0000000000211735

AUTHOR

Enrico Le Donne

showing 36 related works from this author

Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces

2015

We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in `Fractured fractals and broken dreams' by David and Semmes, or equivalently, Question 22 and hence also Question 24 in `Thirty-three yes or no questions about mappings, measures, and metrics' by Heinonen and Semmes. The non-minimality of the Heisenberg group is shown by giving an example of an Ahlfors $4$-regular metric space $X$ having big pieces of itself such that no Lipschitz map from a subset of $X$ to the Heisenberg group has image with positive measure, and by providing a Lipschitz map from the Heisenberg group to the space $X$ having as image the whole $X$. As part of proving the above re…

53C17 22F50 22E25 14M17General MathematicsSpace (mathematics)Heisenberg group01 natural sciencesMeasure (mathematics)Image (mathematics)Set (abstract data type)Ahlfors-regular distancesMathematics - Metric Geometry53C170103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)22E250101 mathematicsMathematicsDiscrete mathematicsmatematiikkamathematicsMathematics::Complex Variables010308 nuclear & particles physicsta111010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityMetric spaceMathematics - Classical Analysis and ODEsBounded function14M17; 22E25; 22F50; 53C17; Mathematics (all)14M1722F50
researchProduct

Universal infinitesimal Hilbertianity of sub-Riemannian manifolds

2019

We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.

Mathematics - Differential GeometryMetric Geometry (math.MG)Sobolev spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisRiemannin monistotdifferentiaaligeometriasub-Finsler manifoldMathematics - Metric GeometryDifferential Geometry (math.DG)infinitesimal hilbertianityFOS: MathematicsMathematics::Metric Geometrysub-Riemannian manifoldMathematics::Differential GeometrymonistotfunktionaalianalyysiMathematics::Symplectic Geometry53C23 46E35 53C17 55R25Analysis
researchProduct

Remarks about the Besicovitch Covering Property in Carnot groups of step 3 and higher

2016

International audience

Pure mathematicsProperty (philosophy)Applied MathematicsGeneral Mathematicsta111010102 general mathematics[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]16. Peace & justiceHomogeneous quasi-distances01 natural sciencesCarnot groups; Covering theorems; Homogeneous quasi-distances; Mathematics (all); Applied Mathematics010305 fluids & plasmasCombinatoricssymbols.namesakeCarnot groupsCovering theorems0103 physical sciencessymbolsMathematics (all)[MATH]Mathematics [math]0101 mathematicsCarnot cycle[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]ComputingMilieux_MISCELLANEOUSMathematicsProceedings of the American Mathematical Society
researchProduct

Isometric embeddings of snowflakes into finite-dimensional Banach spaces

2016

We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.

30L05 46B85 54C25 54E40 28A80Pure mathematicsmetric spacesGeneral MathematicsMathematicsofComputing_GENERALBanach space01 natural sciencesfunctional analysisCardinalityMathematics - Metric GeometryDimension (vector space)0103 physical sciencesFOS: MathematicsMathematics (all)Mathematics::Metric Geometry0101 mathematicsSnowflakeNormed vector spaceMathematicsConcave functionApplied Mathematicsta111010102 general mathematicsnormiavaruudetMetric Geometry (math.MG)normed spacesmetriset avaruudetMetric spacefractalsfraktaalit010307 mathematical physicsfunktionaalianalyysiMathematics (all); Applied MathematicsVector spaceProceedings of the American Mathematical Society
researchProduct

Assouad dimension, Nagata dimension, and uniformly close metric tangents

2013

We study the Assouad dimension and the Nagata dimension of metric spaces. As a general result, we prove that the Nagata dimension of a metric space is always bounded from above by the Assouad dimension. Most of the paper is devoted to the study of when these metric dimensions of a metric space are locally given by the dimensions of its metric tangents. Having uniformly close tangents is not sufficient. What is needed in addition is either that the tangents have dimension with uniform constants independent from the point and the tangent, or that the tangents are unique. We will apply our results to equiregular subRiemannian manifolds and show that locally their Nagata dimension equals the to…

