0000000000410338
AUTHOR
Francesc Teixidor
Borane reaction chemistry. Alkyne insertion reactions into boron-containing clusters. Products from the thermolysis of [6,9-(2-HC[triple bond]C-C5H4N)2-arachno-B10H12].
The stirring of [ortho-(HC[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] in benzene affords [6,9-{ortho-(HC[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 1 in 93% yield. In the solid state, 1 has an extended complex three-dimensional structure involving intramolecular dihydrogen bonding, which accounts for its low solubility. Thermolysis of 1 gives the known [1-(ortho-C(5)H(4)N)-1,2-closo-C(2)B(10)H(11)] 2 (13%), together with new [micro-5(N),6(C)-(NC(5)H(4)-ortho-CH(2))-nido-6-CB(9)H(10)] 3 (0.4%), [micro-7(C),8(N)-(NC(5)H(4)-ortho-CH(2))-nido-7-CB(10)H(11)] (0.4%) , 4 binuclear [endo-6'-(closo-1,2-C(2)B(10)H(10))-micro-(1(C),exo-6'(N))-(ortho-C(5)H(4)N)-micro-(exo-8'(C),exo-9'(N))-(…
Synthesis, reactivity and structural studies of selenide bridged carboranyl compounds.
Reaction of the lithium salt Li[1-R-1,2-closo-C(2)B(10)H(10)] with selenium under mild conditions, followed by hydrolysis gave the diselenide compound (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) in contrast to the well-reported mercapto compounds 1-SH-2-R-1,2-closo-C(2)B(10)H(10) obtained using a similar synthetic procedure. Details for the preparation and X-ray structural characterisation of the new compounds (2-Me-1,2-closo-C(2)B(10)H(10))(2)Se, (1-Se-2-R-1,2-closo-C(2)B(10)H(10))(2) (R = Me, Ph, ) are specified. To further explore the mechanism of the dimerization reaction, the complex [Au(1-Se-2-Me-1,2-closo-C(2)B(10)H(10))(PPh(3))] was synthesized, confirming the existence of the intermedia…
“Water-stable boron-iodinated dicarbollide dianions [7,8-nido-C2H2B9I9]2−and [7,8-nido-C2H2B9I8H]2−”
The reaction of 3,4,5,7,8,9,10,11,12-I(9)-1,2-closo-C(2)B(10)H(3) with KOH/EtOH gave a mixture of the boron periodinated [1,2,3,4,5,6,9,10,11-I(9)-7,8-nido-C(2)B(9)H(2)](2-) and the highly iodinated on boron [1,2,4,5,6,9,10,11-I(8)-7,8-nido-C(2)B(9)H(3)](2-) in approximately 50% each. Moreover, 3,4,5,6,7,8,9,10,11,12-I(10)-1,2-closo-C(2)B(10)H(2) was reacted with KOH/EtOH to purely produce [1,2,3,4,5,6,9,10,11-I(9)-7,8-nido-C(2)B(9)H(2)](2-). It is the first dinegative dicarbollide stable in water or protic solvent reported in literature.
Restricted rotation in unbridged sandwich complexes: rotational behavior of closo-[Co(eta 5-NC4H4)(C2B9H11)] derivatives.
Rotation about the centroid/ metal/centroid axis in ferrocene is facile; the activation energy is 1-5 kcal mol - 1 . The structurally similar sandwich complexes derived from closo-[3-Co(η 5 -NC 4 H 4 )-1,2-C 2 B 9 H 1 1 ] (1) have a different rotational habit. In 1, the cis rotamer in which the pyrrolyl nitrogen atom bisects the carboranyl cluster atoms is 3.5 kcal mol - 1 more stable in energy than the rotamer that is second lowest in energy. This cis rotamer is wide, spanning 216°, and may be split into three rotamers of almost equal energy by substituting the N and the carboranyl carbon atoms adequately. To support this statement, closo-[3-Co(η 5 -NC 4 H 4 )-1,2-(CH 3 ) 2 -1,2-C 2 B 9 H …
Carborane-stilbene dyads: influence of substituents and cluster isomers on the photoluminescence properties
Two novel styrene-containing meta-carborane derivatives substituted at the second carbon cluster atom (Cc) with either a methyl (Me), or a phenyl (Ph) group, are introduced herein alongside with a new set of stilbene-containing ortho- (o-) and meta- (m-) carborane dyads. The latter set of compounds has been prepared from styrenecontaining carborane derivatives via Heck coupling reaction. High regioselectivity has been achieved for these compounds by using a combination of palladium complexes [Pd2(dba)3]/[Pd(t-Bu3P)2] as a catalytic system, yielding exclusively E isomers. All compounds have been fully characterized and the crystal structures of seven of them analyzed by X-ray diffraction. Th…
Chelation of a proton by oxidized diphosphines
Abstract The chelation of a proton by oxidized diphosphines is studied for the first time both experimentally and theoretically. As a proof of concept the rare case where two different H-bond systems exist in one compound, H[7,8-(OP i Pr 2 ) 2 -7,8- nido -C 2 B 9 H 10 ] is reported. Based on NBO, QTAIM and ELF calculations, the P–O⋯H + ⋯O–P interactions were characterized as strong hydrogen bonds.
Controlled Direct Synthesis of C-Mono- and C-Disubstituted Derivatives of [3,3′-Co(1,2-C2B9H11)2]− with Organosilane Groups: Theoretical Calculations Compared with Experimental Results
Mono- and dilithium salts of [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-), (1(-)), react with different chlorosilanes (Me(2)SiHCl, Me(2)SiCl(2), Me(3)SiCl and MeSiHCl(2)) with an accurate control of the temperature to give a set of novel C(c)-mono- (C(c) = C(cluster)) and C(c)-disubstituted cobaltabis(dicarbollide) derivatives with silyl functions: [1-SiMe(2)H-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (3(-)); [1,1'-mu-SiMe(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (4(-)); [1,1'-mu-SiMeH-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (5(-)); [1-SiMe(3)-3,3'-Co(1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))](-) (6(-)) and [1,1'-(SiMe(3))(2)-3,3'-Co(1,2-C(2)B(9)H(10))(2)](-) (7(-)). In a similar way, the [8,8'-mu-(1''…
Synthesis, reactivity and structural studies of carboranyl thioethers and disulfides.
