Physics::ExperimentOther gauge bosonsNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsLeptonPhysical Review D
researchProduct

Dark Matter Search Results from a One Ton-Year Exposure of XENON1T

2018

We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra-low electron recoil background rate of $(82\substack{+5 \\ -3}\textrm{ (sys)}\pm3\textrm{ (stat)})$ events/$(\mathrm{t}\times\mathrm{yr}\times\mathrm{keV_{ee}})$. No significant excess over background is found and a profile likelihood analysis parameterized in spatial and energy dimensions exclude…

Dark matterGeneral Physics and Astronomychemistry.chemical_elementS030DI5WIMP: massElectronParameter spacedark matter: direct detectionGravitation and AstrophysicsS030DI101 natural sciencesS030DI3S030DI2Nuclear physicsXenonRecoilWIMPelectron: recoil0103 physical sciencesS046DM2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsnumerical calculationsDark Matter WIMP TPC XENON Direct searchPhysicsxenon: liquidTime projection chamber010308 nuclear & particles physicsbackgrounddark matter: massGran SassoWIMP nucleonchemistryWeakly interacting massive particles[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]time projection chamber: xenon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The XENON1T Dark Matter Experiment

2017

The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. © 2017, The Author(s).

xenon: targetPhotomultiplierCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)WIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical scienceslcsh:Astrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONXenonbackground: lowWIMP[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Ionization0103 physical scienceslcsh:QB460-466[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)Instrumentation and Methods for Astrophysics (astro-ph.IM)[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]AstrophysiquePhysicsScintillationxenon: liquidTime projection chamberphotomultiplier010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)dark matter: detectortime projection chamberchemistrylcsh:QC770-798TPCAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]performanceAstrophysics - Cosmology and Nongalactic AstrophysicsEuropean Physical Journal C
researchProduct

Constraints on the extremely-high energy cosmic neutrino flux with the IceCube 2008-2009 data

2011

We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 \times 10^{6}$ $-$ $6.3 \times 10^{9}$ GeV to a level of $E^2 \phi \leq 3.6 \times 10^{-8}$ ${\rm GeV cm^{-2} sec^{-1}sr^{-1}}$.

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaFluxFOS: Physical sciencesCosmic rayRaysAstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Spectrumddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsSPECTRUMCOSMIC cancer databaseRAYS004Massless particleNeutrino detectorPhysics and AstronomyNeutrinoAstrophysics - Instrumentation and Methods for Astrophysicsinfo:eu-repo/classification/ddc/004Astrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors

2011

A search for an excess of muon-neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of livetime between 2001 and 2006 and 149 days of livetime collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total livetime of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding …

Nuclear and High Energy PhysicsParticle physicsLimitsAstrophysics::High Energy Astrophysical PhenomenaDark matterCaptureFOS: Physical sciencesAstrophysicsSouth-Poleddc:500.201 natural sciences7. Clean energyIceCubeHigh Energy Physics - ExperimentLIMITSHigh Energy Physics - Experiment (hep-ex)SOUTH-POLE0103 physical sciencesPARTICLESddc:530Limit (mathematics)010306 general physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Muon010308 nuclear & particles physicsICEDetectorIceSupersymmetryCAPTUREParticlesPhysics and AstronomyNeutrino detectorNeutralinoHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

DARWIN: Towards the ultimate dark matter detector

2016

DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy …

Physics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsdouble beta decay7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsNeutrino detectorHigh Energy Physics - Experiment (hep-ex)XenonWIMPPHOTOMULTIPLIERAXIONSphysics.ins-detsolar and atmospheric neutrinosPhysicsDark matter detectorTime projection chamberdark matter detectorsPhysicsSolar and atmospheric neutrinoInstrumentation and Detectors (physics.ins-det)Nuclear & Particles PhysicsNeutrino detectorSOLAR NEUTRINOSGASPhysical SciencesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsGRAN SASSODark matter detectors; Double beta decay; Neutrino detectors; Solar and atmospheric neutrinosDark matterchemistry.chemical_elementFOS: Physical sciencesAstronomy & AstrophysicsLIQUID-XENON DETECTOR0202 Atomic Molecular Nuclear Particle And Plasma PhysicsSettore FIS/05 - Astronomia e AstrofisicaSEARCH0103 physical sciencesIsotopes of xenonZEPLIN-III[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicshep-exAstronomyAstronomy and Astrophysics0201 Astronomical And Space ScienceschemistryHigh Energy Physics::ExperimentSCINTILLATIONneutrino detectorsastro-ph.IMJournal of Cosmology and Astroparticle Physics
researchProduct