Pure mathematicssub-Riemannian manifoldsGeneral Mathematics54F45 (Primary) 53C23 54E35 53C17 (Secondary)01 natural sciencessymbols.namesakeMathematics - Geometric TopologyDimension (vector space)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics (all)assouad dimensionMathematics::Metric GeometryPoint (geometry)0101 mathematicsMathematics010102 general mathematicsta111TangentMetric Geometry (math.MG)Geometric Topology (math.GT)16. Peace & justiceMetric dimensionAssouad dimension; Metric tangents; Nagata dimension; Sub-Riemannian manifolds; Mathematics (all)Metric spaceBounded functionNagata dimensionMetric (mathematics)symbols010307 mathematical physicsMathematics::Differential Geometrymetric tangentsLebesgue covering dimension
researchProduct

Universal differentiability sets and maximal directional derivatives in Carnot groups

2019

We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.

Pure mathematicsCarnot groupGeneral MathematicsDirectional derivative01 natural sciencesdifferentiaaligeometriasymbols.namesake0103 physical sciencesFOS: MathematicsCarnot group; Directional derivative; Lipschitz map; Pansu differentiable; Universal differentiability set; Mathematics (all); Applied MathematicsMathematics (all)Point (geometry)Differentiable function0101 mathematicsUniversal differentiability setEngel groupMathematics43A80 46G05 46T20 49J52 49Q15 53C17Directional derivativeuniversal differentiability setApplied Mathematicsta111010102 general mathematicsCarnot group16. Peace & justiceLipschitz continuityPansu differentiableFunctional Analysis (math.FA)Mathematics - Functional AnalysisHausdorff dimensionsymbols010307 mathematical physicsLipschitz mapfunktionaalianalyysiCarnot cycledirectional derivative
researchProduct

Isometries of nilpotent metric groups

2016

We consider Lie groups equipped with arbitrary distances. We only assume that the distance is left-invariant and induces the manifold topology. For brevity, we call such object metric Lie groups. Apart from Riemannian Lie groups, distinguished examples are sub-Riemannian Lie groups and, in particular, Carnot groups equipped with Carnot-Carath\'eodory distances. We study the regularity of isometries, i.e., distance-preserving homeomorphisms. Our first result is the analyticity of such maps between metric Lie groups. The second result is that if two metric Lie groups are connected and nilpotent then every isometry between the groups is the composition of a left translation and an isomorphism.…

Mathematics - Differential GeometryIsometriesPure mathematicsA ne transformationsGeneral Mathematics22E25 53C30 22F30Group Theory (math.GR)01 natural sciencesisometriesMathematics - Metric GeometryetäisyysFOS: MathematicsMathematics (all)Mathematics::Metric GeometryA ne transformations; Isometries; Nilpotent groups; Nilradical; Mathematics (all)0101 mathematicsdistanceMathematicsLie groupsmatematiikkamathematicsta111010102 general mathematicsLie groupMetric Geometry (math.MG)nilpotent groupsnilradicalComposition (combinatorics)Manifoldaffine transformationsNilpotentDifferential Geometry (math.DG)Nilpotent groupsMetric (mathematics)IsometryNilradicalIsomorphismMathematics - Group TheoryCounterexampleJournal de l’École polytechnique — Mathématiques
researchProduct

Time-Optimal Synthesis for Three Relevant Problems: The Brockett Integrator, the Grushin Plane and the Martinet Distribution

2015

We construct the time-optimal synthesis for 3 problems that are linear in the control and with polytopic constraints in the controls. Namely, the Brockett integrator, the Grushin plane, and the Martinet distribution. The main purpose is to illustrate the steps in solving an optimal control problem and in particular the use of second order conditions. The Grushin and the Martinet case are particularly important: the first is the prototype of a rank-varying distribution, the second of a non-equiregular structure.

EngineeringControl and Optimizationbusiness.industryPlane (geometry)ta111Structure (category theory)Optimal controlControl and Systems Engineering; Modeling and Simulation; Control and OptimizationModeling and simulationControl theoryControl and Systems EngineeringIntegratorModeling and SimulationTrajectoryoptimal control problemsMathematics::Metric GeometryOrder (group theory)Applied mathematics[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]businessDistribution (differential geometry)ComputingMilieux_MISCELLANEOUS
researchProduct

A note on topological dimension, Hausdorff measure, and rectifiability

2020

The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $\mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $\mathcal H^n$ is positive, $\mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $\mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Cs\"ornyei-Jones.