The equimolar reaction of 1-SH-2-R-1,2-closo-C2B10H10 (R = Me, H, Ph) with KOH in ethanol produces the thiolate species [1-S-2-R-1,2-closo-C2B10H10]−. These react with iodine to give the disulfide bridged dicluster (1-S-2-R-1,2-closo-C2B10H10)2 (R = H, Me, Ph) compounds as analytically pure, white and air-stable solids in high yield. Synthesis of monothioether bridged species is synthetically more difficult. In fact three procedures have been tested to obtain the thioether bridged dicluster compounds (2-R-1,2-closo-C2B10H10)2S (R = Me, H, Ph) but only (2-Me-1,2-closo-C2B10H10)2S was successfully synthesized and characterized. Attempts to produce mixed compounds (1-R-1,2-closo-C2B10H10)S(1-R…
Interplay of hydrogen bonding and π–π interactions in the molecular complex of 2,6-lutidine N-oxide and water
Abstract The crystal and molecular structure of 2,6-lutidine N-oxide monohydrate (1) has been determined by X-ray diffraction analysis. Each water molecule is acting as bridging ligand between the N→O moieties of two 2,6-lutidine N-oxide molecules through moderate strong intermolecular hydrogen bonding (O–H⋯O, O⋯O distances are 2.787(2) and 2.832 (2) A) giving rise to a one-dimensional (1D) polymeric helical chain. A two-dimensional (2D) layered network is then formed by self-assembly of 1D helical chains via strong π–π interactions of the aromatic rings (interplanar distances 3.385 A). The molecular structure of 1 is compared with that for the already reported molecular structures of 2-ace…
[Et4N][7-Me2S-nido-B11H12]
Tetraethylammonium 7-dimethylsulfanyl-nido-dodecahydroundecaborate, [Et(4)N][7-Me(2)S-nido-B(11)H(12)] or C(8)H(20)N(+).C(2)H(18)B(11)S(-), is a product of the deprotonation of [7-Me(2)S-nido-B(11)H(13)] with KHBEt(3) and precipitation with tetraethylammonium chloride. The effect of removing one endo-terminal H atom is to cause a general contraction of the open-face B-B distances.
Intramolecular Communication in Anionic Oxidized Phosphanes through a Chelated Proton
Oxidation of the 1,2-(PR2 )2 -1,2-closo-C2 B10 H10 (R=Ph, iPr) platform with hydrogen peroxide in acetone is a two-step procedure in which partial deboronation of the closo cluster and oxidation of the phosphorus atoms occur. Based on NMR spectroscopic and kinetic data, we demonstrate that the phosphorus atoms are oxidized in the first step, followed by cluster deboronation. DFT calculations and natural-bond orbital (NBO) analysis were used to obtain insight into the electronic structures of diphosphane ortho-carborane derivatives.
Crystal structure and Hirshfeld surface analysis of [N(CH3)4][2,2′-Fe(1,7-closo-C2B9H11)2]
This work investigates the meta-ferrabis(dicarbollide) anion that was isolated as salt of tetramethylammonium. The structure of the obtained crystal consisted of discrete [2,2′-Fe(1,7-closo-C2B9H11)2]− anions and disordered [N(CH3)4]+ cations. The anion had a considerable chemical stability ensured by ionic and Van der Waals interactions. Thus, Hirshfeld surfaces and fingerprint plot were used to visualize, explore, and quantify intermolecular interactions in the crystal lattice of the title compound. This investigation proved that close contacts were dominated by H⋯H interactions. peerReviewed
Water soluble organometallic small molecules as promising antibacterial agents: synthesis, physical-chemical properties and biological evaluation to tackle bacterial infections
This work was supported by the Spanish Ministerio de Economia y Competitividad (PID2019-106832RB-100, and SAF2017-82261-P grant cofounded by the European Regional Development Fund) and the Generalitat de Catalunya (2017SGR1720). J. A. M. Xavier acknowledges DOC-FAM program under the Marie Sklodowska-Curie grant agreement N degrees 754397. A. B. Buades, M. Nuez and J. A. M. Xavier are enrolled in the PhD program of the UAB.
Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP.
The anionic chelating ligand [1,1'-(PPh 2 ) 2 -3,3'-Co(1,2-C 2 B 9 H 1 0 ) 2 ] - has been synthesized from [3,3'-Co(1,2-C 2 B 4 H 1 1 ) 2 ] - in very good yield in a one-pot process with an easy work-up procedure. The coordinating ability of this ligand has been studied with Group 11 metal ions (Ag, Au) and with transition-metal ions (Pd, Rh). The two dicarbollide halves of the [1,1'-(PPh 2 ) 2 -3,3'-Co(1,2-C 2 B 9 H 1 0 ) 2 ] - ligand can swing about one axis in a manner analogous to the constituent parts of BINAP and ferrocenyl phosphine derivatives. All these ligands function as hinges, with the most important property in relation to the coordination requirements of the metal being the P…
Synthesis, reactivity and complexation studies of N,S exo-heterodisubstituted o-carborane ligands. Carborane as a platform to produce the uncommon bidentate chelating (pyridine)N-C-C-C-S(H) motif
The synthesis of N,S-heterodisubstituted 1-(2'-pyridyl)-2-SR-1,2-closo-C2B10H10 compounds (R = Et, 2; R = (i)Pr, 3) has been accomplished starting from 1-(2'-pyridyl)-l,2-closo-C2B10H11 (1), and their partial deboronation reaction leading to the structurally chiral [7-(2'-pyridyl)-8-SR-7,8-nido-C2B9H10]-derivatives (R = Et, [4]-; R = (i)Pr, [5]-) has been studied. Capillary electrophoresis combined with the chiral selector alpha-cyclodextrin has permitted the separation of the electrophoretically pure racemic [7-(2'-pyridyl)-8-SR-7,8-nido-C2B9H11]- ions into two peaks each one corresponding to the interaction of one enantiomer with the alpha-cyclodextrin. The N,S-heterodisubstituted o-carbo…
A versatile rigid binucleating ligand for Rh2(μ-Cl)2 moieties: its application as a catalyst in hydrogenation and cyclopropanation
A rigid non-deforming "MCl 2 M" binucleating ligand [7,8-μ-S(4'-C 6 H 3 (CH 3 ))S-C 2 B 9 H 1 0 ] - able to held the two rhodium atoms in a cooperative distance has been synthesized. The original two bridging chlorides are retained in [Rh 2 (C 5 Me 5 ) 2 Cl 2 {7,8-μ-S(4'-C 6 H 3 (CH 3 ))S-C 2 B 9 H 1 0 }] + . Hydrogenation of 1-hexene is 10 times faster with [Rh 2 (C 5 Me 5 ) 2 Cl 2 {7,8-μ-S(4'-C 6 H 3 (CH 3 ))S-C 2 B 9 H 1 0 }] + than with [Rh 2 (C 5 Me 5 ) 2 Cl 4 ]. A hydrogenation mechanism has been proposed which assumes that [Rh 2 (C 5 Me 5 ) 2 (Cl)(H){7,8-μ-S(4'-C 6 H 3 (CH 3 ))S-C 2 B 9 H 1 0 }] + is the first generated species in the process.