On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

2006

The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN mode…

AMANDAActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIceCubeLuminosityAGNNeutrinosBlazarAstrophysics::Galaxy AstrophysicsAGN; AMANDA; IceCube; Neutrinos; Point sources; Source stackingAstroparticle physicsPhysicsAstrophysics (astro-ph)Point sourcesAstronomyAstronomy and AstrophysicsQuasarSource stackingNeutrino detectorAstronomiaHigh Energy Physics::ExperimentNeutrino
researchProduct

Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector

2017

International audience; We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34  kg×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6–240)  keVnr. The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and …

WIMP nucleon: scatteringParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsWIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNuclear physicsXENONXenonWIMPstatistical analysis0103 physical sciencesEffective field theoryDark Matter010306 general physicsS030UDMnucleus: recoilPhysicsCoupling constanteffective field theory: nonrelativistic010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for Astrophysicsdark matter: detectorchemistryWeakly interacting massive particlesDirect SearchHigh Energy Physics::ExperimentTPC[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]recoil: energyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter 85Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1ppq=10-15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 · 10 5 with thermodynamic stability a…

CryostatPhysics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)WIMPDark matterAnalytical chemistryFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsWeakly Interact Massive ParticleSciences de l'ingénieur01 natural sciences7. Clean energyXenonlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivitySensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsComputer science information & general worksEngineering (miscellaneous)Liquid XenonComputingMilieux_MISCELLANEOUSPhysicsAir separationPhysique010308 nuclear & particles physicsDistillation ColumnKryptonKryptonOrder (ring theory)Instrumentation and Detectors (physics.ins-det)AstronomiechemistryDirect Searchddc:000lcsh:QC770-798TPCOrder of magnitude
researchProduct

Constructing places and identities : migration and the role of translation in Leila Aboulela's The Translator and Lyrics Alley

2014

This study focuses on the role of translation as an instrument of construction of places and immigrant identities in the spaces of immigration. The investigation is based on a critical and theoretical correlation and interdisciplinary relation between theories of spaces/places, translation studies and literary forms of immigrant writing.

Migration cultural translation Arab-Anglophone literature language and experimentalismSettore L-LIN/12 - Lingua E Traduzione - Lingua Inglese
researchProduct

Digital Spaces of Collaboration in Aesthetic Counter Narratives: Hamedullah. The Road Home and The Mirror Project

2020

Based on Margaret Somers’s senses of narrative and narrativity by means of which “we constitute our social identities (1992: 600), this study focuses on the scrutiny of two digital “subversive” aesthetic products, namely, British filmmaker Sue Clayton’s documentary Hamedullah. The Road Home (2012) and German philosopher Kevin McElvaney’s The Mirror Project (2017), with the objective of highlighting how the unfolding of verbal and visual narratives can be treated as the principle and “inescapable” (Baker 2006: 9) mode by means of which marginalised subjectivities “experience the world” (Baker 2006: 9) and can render it familiar to the Western gaze. The narratives revealed by the Afghan boy, …

Re-narration translation and activism the visual arts cybersubtitles LSASettore L-LIN/12 - Lingua E Traduzione - Lingua Inglese
researchProduct

Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

2017

International audience; We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant$^{222}$ Rn background originating from radon emanation. After inserting an auxiliary$^{222}$ Rn emanation source in the gas loop, we determined a radon reduction factor of $R\,>\,27$ (95% C.L.) for the distillation column by monitoring the$^{222}$ Rn activity concentration inside the XENON100 detector.

xenon: liquidradon: admixturePhysics - Instrumentation and DetectorsPhysicsFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)XENONmonitoringefficiencycryogenicsgasddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]background: radioactivity[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]
researchProduct

Measurement of the atmospheric neutrino energy spectrum from 100 GeV to 400 TeV with IceCube