Applied MathematicsGeneral Mathematics010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMetric spacesymbols.namesakeCompact spaceMathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicssymbolsHausdorff measuremittateoria010307 mathematical physics0101 mathematicsLebesgue covering dimensionMathematicsProceedings of the American Mathematical Society
researchProduct

Bicycle paths, elasticae and sub-Riemannian geometry

2020

We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).

Mathematics - Differential GeometryGeodesicGeneral Physics and AstronomyGeometryRiemannian geometry01 natural sciencessymbols.namesakeMathematics - Metric GeometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematical PhysicsMathematics53C17 (Primary) 53A17 53A04 (Secondary)Group (mathematics)Plane (geometry)Applied Mathematics010102 general mathematicsMetric Geometry (math.MG)Statistical and Nonlinear Physics010101 applied mathematicsDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsMetric (mathematics)Euler's formulasymbolsNonlinearity
researchProduct

Corners in non-equiregular sub-Riemannian manifolds

2014

We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of (G.P. Leonardi and R. Monti, Geom. Funct. Anal. 18 (2008) 552-582). As an application of our main result we complete and simplify the analysis in (R. Monti, Ann. Mat. Pura Appl. (2013)), showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth. Mathematics Subject Classification. 53C17, 49K21, 49J15.

Mathematics - Differential GeometryPure mathematicsClass (set theory)Control and Optimizationregularity of geodesicsStructure (category theory)Mathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsGEOMSub-Riemannian geometry regularity of geodesics cornersMathematics - Optimization and ControlMathematicsta111Computational mathematicsMetric Geometry (math.MG)cornerssub-riemannian geometryComputational MathematicsCorners; Regularity of geodesics; Sub-Riemannian geometry; Control and Systems Engineering; Control and Optimization; Computational MathematicsDifferential Geometry (math.DG)Mathematics Subject ClassificationOptimization and Control (math.OC)Control and Systems EngineeringMathematics::Differential GeometryAnalysis of PDEs (math.AP)
researchProduct

Regularity properties of spheres in homogeneous groups

2015

We study left-invariant distances on Lie groups for which there exists a one-parameter family of homothetic automorphisms. The main examples are Carnot groups, in particular the Heisenberg group with the standard dilations. We are interested in criteria implying that, locally and away from the diagonal, the distance is Euclidean Lipschitz and, consequently, that the metric spheres are boundaries of Lipschitz domains in the Euclidean sense. In the first part of the paper, we consider geodesic distances. In this case, we actually prove the regularity of the distance in the more general context of sub-Finsler manifolds with no abnormal geodesics. Secondly, for general groups we identify an alg…

Mathematics - Differential GeometryPure mathematicsGeodesicjoukot (matematiikka)General MathematicsGroup Theory (math.GR)algebra01 natural sciencessets (mathematics)Homothetic transformationMathematics - Metric Geometry0103 physical sciencesEuclidean geometryFOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)spheres0101 mathematicsMathematics28A75 22E25 53C60 53C17 26A16homogeneous groupsmatematiikkamathematicsGroup (mathematics)Applied Mathematicsta111010102 general mathematicsLie groupMetric Geometry (math.MG)Lipschitz continuityAutomorphismDifferential Geometry (math.DG)regularity properties010307 mathematical physicsMathematics - Group TheoryMathematics (all); Applied Mathematics
researchProduct

Polynomial and horizontally polynomial functions on Lie groups

2022

We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $\mathfrak g$ of left-invariant vector fields on a Lie group $\mathbb G$ and we assume that $S$ Lie generates $\mathfrak g$. We say that a function $f:\mathbb G\to \mathbb R$ (or more generally a distribution on $\mathbb G$) is $S$-polynomial if for all $X\in S$ there exists $k\in \mathbb N$ such that the iterated derivative $X^k f$ is zero in the sense of distributions. First, we show that all $S$-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent $k$ in the previous defini…

Mathematics - Differential GeometryLeibman Polynomialnilpotent Lie groupsApplied Mathematicspolynomithorizontally affine functionsryhmäteoriaMetric Geometry (math.MG)polynomial mapsGroup Theory (math.GR)harmoninen analyysiFunctional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaMathematics - Metric GeometryDifferential Geometry (math.DG)precisely monotone setsFOS: Mathematicspolynomial on groupsMathematics - Group TheoryAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Metric equivalences of Heintze groups and applications to classifications in low dimension

2021

We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between Heintze groups. Then we will see how these results together with the existing tools related to isometries can be applied to groups of dimension 4 and 5 in particular. Thus we take steps towards determining all the equivalence classes of groups up to isometry and quasi-isometry. We completely solve the classification up to isometry for simply connected solvable groups in dimension 4, and for the subclass of groups of polynomial growth in dimension 5.