Relevance of the Electronegativity of Boron inη5-Coordinating Ligands: Regioselective Monoalkylation and Monoarylation in Cobaltabisdicarbollide[3,3′-Co(1,2-C2B9H11)2]− Clusters
Regioselective monoalkylation and monoarylation in cobaltabisdicarbollide clusters has been achieved starting from Cs[8-I-3,3'-Co(1,2-C 2 B 9 H 1 0 )(1',2'-C 2 B 9 H 1 1 )] by cross-coupling reactions between a B-I fragment andan appropriate Grignard reagent in the presence of a Pd catalyst and CuT. A considerable number of monoalkylated and monoarylated derivatives have been synthesized, which allowed study of the influence of boron in metallocene-type ligands and the effect of alkyl and aryl substituents on boron in boron anionic clusters. Experimental data from UV/ Vis spectroscopy, E 1 / 2 measurements, and X-ray diffraction analysis, and supported by EHMO and ab initio analyses, indica…
Aqueous self-assembly and cation selectivity of cobaltabisdicarbollide dianionic dumbbells.
The anion [3,3'-Co(C2B9H11)2](-) ([COSAN](-)) produces aggregates in water. These aggregates are interpreted to be the result of C-H⋅⋅⋅H-B interactions. It is possible to generate aggregates even after the incorporation of additional functional groups into the [COSAN](-) units. The approach is to join two [COSAN](-) anions by a linker that can adapt itself to act as a crown ether. The linker has been chosen to have six oxygen atoms, which is the ideal number for K(+) selectivity in crown ethers. The linker binds the alkaline metal ions with different affinities; thus showing a distinct degree of selectivity. The highest affinity is shown towards K(+) from a mixture containing Li(+), Na(+), …
Neutral nido-heteroboranes with non ionisable hydrogen as arenes in coordination
Designed ligands have been synthesised to produce the first arene-like metallacarborane. For arene-like coordination the number of electronegative elements on the coordinating site must be kept to a minimum. Choosing ligands with bulky substituents on the heteroatom allows easy rearrangement and arene-like coordination. This is more hampered the higher the number of hetereoatoms to be re-located.
Amino‐Substituted Ferra‐bis(tricarbollides) − Metallatricarbaboranes Designed for Linear Molecular Constructions
Reactions between high purity FeCl2 and the anion [nido-7-(tBuHN)-7,8,9-C3B8H10)]− (1−) have been used for efficient syntheses of the twelve-vertex double-cluster metallatricarbollide complexes of the para,para (p,p) type [closo-9,9′(RHN)2-commo-2,2′-FeII-1,7,9-(C3B8H10)-1′,7′,9′-(C3B8H10)] (2) (2a, R = tBu and 2b, R = H) (yields 42−45% for 2a). Compound 2b, which contains two reactive amino substituents conveniently attached to the tricarbollide subclusters in p-positions with respect to the metal center, was prepared via facile cleavage of the tBu substituent in 2a either by AlCl3 or by thermal means. The structure of 2b constitutes a good setting for the synthesis of building blocks for …
Towards Multifunctional Materials Incorporating Elastomers and Reversible Redox-Active Fragments
This paper presents a novel and unique feature of metallacarboranes, consisting of the linkage of this redox electro-active site to a stretchable polymer. This is based on polyTHF, a known and applied material. This hybrid material has the two ends functionalized: one with the aforemen- tioned redox molecule and the other with a terminal OH group, both linked by a molecular spring. Moreover, the redox electro-active molecules can be synthesized with either cobalt (cobaltabisdicarbollide) or with iron (ferrabisdi- carbollide), species whose respective E1/2 value differs by almost 1 V. The polymerization mechanism, based on an in- termediate molecular crystal structure, is explained through a…
Synthesis and fluorescence emission of neutral and anionic di- and tetra-carboranyl compounds
A new family of photoluminescent neutral and anionic di-carboranyl and tetra-carboranyl derivatives have been synthesized and characterized. The reaction of α,α'-bis(3,5-bis(bromomethyl)phenoxy-m-xylene with 4 equiv. of the monolithium salt of 1-Ph-1,2-C(2)B(10)H(11) or 1-Me-1,2-C(2)B(10)H(11) gives the neutral tetracarboranyl-functionalized aryl ether derivatives closo-1 and closo-2, respectively. The addition of the monolithium salt of 1-Ph-1,2-closo-C(2)B(10)H(11) to α,α,'-dibromo-m-xylene or 2,6-dibromomethyl-pyridine gives the corresponding di-carboranyl derivatives closo-3 and closo-4. These compounds, which contain four or two closo clusters, were degraded using the classical method,…
Sequential Nucleophilic−Electrophilic Reactions Selectively Produce Isomerically Pure Nona‐ B ‐Substituted o ‐Carborane Derivatives
Nine equal substituents on the intensively studied o-carborane have been obtained for the first time by a combined nucleophilic-electrophilic reaction sequence. Iodine and methyl groups have been introduced to prove the generality of the method. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)
The nature of the chlorination reaction in [1-C6H5-1-CB9H9]- boron clusters.
Preferential chlorination sites resulting from sequential radical substitution reactions in carborane anions have been studied combining experimental and computational methods. Results have been obtained experimentally by mixing the substrate with incremental ratios of N-chlorosuccinimide and analysing the resulting samples by negative MALDI-TOF-MS. The theoretical results have been obtained calculating the 2a-NPA charges on the starting material and computing the most energetically favourable reaction pathway.
Uncommon coordination behaviour of P(S) and P(Se) units when bonded to carboranyl clusters: experimental and computational studies on the oxidation of carboranyl phosphine ligands.