2010

A measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 400 TeV was performed using a data sample of about 18,000 up-going atmospheric muon neutrino events in IceCube. Boosted decision trees were used for event selection to reject mis-reconstructed atmospheric muons and obtain a sample of up-going muon neutrino events. Background contamination in the final event sample is less than one percent. This is the first measurement of atmospheric neutrinos up to 400 TeV, and is fundamental to understanding the impact of this neutrino background on astrophysical neutrino observations with IceCube. The measured spectrum is consistent with predictions for the atmospheric muon ne…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesDeep IceSouth-PoleHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)ddc:530Muon neutrinoNeutrino oscillationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)FluxHigh Energy Physics::PhenomenologyOptical-PropertiesDetectorSolar neutrino problemHigh Energy Physics - PhenomenologyNeutrino detectorMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaTelescopesPhys.Rev.D
researchProduct

Limits on a muon flux from neutralino annihilations in the sun with the IceCube 22-string detector.

2009

A search for muon neutrinos from neutralino annihilations in the Sun has been performed with the IceCube 22-string neutrino detector using data collected in 104.3 days of live-time in 2007. No excess over the expected atmospheric background has been observed. Upper limits have been obtained on the annihilation rate of captured neutralinos in the Sun and converted to limits on the WIMP-proton cross-sections for WIMP masses in the range 250 - 5000 GeV. These results are the most stringent limits to date on neutralino annihilation in the Sun.

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsDark matterFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences7. Clean energyNuclear physicsWIMP0103 physical sciencesddc:550010306 general physicsNeutrino oscillationNeutrino TelescopeHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonAnnihilation010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNeutrino detector13. Climate actionNeutralinoHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical review letters
researchProduct

The distributed Slow Control System of the XENON100 experiment

2012

The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recordi…

Physics - Instrumentation and Detectorsarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]JavaComputer scienceReal-time computingFOS: Physical scienceschemistry.chemical_elementControl and monitor systems online; Control systems; Detector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)algorithms01 natural sciencesXenon0103 physical scienceshardwareDETECTOR CONTROL SYSTEMS[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]CONTROL SYSTEMS010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physicscomputer.programming_languageTime projection chamber010308 nuclear & particles physicsbusiness.industryControl and monitor systems onlineDetector control systems (detector and experiment monitoring and slow-control systemsEmphasis (telecommunications)Volume (computing)Instrumentation and Detectors (physics.ins-det)Modular design[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]chemistryControl systemAstrophysics - Instrumentation and Methods for Astrophysicsdatabases)businesscomputerSystem software
researchProduct

Functional Relations Between the Caudate Nucleus and the Dorsal Hippocampus in the Cat

1972

Dorsal hippocampusPhysiologybusiness.industryCaudate nucleusBiologyHippocampusBiochemistryElectric StimulationElectrophysiologyStereotaxic TechniquesText miningCatsAnimalsCaudate NucleusbusinessNeuroscienceArchives Internationales de Physiologie et de Biochimie
researchProduct

Geochemical monitoring of the Western-Central Sicily (Italy): investigations for a better knowledge on the seismogenic processes

2004

researchProduct

First Dark Matter Search Results from the XENON1T Experiment

2017

We report the first dark matter search results from XENON1T, a ∼2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042±12)-kg fiducial mass and in the [5,40] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93±0.25)×10-4 events/(kg×day×keVee), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consisten…

Xenon[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Massive particleGeneral Physics and Astronomy01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)RecoilXenonWIMPS046DM2[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]PhysicsRange (particle radiation)Time projection chamberDetectorHigh Energy Physics - Phenomenologydark matter: scatteringTPCAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsWIMP nucleon: interactionParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)WIMPDark matterFOS: Physical scienceschemistry.chemical_elementWIMP: massS030DI2Nuclear physicsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesrecoil[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physique010308 nuclear & particles physicsbackgrounddark matter: detectorAstronomieGran SassochemistryDirect Searchtime projection chamber: xenoninterpretation of experiments: XENON[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for neutrino-induced cascades with five years of AMANDA data

2010

Contains fulltext : 97339.pdf (Publisher’s version ) (Closed access) We report on the search for electromagnetic and hadronic showers ("cascades") produced by a diffuse flux of extraterrestrial neutrinos in the AMANDA neutrino telescope. Data for this analysis were recorded during 1001 days of detector livetime in the years 2000-2004. The observed event rates are consistent with the background expectation from atmospheric neutrinos and muons. An upper limit is derived for the diffuse flux of neutrinos of all flavors assuming a flavor ratio of v(e):v(mu):v(tau) = 1:1:1 at the detection site. The all-flavor flux of neutrinos with an energy spectrum Phi proportional to E(-2) is less than 5.0 x…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHadronFluxCosmic rayContext (language use)Cascades; NeutrinosAstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Cascades0103 physical sciencesNeutrinos010306 general physicsPhysicsFluxMuon010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyAstronomy and AstrophysicsCosmic-RaysNucleiHigh-Energy NeutrinosNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoNeutrino astronomy
researchProduct

Analysis of the XENON100 dark matter search data

2014

The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported.