Mathematics - Differential GeometrydifferentiaaligeometriaDifferential Geometry (math.DG)Mathematics - Metric GeometryGeneral MathematicsFOS: MathematicsMathematics::Metric GeometryryhmäteoriaMetric Geometry (math.MG)Group Theory (math.GR)20F67 53C23 22E25 17B70 20F69 30L10 54E40Mathematics - Group Theorymetriset avaruudet
researchProduct

Space of signatures as inverse limits of Carnot groups

2021

We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in ℝn, as introduced by Chen. Hambly-Lyons’s result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in ℝn can be approximated by projections of some geodesics in some Carnot group of rank n, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.

SequencePure mathematicsControl and OptimizationRank (linear algebra)Geodesic010102 general mathematicsCarnot groupSpace (mathematics)01 natural sciencesComputational Mathematicssymbols.namesakeMetric spaceControl and Systems Engineering0103 physical sciencessymbolsMetric tree010307 mathematical physics0101 mathematicsCarnot cycleMathematicsESAIM: Control, Optimisation and Calculus of Variations
researchProduct

A metric characterization of Carnot groups

2013

We give a short axiomatic introduction to Carnot groups and their subRiemannian and subFinsler geometry. We explain how such spaces can be metrically described as exactly those proper geodesic spaces that admit dilations and are isometrically homogeneous.

Pure mathematicsGeodesicGeneral MathematicsApplied MathematicsMathematical analysisMetric Geometry (math.MG)Characterization (mathematics)symbols.namesakeMathematics - Metric GeometryHomogeneousCarnot groupsMetric (mathematics)symbolsFOS: MathematicsMathematics (all)Mathematics::Metric GeometryMathematics::Differential GeometrySubRiemannian geometryCarnot cycleCarnot groups; SubRiemannian geometry; Mathematics (all); Applied MathematicsAxiomMathematics
researchProduct

Lipschitz Carnot-Carathéodory Structures and their Limits

2022

AbstractIn this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption on the limit vector-fields structure, the distances associated to equi-Lipschitz vector-fields structures that converge uniformly on compact subsets, and to norms that converge uniformly on compact subsets, converge locally uniformly to the limit Carnot-Carathéodory distance. In the case in which the limit distance is boundedly compact, we show that the convergence of the distances is uniform on compact sets. We show an example in which the limit distance is not…

differentiaaligeometriaNumerical AnalysissäätöteoriaControl and OptimizationAlgebra and Number Theorysub-Riemannian geometryMitchell’s theoremControl and Systems Engineeringsub-Finsler geometryLipschitz vector fieldsmittateoria
researchProduct

Metric Lie groups admitting dilations

2019

We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, \infty)\rightarrow\mathtt{Aut}(G)$, $\lambda\mapsto\delta_\lambda$, so that $ d(\delta_\lambda x,\delta_\lambda y) = \lambda d(x,y)$, for all $x,y\in G$ and all $\lambda>0$. First, we show that all such distances are admissible, that is, they induce the manifold topology. Second, we characterize multiplicative one-parameter groups of Lie automorphisms that are dilations for some left-invariant distance in terms of algebraic properties of their infinitesimal generator. Third, we show that an admissible left-invariant distance on a Lie …

Group (mathematics)54E40 (Primary) 53C30 54E45 (Secondary)General MathematicsLie groupMetric Geometry (math.MG)Group Theory (math.GR)AutomorphismManifoldCombinatoricsMetric spaceMathematics - Metric GeometryMetric (mathematics)FOS: MathematicsLocally compact spaceInfinitesimal generatorMathematics - Group TheoryMathematics
researchProduct