Oxidation of closo-carboranyl diphosphines 1,2-(PR(2))(2)-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr) and closo-carboranyl monophosphines 1-PR(2)-2-R'-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr, Cy; R'=Me, Ph) with hydrogen peroxide, sulfur and elemental black selenium evidences the unique capacity of the closo-carborane cluster to produce uncommon or unprecedented P/P(E) (E=S, Se) and P=O/P=S chelating ligands. When H(2)O(2) reacts with 1,2-(PR(2))(2)-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr), they are oxidized to 1,2-(OPR(2))(2)-1,2-closo-C(2)B(10)H(10) (R=Ph, iPr). However, when S and Se are used, different reactivity is found for 1,2-(PPh(2))(2)-1,2-closo-C(2)B(10)H(10) and 1,2-(PiPr(2))(2)-1,2-closo-C(2)…
From Mono- to Poly-Substituted Frameworks: A Way of Tuning the Acidic Character of C-c-H in o-Carborane Derivatives
[EN] The incorporation of iodine atoms onto the boron vertices of the o-carborane framework causes, according to spectroscopic data, a uniform increase in the acidic character of the C-c-H (C-c= cluster carbon) vertices, whereas the incorporation of methyl groups onto the boron vertices of the o-carborane framework reduces their acidity. Methyl groups when attached to boron are electron-withdrawing in boron clusters, whereas iodine atoms bonded to boron act as electron donors. This has been proven on B-methyl and B-iodinated o-carboranes with NMR spectroscopy measurements and DFT calculations of natural bond orbital (NBO) charges. which show a Cumulative buildup of positive cluster only tot…
Fluorescence of Newo-Carborane Compounds with Different Fluorophores: Can it be Tuned?
Two sets of o-carborane derivatives incorporating fluorene and anthracene fragments as fluorophore groups have been successfully synthesized and characterized, and their photophysical properties studied. The first set, comprising fluorene-containing carboranes 6-9, was prepared by catalyzed hydrosilylation reactions of ethynylfluorene with appropriate carboranylsilanes. The compound 1-[(9,9-dioctyl-fluorene-2-yl)ethynyl]carborane (11) was synthesized by the reaction of 9,9-dioctyl-2-ethynylfluorene and decaborane (B10H14). Furthermore, reactions of the lithium salt of 11 with 1 equivalent of 4-(chloromethyl)styrene or 9-(chloromethyl)anthracene yielded compounds 12 and 13. Members of the se…
A versatile methodology for the controlled synthesis of photoluminescent high-boron-content dendrimers.
Fluorescent star-shaped mol- ecules and dendrimers with a 1,3,5-tri- phenylbenzene moiety as the core and 3 or 9 carborane derivatives at the pe- riphery, have been prepared in very good yields by following different ap- proaches. One procedure relies on the nucleophilic substitution of Br groups in 1,3,5-tris(4-(3-bromopropoxy)phe- nyl)benzene with the monolithium salts of methyl and phenyl-o-carborane. The second method is the hydrosilylation reactions on the peripheral allyl ether functions of 1,3,5-tris(4-allyloxy-phe- nyl)benzene and 1,3,5-tris(4-(3,4,5-tris- AAA with suitable carboranyl-silanes to produce different generations of dendrimers decorated with carboranyl fragments. This ap…
Icosahedral carboranes as scaffolds for congested regioselective polyaryl compounds : the distinct distance tuning of C-C and its antipodal B-B
Four-fold aryl substituted o-carborane derivatives with defined patterns of substitution at the antipodal region of the cluster carbon atoms have been achieved. It is proven that this region is congested but lacks steric hindrance. Also, the two antipodal sites Cc-Cc and B9-B12 are affected very distinctly by electron donor substituents. peerReviewed
Iodinatedortho-Carboranes as Versatile Building Blocks to Design Intermolecular Interactions in Crystal Lattices
[EN] The crystal structures of numerous iodinated ortho-carboranes have been studied, which has revealed the diversity of intermolecular interactions that these substances can adopt in the solid state. The nature-mostly as it relates to hydrogen and/or halogen bonds-and relative strength of such interactions can be adjusted by selectively introducing substituents onto the cluster, thus enabling the rational design of crystal lattices. In this work we present the newly determined crystal structures of the following iodinated ortho-carboranes: 9-I-1,2-closo-C2B10H11, 4,5,7,8,9,10,11,12-I-8-1,2-closo-C2B10H4, 3,4,5,6,7,8,9,10,11,12-I-10,-1,2-closo-C2B10H2, 1-Me-8,9,10,12-I-4-1,2-closo-C2B10H7,…
Diferratricarbaboranes of thesubcloso-[(η5-C5H5)2Fe2C3B8H11] Type, the First Representatives of the 13-Vertex Dimetallatricarbaborane Series
Treatment of the [2-Cp-9-tBuNH-closo-2,1,7,9-FeC 3 B 8 H 1 0 ] (1) ferratricarbollide (Cp = η 5 -C 5 H 5 -) with Na + C 1 0 H 8 - in 1,2-dimethoxyethane (DME) at room temperature produced an air-sensitive transient anion with a tentatively identified nido-[tBUNH-CpFeC 3 B 8 H 1 0 ] 2 - constitution. In-situ reaction of this low-stability ion with [CpFe(CO) 2 I] or [CpFe(CO) 2 ] 2 generated three violet diferratricarbaboranes identified as paramagnetic subcloso complexes [4,5-Cp 2 - -4,5,1,6,7-Fe 2 C 3 B 8 H 1 1 ] (2; yield 2%), [4,5-Cp 2 - -4,5,1,7,12-Fe 2 C 3 B 8 H 1 1 ] (3; yield 2%), and [7-tBuNH-4,5-Cp 2 - -4,5,1,7,12-Fe 2 C 3 B 8 H 1 0 ] (4; yield 14%). These first representatives of t…
Light‐Induced On/Off Switching of the Surfactant Character of the o ‐Cobaltabis(dicarbollide) Anion with No Covalent Bond Alteration
Cobaltabis(dicarbollide) anion ([o-COSAN]- ) is a well-known metallacarborane with multiple applications in a variety of fields. In aqueous solution, the cisoid rotamer is the most stable disposition in the ground state. The present work provides theoretical evidence on the possibility to photoinduce the rotation from the cisoid to the transoid rotamer, a conversion that can be reverted when the ground state is repopulated. The non-radiative decay mechanisms proposed in this work are coherent with the lack of fluorescence observed in 3D fluorescence mapping experiments performed on [o-COSAN]- and its derivatives. This phenomenon induced by light has the potential to destruct the vesicles an…
A convenient synthetic route to useful monobranched polyethoxylated halogen terminated [3,3 -Co(1,2-C2B9H11)2]- synthons
An atom efficient and environmentally friendly route has been developed to obtain a new range of reagents in metallacarborane chemistry having monobranched polyethoxylated cobaltabisdicarbollide synthons. peer-reviewed
Stepwise sequential redox potential modulation possible on a single platform.