Large Underground Xenon experimentPhysics - Instrumentation and DetectorsXenonWIMPPhysics::Instrumentation and DetectorsDirect detectionDark matterchemistry.chemical_elementFOS: Physical sciencesDarkSideWIMP Argon ProgrammeNuclear physicsXenonDark matterStatistical analysisNuclear ExperimentInstrumentation and Methods for Astrophysics (astro-ph.IM)PhysicsTime projection chamberAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)WIMPschemistryWeakly interacting massive particlesDark matter; Direct detection; WIMPs; XenonAstrophysics - Instrumentation and Methods for AstrophysicsAstroparticle Physics
researchProduct

ABERRANT EXPRESSION OF IL-22RA1 ON HEMATOPOIETIC CELLS AS IMMUNOLOGICALLY SIGNATURE OF PRIMARY SJOGREN’S SYNDROME AND SJOGREN-ASSOCIATED NON-HODGKIN …

2013

Background: Interleukin (IL)-22 is a potent mediator of cellular inflammatory responses that has been recently reported to play a role in the pathogenesis of primary Sjogren's Syndrome (p-SS) (1, 2) and of T and B lymphomas. IL-22 biological activity is initiated by binding to a cell-surface complex composed of two subunits, IL-22R1 and IL-10R2 receptor chains, and further regulated by interactions with a soluble binding protein, IL-22BP. Unlike the IL-10R2, which is constitutively expressed in many human tissues, IL-22R1 is not detectable in immune cells. Objectives: Aim of this study was to better characterize the role of IL-22 axis in the pathogenesis of p-SS and p-SSassociated lymphomas…

SSassociatedi lymphomasSettore MED/16 - ReumatologiaSettore BIO/13 - Biologia ApplicataIl-22Sjrogen's syndrome
researchProduct

Extending the search for neutrino point sources with iceCube above the horizon

2009

Point source searches with the IceCube neutrino telescope have been restricted to one hemisphere, due to the exclusive selection of upward going events as a way of rejecting the atmospheric muon background. We show that the region above the horizon can be included by suppressing the background through energy-sensitive cuts. This approach improves the sensitivity above PeV energies, previously not accessible for declinations of more than a few degrees below the horizon due to the absorption of neutrinos in Earth. We present results based on data collected with 22 strings of IceCube, extending its field of view and energy reach for point source searches. No significant excess above the atmosp…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Point source[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]media_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyAstrophysics01 natural sciencesDeclination[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]muon0103 physical sciencesNeutrinoJetsddc:550010303 astronomy & astrophysicsCosmic raysTelescopemedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysics010308 nuclear & particles physicsHorizon[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pionAstrophysics::Instrumentation and Methods for Astrophysicsand other elementary particlesDetectorcosmic ray detectorsand other elementary particle detectorsGamma-RaysNeutrino detector13. Climate actionSkyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLepton
researchProduct

Search for two-neutrino double electron capture of $^{124}$Xe with XENON100

2017

Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For $^{124}$Xe this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K-shell of $^{124}$Xe using 7636 kg$\cdot$d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90 % credibility limit on the half-life $T_{1/2}&gt;6.5\times10^{20}$ yr. We also evaluated the sensitivity of the XENON1T experiment, which is currently bein…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsElectron captureenergy resolutionFOS: Physical scienceschemistry.chemical_elementelectron: captureElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesBayesianX-rayneutrinoXenon0103 physical sciencesSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentPhysicsnucleus: decayTime projection chamberphotomultiplier010308 nuclear & particles physicsbackgroundInstrumentation and Detectors (physics.ins-det)dark matter: detectorAtomic shellsensitivitytime projection chamberGran SassoxenonchemistryNeutrinoAtomic physicsRadioactive decayexperimental results
researchProduct

Psoriatic Arthritis

2017

Psoriatic arthritis
researchProduct