Sets with constant normal in Carnot groups: properties and examples

2019

We analyze subsets of Carnot groups that have intrinsic constant normal, as they appear in the blowup study of sets that have finite sub-Riemannian perimeter. The purpose of this paper is threefold. First, we prove some mild regularity and structural results in arbitrary Carnot groups. Namely, we show that for every constant-normal set in a Carnot group its sub-Riemannian-Lebesgue representative is regularly open, contractible, and its topological boundary coincides with the reduced boundary and with the measure-theoretic boundary. We infer these properties from a cone property. Such a cone will be a semisubgroup with nonempty interior that is canonically associated with the normal directio…

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsBoundary (topology)Group Theory (math.GR)Characterization (mathematics)01 natural sciencesContractible spacesymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematicsGroup (mathematics)010102 general mathematicsCarnot groupMetric Geometry (math.MG)53C17 22E25 28A75 49N60 49Q15 53C38Differential Geometry (math.DG)Cone (topology)symbolsCarnot cycleConstant (mathematics)Mathematics - Group TheoryAnalysis of PDEs (math.AP)Commentarii Mathematici Helvetici
researchProduct

Toward a quasi-Möbius characterization of invertible homogeneous metric spaces

2020

We study locally compact metric spaces that enjoy various forms of homogeneity with respect to Mobius self-homeomorphisms. We investigate connections between such homogeneity and the combination of isometric homogeneity with invertibility. In particular, we provide a new characterization of snowflakes of boundaries of rank-one symmetric spaces of non-compact type among locally compact and connected metric spaces. Furthermore, we investigate the metric implications of homogeneity with respect to uniformly strongly quasi-Mobius self-homeomorphisms, connecting such homogeneity with the combination of uniform bi-Lipschitz homogeneity and quasi-invertibility. In this context we characterize spac…

Pure mathematicsGeneral MathematicsHomogeneity (statistics)010102 general mathematicsContext (language use)Type (model theory)01 natural sciencesMetric spaceMetric (mathematics)Heisenberg groupMathematics::Metric GeometryLocally compact space0101 mathematicsCut-pointMathematicsRevista Matemática Iberoamericana
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct

Субфинслерова задача на группе Картана

2019

Изучается задача субфинслеровой геометрии на свободной нильпотентной группе ранга $2$ глубины $3$. Такая группа также называется группой Картана, она имеет естественную структуру группы Карно, на которой вводится метрика с помощью $\ell _\infty $-нормы на ее первом слое. Используются методы теории оптимального управления. С помощью принципа максимума Понтрягина охарактеризованы экстремальные кривые. Описаны анормальные и особые дуги, построен релейный поток.

0209 industrial biotechnology020901 industrial engineering & automation010102 general mathematics02 engineering and technology0101 mathematics01 natural sciencesTrudy Matematicheskogo Instituta imeni V.A. Steklova
researchProduct

Extremal polynomials in stratified groups

2018

We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.

Statistics and Probabilityextremal polynomialsMathematics - Differential GeometryPure mathematicsGeodesicStructure (category theory)Group Theory (math.GR)Characterization (mathematics)algebra01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric Geometry53C17FOS: Mathematics0101 mathematicsAlgebraic numberMathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17; 49K30; 17B70Mathematics - Optimization and ControlMathematics010102 general mathematicsStatisticsta111polynomitProlongation53C17 49K30 17B70Lie groupMetric Geometry (math.MG)abnormal extremals010101 applied mathematicsNilpotent Lie algebraNilpotentsub-Riemannian geometryabnormal extremals extremal polynomials Carnot groups sub-Riemannian geometryAbnormal extremals; Carnot groups; Extremal polynomials; Sub-Riemannian geometry; Analysis; Statistics and Probability; Geometry and Topology; Statistics Probability and UncertaintyDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groups17B70Probability and UncertaintyGeometry and TopologyStatistics Probability and UncertaintyMathematics - Group TheoryAnalysisAnalysis of PDEs (math.AP)Mathematics - Differential Geometry; Mathematics - Differential Geometry; Mathematics - Analysis of PDEs; Mathematics - Group Theory; Mathematics - Metric Geometry; Mathematics - Optimization and Control; 53C17 49K30 17B7049K30
researchProduct

A Cornucopia of Carnot groups in Low Dimensions

2022

Abstract Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path distance that is homogeneous with respect to the automorphisms induced by the derivation, this metric space is known as Carnot group. Carnot groups appear in several mathematical contexts. To understand their algebraic structure, it is useful to study some examples explicitly. In this work, we provide a list of low-dimensional stratified groups, express their Lie product, and present a basis of left-invariant vector fields, together with their respective left-invaria…