Step by step: The cluster [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-) is an excellent platform for making a stepwise tunable redox potential system by dehydroiodination. With the addition of up to eight iodine substituents (purple; see picture), there is a fall in the E(1/2)(Co(III)/Co(II)) value from -1.80 V to -0.68 V (vs. Fc(+)/Fc; Fc = ferrocene). A practical application of this tunability has been observed in the growth of polypyrrole.
Crystal structure and Hirshfeld surface analysis of [N(CH3)4][2,2′-Fe(1,7-closo-C2B9H11)2]
Abstract This work investigates the meta -ferrabis(dicarbollide) anion that was isolated as salt of tetramethylammonium. The structure of the obtained crystal consisted of discrete [2,2′-Fe(1,7- closo -C 2 B 9 H 11 ) 2 ] − anions and disordered [N(CH 3 ) 4 ] + cations. The anion had a considerable chemical stability ensured by ionic and Van der Waals interactions. Thus, Hirshfeld surfaces and fingerprint plot were used to visualize, explore, and quantify intermolecular interactions in the crystal lattice of the title compound. This investigation proved that close contacts were dominated by H⋯H interactions.
Influence of the solvent and R groups on the structure of (carboranyl)R2PI2 compounds in solution. Crystal structure of the first iodophosphonium salt incorporating the anion [7,8-nido-C2B9H10]−
The influence of the electron-donor or electron-acceptor capacity of the R groups (R = (i)Pr, Ph, Et) and the solvent on the molecular geometry in solution of adducts of carboranylphosphanes [(carboranyl)(i)Pr2P, (carboranyl)Ph2P and (carboranyl)Et2P] with I2 in 1 : 1 ratios, has been studied in detail by 31P{1H} and 11B{1H} NMR spectroscopies. The more electron-accepting Ph groups make the (carboranyl)Ph2P less nucleophilic, thus stabilizing the I2 encapsulated neutral biscarboranylphosphane-diiodine adducts in solution, such as (carboranyl)Ph2PI-IPPh2(carboranyl), generating P---I-I---P motifs. Even in a polar solvent, such as EtOH, the arrangement is preserved. The expected basicity of t…
Synthesis of quadruped-shaped polyfunctionalized o-carborane synthons
[EN] o-Carborane derivatives with precisely defined patterns of substitution have been prepared from 8,9,10,12-I-4-1,2-closo-C2B10H8 by replacing the iodine atoms, bonded to four adjacent boron vertices in the cluster, with allyl, and subsequently 3-hydroxypropyl groups. The resulting structures, comprising four pendant arms and two reactive vertices located on opposite sides of a central o-carborane core, can be envisaged as versatile precursors for dendritic growth
Synthesis and Characterization of New Fluorescent Styrene-Containing Carborane Derivatives: The Singular Quenching Role of a Phenyl Substituent
A set of neutral and anionic carborane derivatives in which the styrenyl fragment is introduced as a fluorophore group has been successfully synthesized and characterized. The reaction of the monolithium salts of 1-Ph-1,2-C(2)B(10)H(11), 1-Me-1,2-C(2)B(10)H(11) and 1,2-C(2)B(10)H(12) with one equivalent of 4-vinylbenzyl chloride leads to the formation of compounds 1-3, whereas the reaction of the dilithium salt of 1,2-C(2)B(10)H(12) with two equivalents of 4-vinylbenzyl chloride gives disubstituted compound 4. The closo clusters were degraded using the classical method, KOH in EtOH, to afford the corresponding nido species, which were isolated as tetramethylammonium salts. The crystal struc…
Synthesis and solid state structure for a series of poly(1-pyrrolylmethyl)benzene derivatives. Control of the interplaying π–π and C–H⋯π interactions?
The syntheses of new hexa- and 1,2,4,5-tetra-1-pyrrolylmethyl-benzene (1 and 2, respectively) compounds and their crystal structures, along with those for the related disubstituted o-, m- and p-di-1-pyrrolylmethyl-benzene (3–5) derivatives are reported. The arrangements of molecules in the 1-D structure for 2–5 are controlled by the interplay of two different weak interactions: π–π and C–H⋯π (Ph) interactions. The absence of such interactions in the packing of 1 seems to be related to the arrangement of the pyrrolylmethyl arms with respect to the benzene core, which prevents the π cloud of the aromatic ring to be part of any intermolecular interaction. In addition, C–H⋯π (pyrrolyl) interact…
Back Cover: Carboranylphosphinic Acids: A New Class of Purely Inorganic Ligands (Chem. Eur. J. 11/2016)
Highly Stable Neutral and Positively Charged Dicarbollide Sandwich Complexes
Novel sandwich metallacarboranes commo-[3,3'-Ni(8-SMe2-1,2-C2B9H10)2] (1), commo-[3,3'-Co(8-SMe2-1,2-C2B9H10)2]+ (2+), commo-[3,3'-Ru(8-SMe2-1,2-C2B9H10)2] (4) and commo-[3,3'-Fe(8-SMe2-1,2-C2B9H10)2] (5) have been prepared by reaction of [10-SMe2-7,8-nido-C2B9H10]- with NiCl2 x 6 H2O, CoCl2, [RuCl2(dmso)4] and [FeCl2(dppe)], respectively. Reduction of 2+ with metallic Zn leads to the neutral and isolable complex commo-[3,3'-Co(8-SMe2-1,2-C2B9H10)2] (3). Theoretical calculations using the ZINDO/1 semiempirical method show three energy minima for complexes 1-3 and 5 that agree with the presence of three different rotamers in solution at low temperature, while four relative energy minima have…
The [3,3′-Co(1,2-C2B9H11)2]– anion as a platform for new materials: synthesis of its functionalized monosubstituted derivatives incorporating synthons for conducting organic polymers
[3,3′-Co(8-C5H10O-1,2-C2B9H10)(1′,2′-C2B9H11)] (2) was synthesized by reaction of the caesium salt of [Co(C2B9H11)2]− with dimethyl sulfate in the presence of sulfuric acid as catalyst and tetrahydropyrane as solvent; the zwitterionic compound (2) yielded [3,3′-Co(8-C4H4N-(CH2)5-O-1,2-C2B9H10)(1′,2′-C2B9H11)]− (6), [3,3′-Co(8-C8H6N-(CH2)5-O-1,2-C2B9H10)(1′,2′-C2B9H11)]− (7), and [3,3′-Co(8-C12H8N-(CH2)5-O-1,2-C2B9H10)(1′,2′-C2B9H11)]− (8) through the nucleophilic addition of potassium pyrrolyl, indolyl and carbazolyl, respectively. The nucleophilic addition of the same salts on [3,3′-Co(8-C4H8O2-1,2-C2B9H10)(1′,2′-C2B9H11)] (1) yielded, respectively, [3,3′-Co(8-C4H4N-(CH2)2-O-(CH2)2-O-1,2-C…
Carboranylphosphinic Acids: A New Class of Purely Inorganic Ligands
Purely inorganic carboranyl phosphinates were prepared, and the influence of the cluster on the reactivity of the phosphinate group was studied. Electron-withdrawal by the carboranyl carbon atoms, combined with space-filling efficiency and enhanced aromaticity of the cluster cage, renders the phosphorus more difficult to oxidize. This enables carboranyl phosphinates to survive harsh oxidizing conditions, a property which is uncommon in organic phosphinates.
Recent studies on RR′S·C2B9H11 charge-compensated ligands
Abstract In this paper we report the synthesis of three new carborane derivatives of the series 7,8-R,R′-10-L-7,8-C2B9H9 (R=R′=H, L=SEtPh; R=CH3, R′=H, L=SMe2 and L=SEt2) along with the enhanced characterization of formerly described compounds 7,8-R,R′-10-L-7,8-C2B9H9 (R=R′=H, L=SMe2 (1), L=SEt2 (2) and L=S(CH2)4 (3)). They have been fully characterised using 1H-, 11B- and 13C-NMR spectroscopy. Their bridging proton resonances have been located for the first time. Individual sulfonium substituent contributions have been calculated that have permitted to establish a rule to predict its position in the 1H-NMR spectrum. The crystal structures of 1 and 3 have been resolved for the first time. T…
Tetrakis{[(p-dodecacarboranyl)methyl]stilbenyl}ethylene: A Luminescent Tetraphenylethylene (TPE) Core System
The synthesis and spectroscopic characterization of the first set of tetra(p-dodecacarborane-stilbeno)ethylenes (TDSE), substituted either with a methyl or phenyl group in the 2-position (Ccluster) of the ortho-carborane, are described. The complex absorption properties are elucidated by TD-DFT calculations, stressing the importance of through bond conjugation. Enhanced conjugation and restriction of the conformational space are identified as the main factors for boosted luminescence properties in solution compared to tetraphenylethylene (TPE) core, effectively reducing internal conversion (IC). IC is further reduced when aggregate suspensions of our compounds in water are formed, providing…
Icosahedral carboranes as scaffolds for congested regioselective polyaryl compounds: the distinct distance tuning of C–C and its antipodal B–B
Four-fold aryl substituted o-carborane derivatives with defined patterns of substitution at the antipodal region of the cluster carbon atoms have been achieved. It is proven that this region is congested but lacks steric hindrance. Also, the two antipodal sites Cc–Cc and B9–B12 are affected very distinctly by electron donor substituents.
Electron Accumulative Molecules.
With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B–N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B–N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C2B9H11)(C2B9H10)-NC5H4-…
A solvent-free regioselective iodination route of ortho-carboranes.
Tetraiodo-ortho-carborane based X-ray contrast agents can be readily prepared in a high yield, fast, clean, regioselective fashion by a solvent-free reaction of ortho-carboranes with iodine in sealed tubes.
The Role of C–H···H–B Interactions in Establishing Rotamer Configurations in Metallabis(dicarbollide) Systems
The aim of this work is to explore the self-interaction capability of the anion [3,3′-Co(1,2-C2B9H11)2]– through Ccluster–H···H–B (Cc–H···H–B) dihydrogen bonds. A set of theoretical and empirical data aiming to establish the main rules that account for the binding mode between the negatively charged borane framework made by [3,3′-Co(1,2-C2B9H11)2]– and the [NMe4]+ ions have been compiled. The interaction between cation and anion is mainly electrostatic but the covalent contribution is also proven and quantified. The existing intermolecular H···H short contacts have been studied and are compared with available data from the Cambridge Structural Database. The results show that the electronic …
A Discrete P⋅⋅⋅II⋅⋅⋅P Assembly: The Large Influence of Weak Interactions on the31P NMR Spectra of Phosphane–Diiodine Complexes
Thioethers, except derivatives of [7-R-7,8-C2B9H11] , are more weakly coordinating ligands than phosphanes. This difference is evidenced by the I I distances in the spokeshaped charge-transfer (CT) complexes R2S·I2 and R3P·I2 (Figure 1). The I I distance is sensitive to the strength of the interaction between the s* LUMO orbital on I2 and the HOMO orbital of the donor atom: the stronger the donor, the longer the I I distance. In these spoke CT complexes, the I I distance varies from 3.2 0.2 7 in R3P·I2 adducts [5] to 2.80 0.05 7 in R2S·I2 adducts, [6] indicating the weaker donor character of the thioether group. Whereas extended I2 arrays, spoke adducts of I2, polyiodides, and other structu…
Poly-iodinated closo 1,2-C 2 B 10 and nido [7,8-C 2 B 9 ] − carborane frameworks: Synthesis and consequences
Abstract The preparation of Cc-monosubstituted closo and nido carborane derivatives, mono-, di and tetraiodinated is reported. Some of these mono-to poly-iodinated nido carboranes are studied in terms of the acidity of the open face bridging proton, their chemical shift position in the 1H NMR, and the lesser tendency to η5-coordination in parallel to a larger number of iodo groups.
m-Carboranylphosphinate as Versatile Building Blocks To Design all Inorganic Coordination Polymers
The first examples of coordination polymers of manganese(II) and a nickel(II) complex with a purely inorganic carboranylphosphinate ligand are reported, together with its exhaustive characterization. X-ray analysis revealed 1D polymeric chains with carboranylphosphinate ligands bridging two manganese(II) centers. The reactivity of polymer 1 with water and Lewis bases has also been studied Thanks to MINECO (CTQ2015-66143-P, CTQ2010-16237 and SEV-2015-0496), Generalitat de Catalunya (2014/SGR/149), and COST CM1302. E.O. who is enrolled in the PhD program of the UAB thanks for FPU grant
Synthesis of Globular Precursors
o-Carborane (C2 B10 H12 ) was adapted to perform as the core of globular macromolecules, dendrons or dendrimers. To meet this objective, precisely defined substitution patterns of terminal olefin groups on the carborane framework were subjected to Heck cross-coupling reactions or hydroboration leading to hydroxyl terminated arms. These led to new terminal groups (chloro, bromo, and tosyl leaving groups, organic acid, and azide) that permitted ester production, click chemistry, and oxonium ring opening to be performed as examples of reactions that demonstrate the wide possibilities of the globular icosahedral carboranes to produce new dendritic or dendrimer-like structures. Polyanionic speci…
Relaxed but highly compact diansa metallacyclophanes.