Mathematics - Differential GeometryApplied Mathematicsnilpotent Lie algebrasLien ryhmätfree nilpotent groupsharmoninen analyysistratified groupsdifferentiaaligeometria510 MathematicsDifferential Geometry (math.DG)Carnot groupsFOS: Mathematicsexponential coordinatesGeometry and Topologyassociated Carnot-graded Lie algebra53C17 43A80 22E25 22F30 14M17Analysis
researchProduct

Sub-Finsler Geodesics on the Cartan Group

2018

This paper is a continuation of the work by the same authors on the Cartan group equipped with the sub-Finsler $\ell_\infty$ norm. We start by giving a detailed presentation of the structure of bang-bang extremal trajectories. Then we prove upper bounds on the number of switchings on bang-bang minimizers. We prove that any normal extremal is either bang-bang, or singular, or mixed. Consequently, we study mixed extremals. In particular, we prove that every two points can be connected by a piecewise smooth minimizer, and we give a uniform bound on the number of such pieces.

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematicsPhysics::General PhysicsGeodesic49K1549J1502 engineering and technology01 natural sciencesContinuationGeneral Relativity and Quantum CosmologyPhysics::Popular Physics020901 industrial engineering & automationMathematics (miscellaneous)Geometric controlFOS: Mathematics0101 mathematicsMathematics - Optimization and ControlMathematics010102 general mathematicsta111matemaattinen optimointiPhysics::History of Physics49J15; 49K15; Cartan group; geometric control; Sub-Finsler geometry; time-optimal control; Mathematics (miscellaneous)säätöteoriaDifferential Geometry (math.DG)Optimization and Control (math.OC)geometric controlNorm (mathematics)Piecewisetime-optimal controldifferentiaaliyhtälötSub-Finsler geometryCartan groupRegular and Chaotic Dynamics
researchProduct

Regularity of sets with constant horizontal normal in the Engel group

2012

In the Engel group with its Carnot group structure we study subsets of locally finite subRiemannian perimeter and possessing constant subRiemannian normal. We prove the rectifiability of such sets: more precisely we show that, in some specific coordinates, they are upper-graphs of entire Lipschitz functions (with respect to the Euclidean distance). However we find that, when they are written as intrinsic horizontal upper-graphs with respect to the direction of the normal, then the function defining the set might even fail to be continuous. Nevertheless, we can prove that one can always find other horizontal directions for which the set is the intrinsic horizontal upper-graph of a function t…

Mathematics - Differential GeometryStatistics and ProbabilityClass (set theory)Pure mathematicsStructure (category theory)Group Theory (math.GR)Analysis; Statistics and Probability; Geometry and Topology; Statistics Probability and UncertaintyMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric GeometryEngel groupMathematicsta111StatisticsCarnot groupMetric Geometry (math.MG)Function (mathematics)Lipschitz continuityEuclidean distanceDifferential Geometry (math.DG)Probability and UncertaintyGeometry and TopologyStatistics Probability and UncertaintyConstant (mathematics)Mathematics - Group TheoryAnalysisAnalysis of PDEs (math.AP)Communications in Analysis and Geometry
researchProduct

Nonexistence of Quasiconformal Maps Between Certain Metric Measure Spaces

2013

We provide new conditions that ensure that two metric measure spaces are not quasiconformally equivalent. As an application, we deduce that there exists no quasiconformal map between the sub-Riemannian Heisenberg and roto-translation groups.

Mathematics - Differential Geometrymetric measure spacesPure mathematicsMathematics::Dynamical SystemsMathematics::Complex VariablesGeneral MathematicsExistential quantificationta111010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)quasiconformal equivalenceDifferential Geometry (math.DG)Mathematics - Metric Geometryquasiconformal mappingsMathematics - Classical Analysis and ODEs0103 physical sciencesMetric (mathematics)Classical Analysis and ODEs (math.CA)FOS: MathematicsMathematics (all)010307 mathematical physics0101 mathematicsMathematicsInternational Mathematics Research Notices
researchProduct

On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups.