A series of monoansa [μ-1,1′-PR-3,3′-Co(1,2-C2B9H10)2]− and diansa [8,8′-μ-(1″,2″-benzene)-μ-1,1′-PR-3,3′-Co(1,2-C2B9H9)2]− (R = Ph, tBu) cobaltabisdicarbollidephanes have been synthesized, characterized and studied by NMR, MALDI-TOF-MS, UV-visible spectroscopy, cyclic voltammetry, and DFT calculations. Single crystal X-ray diffraction revealed a highly relaxed structure characterized by the title angle α of 3.8° ([7]−), this being the smallest angle α for a metallacyclophane. In such compounds, the metal-to-phosphorus distance is less than the sum of their van der Waals radii. The availability of a phosphorus lone pair causes an electron delocalization through the metal, as shown by the ab…
Towards purely inorganic clusters in medicine: Biocompatible divalent cations as counterions of cobaltabis(dicarbollide) and its iodinated derivatives
Monovalent cations, Cs+, and alkylammonium ([NR4]+) salts have traditionally been used to precipitate the anions of boranes, carborane and metallocarborane clusters. In contrast, in the body and in living organisms in general, divalent cations have a special relevance. In this work, we isolate for the first time the cobaltabis(dicarbollide) salts of the biocompatible divalent cations of biological importance that can have application both in biology and in materials science. The preparation of Ca2+, Mg2+ and Fe2+ salts of anionic iodinated nido-[C2B9H12]− and cobaltabis(dicarbollide) as well as its di-, tetra- and octa-iodinated derivatives are reported. Ca2+ and Mg2+ are hard Lewis acids a…
CCDC 1058310: Experimental Crystal Structure Determination
Related Article: Marius Lupu, Adnana Zaulet, Francesc Teixidor, Reijo Sillanpää, Clara Viñas|2015|J.Organomet.Chem.|798|171|doi:10.1016/j.jorganchem.2015.05.053
CCDC 910884: Experimental Crystal Structure Determination
Related Article: Màrius Tarrés, Clara Viñas, Ana M. Cioran, Mikko M. Hänninen, Reijo Sillanpää, Francesc Teixidor|2014|Chem.-Eur.J.|20|15808|doi:10.1002/chem.201403424
CCDC 1534780: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Clara Viñas, Isabel Romero, Duane Choquesillo-Lazarte, Matti Haukka, Francesc Teixidor|2017|Inorg.Chem.|56|5502|doi:10.1021/acs.inorgchem.7b00610
CCDC 2149703: Experimental Crystal Structure Determination
Related Article: Ines Bennour, M. Núria Ramos, Miquel Nuez-Martínez, Jewel Ann Maria Xavier, Ana B. Buades, Reijo Sillanpää, Francesc Teixidor, Duane Choquesillo-Lazarte, Isabel Romero, Margarita Martinez-Medina, Clara Viñas|2022|Dalton Trans.|51|7188|doi:10.1039/D2DT01015A
CCDC 1581998: Experimental Crystal Structure Determination
Related Article: Ana B. Buades, Víctor Sanchez Arderiu, David Olid-Britos, Clara Viñas, Reijo Sillanpää, Matti Haukka, Xavier Fontrodona, Markos Paradinas, Carmen Ocal, Francesc Teixidor|2018|J.Am.Chem.Soc.|140|2957|doi:10.1021/jacs.7b12815
CCDC 1527813: Experimental Crystal Structure Determination
Related Article: Ines Bennour, Matti Haukka, Francesc Teixidor, Clara Viñas, Ahlem Kabadou|2017|J.Organomet.Chem.|846|74|doi:10.1016/j.jorganchem.2017.05.047
CCDC 1058313: Experimental Crystal Structure Determination
Related Article: Marius Lupu, Adnana Zaulet, Francesc Teixidor, Reijo Sillanpää, Clara Viñas|2015|J.Organomet.Chem.|798|171|doi:10.1016/j.jorganchem.2015.05.053
CCDC 1913783: Experimental Crystal Structure Determination
Related Article: Zsolt Kelemen, Ariadna Pepiol, Marius Lupu, Reijo Sillanpää, Mikko M. Hänninen, Francesc Teixidor, Clara Viñas|2019|Chem.Commun.|55|8927|doi:10.1039/C9CC04526K
CCDC 910883: Experimental Crystal Structure Determination
Related Article: Màrius Tarrés, Clara Viñas, Ana M. Cioran, Mikko M. Hänninen, Reijo Sillanpää, Francesc Teixidor|2014|Chem.-Eur.J.|20|15808|doi:10.1002/chem.201403424
CCDC 986488: Experimental Crystal Structure Determination
Related Article: Albert Ferrer-Ugalde, Arántzazu González-Campo, Clara Viñas, Jesús Rodríguez-Romero, Rosa Santillan, Norberto Farfán, Reijo Sillanpää, Antonio Sousa-Pedrares, Rosario Núñez, Francesc Teixidor|2014|Chem.-Eur.J.|20|9940|doi:10.1002/chem.201402396
CCDC 1582429: Experimental Crystal Structure Determination
Related Article: Ana B. Buades, Víctor Sanchez Arderiu, David Olid-Britos, Clara Viñas, Reijo Sillanpää, Matti Haukka, Xavier Fontrodona, Markos Paradinas, Carmen Ocal, Francesc Teixidor|2018|J.Am.Chem.Soc.|140|2957|doi:10.1021/jacs.7b12815
CCDC 1582000: Experimental Crystal Structure Determination
Related Article: Ana B. Buades, Víctor Sanchez Arderiu, David Olid-Britos, Clara Viñas, Reijo Sillanpää, Matti Haukka, Xavier Fontrodona, Markos Paradinas, Carmen Ocal, Francesc Teixidor|2018|J.Am.Chem.Soc.|140|2957|doi:10.1021/jacs.7b12815
CCDC 970547: Experimental Crystal Structure Determination
Related Article: Màrius Tarrés, Clara Viñas, Patricia González-Cardoso, Mikko M. Hänninen, Reijo Sillanpää, Vladimír Dordovič, Mariusz Uchman, Francesc Teixidor, Pavel Matejíček|2014|Chem.-Eur.J.|20|6786|doi:10.1002/chem.201402193