2021

AbstractThis note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries and we compare the quasi-isometric classification with the bi-Lipschitz classification. On the other hand, we study the problem whether two quasi-isometrically equivalent Lie groups may be made isometric if equipped with suitable left-invariant Riemannian metrics. We show that this is the case for three-dimensional simply connected groups, but it is not true in general for multiply connec…

Pure mathematicsDimension (graph theory)Quasi-isometricisometric53C2301 natural sciencesdifferentiaaligeometria0103 physical sciencesSimply connected spaceMathematics::Metric Geometry0101 mathematicsIsometric20F65bi-LipschitzMathematicsTransitive relationOriginal PaperLie groupsRiemannian manifold010102 general mathematics22D05ryhmäteoriaLie groupBi-Lipschitz; Classification; Isometric; Lie groups; Quasi-isometric; Riemannian manifoldRiemannian manifoldLipschitz continuityClassificationmetriset avaruudetquasi-isometricBi-LipschitzclassificationDifferential geometrygeometria010307 mathematical physicsGeometry and TopologyMathematics::Differential GeometryCounterexampleGeometriae dedicata
researchProduct

Smooth surjections and surjective restrictions

2017

Given a surjective mapping $f : E \to F$ between Banach spaces, we investigate the existence of a subspace $G$ of $E$, with the same density character as $F$, such that the restriction of $f$ to $G$ remains surjective. We obtain a positive answer whenever $f$ is continuous and uniformly open. In the smooth case, we deduce a positive answer when $f$ is a $C^1$-smooth surjection whose set of critical values is countable. Finally we show that, when $f$ takes values in the Euclidean space $\mathbb R^n$, in order to obtain this result it is not sufficient to assume that the set of critical values of $f$ has zero-measure.

TopologíaPure mathematicsmetric spaces46B80 46T20General Mathematicssmooth surjective mappingBanach spacesurjective restrictionnonlinear quotient01 natural sciencesfunctional analysisSurjective functionuniformly open mapMathematics - Metric GeometryFOS: MathematicsMathematics (all)Order (group theory)Countable set0101 mathematicsAnálisis funcional y teoría de operadoresDensity character; Nonlinear quotient; Smooth surjective mapping; Surjective restriction; Uniformly open map; Mathematics (all)MathematicsEuclidean spaceta111010102 general mathematicsMetric Geometry (math.MG)16. Peace & justicemetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsCharacter (mathematics)density characterfunktionaalianalyysiBijection injection and surjectionSubspace topology
researchProduct

Conformal equivalence of visual metrics in pseudoconvex domains

2017

We refine estimates introduced by Balogh and Bonk, to show that the boundary extensions of isometries between smooth strongly pseudoconvex domains in $\C^n$ are conformal with respect to the sub-Riemannian metric induced by the Levi form. As a corollary we obtain an alternative proof of a result of Fefferman on smooth extensions of biholomorphic mappings between pseudoconvex domains. The proofs are inspired by Mostow's proof of his rigidity theorem and are based on the asymptotic hyperbolic character of the Kobayashi or Bergman metrics and on the Bonk-Schramm hyperbolic fillings.

Mathematics - Differential GeometryComputer Science::Machine LearningPure mathematicsGeneral Mathematics32T15 32Q45 32H40 53C23 53C17Rigidity (psychology)Conformal mapMathematical proofComputer Science::Digital Libraries01 natural sciencesdifferentiaaligeometriaStatistics::Machine LearningCorollaryMathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics::Metric GeometryComplex Variables (math.CV)0101 mathematicsEquivalence (formal languages)kompleksifunktiotMathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsMetric Geometry (math.MG)16. Peace & justiceDifferential Geometry (math.DG)Bounded functionComputer Science::Mathematical Software010307 mathematical physicsMathematische Annalen
researchProduct

A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries

2017

AbstractCarnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with respect to the distance. We present the basic theory of Carnot groups together with several remarks.We consider them as special cases of graded groups and as homogeneous metric spaces.We discuss the regularity of isometries in the general case of Carnot-Carathéodory spaces and of nilpotent metric Lie groups.

Pure mathematicsmetric groupssub-finsler geometryengineering.material01 natural sciencesdifferentiaaligeometriasymbols.namesakesub-Finsler geometryMathematics::Metric Geometry0101 mathematics22f3014m17MathematicsPrimer (paint)QA299.6-433homogeneous groupshomogeneous spacesApplied Mathematics010102 general mathematics05 social sciencesryhmäteorianilpotent groupsCarnot groups; homogeneous groups; homogeneous spaces; metric groups; nilpotent groups; sub-Finsler geometry; sub-Riemannian geometry; Analysis; Geometry and Topology; Applied Mathematicssub-riemannian geometrysub-Riemannian geometry43a8053c17Carnot groupscarnot groupsengineeringsymbols22e25Geometry and Topology0509 other social sciences050904 information & library sciencesCarnot cycleAnalysisAnalysis and Geometry in Metric Spaces
researchProduct

Sard property for the endpoint map on some Carnot groups

2016

In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizat…

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematics53C17 22F50 22E25 14M17SubvarietyGroup Theory (math.GR)02 engineering and technologySard's property01 natural sciencesSet (abstract data type)020901 industrial engineering & automationAbnormal curves; Carnot groups; Endpoint map; Polarized groups; Sard's property; Sub-Riemannian geometry; Analysis; Mathematical PhysicsMathematics - Metric GeometryFOS: MathematicsPoint (geometry)Canonical mapAbnormal curves; Carnot groups Endpoint map Polarized groups Sard's property Sub-Riemannian geometry Analysis0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsta111Polarized groupsCarnot groupLie groupEndpoint mapMetric Geometry (math.MG)Base (topology)ManifoldSub-Riemannian geometryDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groupsAbnormal curvesMathematics - Group TheoryAnalysis
researchProduct

Semigenerated Carnot algebras and applications to sub-Riemannian perimeter

2021

This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call semigenerated those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In add…

differentiaaligeometriaconstant intrinsic normalfinite sub-Riemannian perimetersemigroup generatedCarnot algebratrimmed algebraMathematics::Metric Geometryryhmäteoriamittateoriahorizontal half-spacetipe diamondEngel-type algebrasLie wedge
researchProduct

Space of signatures as inverse limits of Carnot groups

2021

We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in ℝn, as introduced by Chen. Hambly-Lyons’s result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in ℝn can be approximated by projections of some geodesics in some Carnot group of rank n, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.…

Carnot groupsignature of pathsryhmäteoriametric treeinverse limitsub-Riemannian distancedifferentiaaligeometria510 Mathematicspath lifting propertysubmetryMathematics::Metric GeometryMathematics::Differential Geometrymittateoriafree nilpotent groupstokastiset prosessit
researchProduct

Nilpotent Groups and Bi-Lipschitz Embeddings Into L1

2022

We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is abelian. Our proof follows the work of Cheeger and Kleiner, by considering the pull-back distance of a Lipschitz map into L1 and representing it using a cut measure. We show that such cut measures, and the induced distances, can be blown up and the blown-up cut measure is supported on “generic” tangents of the original sets. By repeating such a blow-up procedure, one obtains a cut measure supported on half-spaces. This differentiation result then is used to prove that bi-Lipsch…

differentiaaligeometriaryhmäteoriaLien ryhmätfunktionaalianalyysimetriset avaruudet
researchProduct

Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces

2020

This paper is related to the problem of finding a good notion of rectifiability in sub-Riemannian geometry. In particular, we study which kind of results can be expected for smooth hypersurfaces in Carnot groups. Our main contribution will be a consequence of the following result: there exists a -hypersurface without characteristic points that has uncountably many pairwise non-isomorphic tangent groups on every positive-measure subset. The example is found in a Carnot group of topological dimension 8, it has Hausdorff dimension 12 and so we use on it the Hausdorff measure . As a consequence, we show that any Lipschitz map defined on a subset of a Carnot group of Hausdorff dimension 12, with…

codimension-one rectifiabilitysmooth hypersurface1ryhmäteoriaIntrinsic Lipschitz graphIntrinsic rectifiable setsubmanifoldsdifferentiaaligeometriaIntrinsic Cintrinsic Lipschitz graphCarnot groupsSmooth hypersurfaceMathematics::Metric Geometryintrinsic rectifiable setmittateoriaCodimension-one rectifiabilityCarnot groups; Codimension-one rectifiability; Intrinsic C; 1; submanifolds; Intrinsic Lipschitz graph; Intrinsic rectifiable set; Smooth hypersurface
researchProduct