CCDC 1434442: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Francesc Teixidor, Duane Choquesillo-Lazarte, Reijo Sillanpää, Clara Viñas|2016|Chem.-Eur.J.|22|3665|doi:10.1002/chem.201504408
CCDC 986493: Experimental Crystal Structure Determination
Related Article: Albert Ferrer-Ugalde, Arántzazu González-Campo, Clara Viñas, Jesús Rodríguez-Romero, Rosa Santillan, Norberto Farfán, Reijo Sillanpää, Antonio Sousa-Pedrares, Rosario Núñez, Francesc Teixidor|2014|Chem.-Eur.J.|20|9940|doi:10.1002/chem.201402396
CCDC 1434443: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Francesc Teixidor, Duane Choquesillo-Lazarte, Reijo Sillanpää, Clara Viñas|2016|Chem.-Eur.J.|22|3665|doi:10.1002/chem.201504408
CCDC 986492: Experimental Crystal Structure Determination
Related Article: Albert Ferrer-Ugalde, Arántzazu González-Campo, Clara Viñas, Jesús Rodríguez-Romero, Rosa Santillan, Norberto Farfán, Reijo Sillanpää, Antonio Sousa-Pedrares, Rosario Núñez, Francesc Teixidor|2014|Chem.-Eur.J.|20|9940|doi:10.1002/chem.201402396
CCDC 1058311: Experimental Crystal Structure Determination
Related Article: Marius Lupu, Adnana Zaulet, Francesc Teixidor, Reijo Sillanpää, Clara Viñas|2015|J.Organomet.Chem.|798|171|doi:10.1016/j.jorganchem.2015.05.053
CCDC 1913782: Experimental Crystal Structure Determination
Related Article: Zsolt Kelemen, Ariadna Pepiol, Marius Lupu, Reijo Sillanpää, Mikko M. Hänninen, Francesc Teixidor, Clara Viñas|2019|Chem.Commun.|55|8927|doi:10.1039/C9CC04526K
CCDC 1534778: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Clara Viñas, Isabel Romero, Duane Choquesillo-Lazarte, Matti Haukka, Francesc Teixidor|2017|Inorg.Chem.|56|5502|doi:10.1021/acs.inorgchem.7b00610
CCDC 1562911: Experimental Crystal Structure Determination
Related Article: Zsolt Kelemen, Ariadna Pepiol, Marius Lupu, Reijo Sillanpää, Mikko M. Hänninen, Francesc Teixidor, Clara Viñas|2019|Chem.Commun.|55|8927|doi:10.1039/C9CC04526K
CCDC 1534777: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Clara Viñas, Isabel Romero, Duane Choquesillo-Lazarte, Matti Haukka, Francesc Teixidor|2017|Inorg.Chem.|56|5502|doi:10.1021/acs.inorgchem.7b00610
CCDC 2149633: Experimental Crystal Structure Determination
Related Article: Ines Bennour, M. Núria Ramos, Miquel Nuez-Martínez, Jewel Ann Maria Xavier, Ana B. Buades, Reijo Sillanpää, Francesc Teixidor, Duane Choquesillo-Lazarte, Isabel Romero, Margarita Martinez-Medina, Clara Viñas|2022|Dalton Trans.|51|7188|doi:10.1039/D2DT01015A
CCDC 1582430: Experimental Crystal Structure Determination
Related Article: Ana B. Buades, Víctor Sanchez Arderiu, David Olid-Britos, Clara Viñas, Reijo Sillanpää, Matti Haukka, Xavier Fontrodona, Markos Paradinas, Carmen Ocal, Francesc Teixidor|2018|J.Am.Chem.Soc.|140|2957|doi:10.1021/jacs.7b12815
CCDC 1058312: Experimental Crystal Structure Determination
Related Article: Marius Lupu, Adnana Zaulet, Francesc Teixidor, Reijo Sillanpää, Clara Viñas|2015|J.Organomet.Chem.|798|171|doi:10.1016/j.jorganchem.2015.05.053
CCDC 1582431: Experimental Crystal Structure Determination
Related Article: Ana B. Buades, Víctor Sanchez Arderiu, David Olid-Britos, Clara Viñas, Reijo Sillanpää, Matti Haukka, Xavier Fontrodona, Markos Paradinas, Carmen Ocal, Francesc Teixidor|2018|J.Am.Chem.Soc.|140|2957|doi:10.1021/jacs.7b12815
CCDC 1871938: Experimental Crystal Structure Determination
Related Article: Zsolt Kelemen, Ariadna Pepiol, Marius Lupu, Reijo Sillanpää, Mikko M. Hänninen, Francesc Teixidor, Clara Viñas|2019|Chem.Commun.|55|8927|doi:10.1039/C9CC04526K
CCDC 1534779: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Clara Viñas, Isabel Romero, Duane Choquesillo-Lazarte, Matti Haukka, Francesc Teixidor|2017|Inorg.Chem.|56|5502|doi:10.1021/acs.inorgchem.7b00610
CCDC 1056507: Experimental Crystal Structure Determination
Related Article: Francesc Teixidor, Reijo Sillanpää, Ariadna Pepiol, Marius Lupu and Clara Viñas|2015|Chem.-Eur.J.|21|12778|doi:10.1002/chem.201501223
CCDC 986490: Experimental Crystal Structure Determination
Related Article: Albert Ferrer-Ugalde, Arántzazu González-Campo, Clara Viñas, Jesús Rodríguez-Romero, Rosa Santillan, Norberto Farfán, Reijo Sillanpää, Antonio Sousa-Pedrares, Rosario Núñez, Francesc Teixidor|2014|Chem.-Eur.J.|20|9940|doi:10.1002/chem.201402396
CCDC 986489: Experimental Crystal Structure Determination
Related Article: Albert Ferrer-Ugalde, Arántzazu González-Campo, Clara Viñas, Jesús Rodríguez-Romero, Rosa Santillan, Norberto Farfán, Reijo Sillanpää, Antonio Sousa-Pedrares, Rosario Núñez, Francesc Teixidor|2014|Chem.-Eur.J.|20|9940|doi:10.1002/chem.201402396
CCDC 1434445: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Francesc Teixidor, Duane Choquesillo-Lazarte, Reijo Sillanpää, Clara Viñas|2016|Chem.-Eur.J.|22|3665|doi:10.1002/chem.201504408
CCDC 986491: Experimental Crystal Structure Determination
Related Article: Albert Ferrer-Ugalde, Arántzazu González-Campo, Clara Viñas, Jesús Rodríguez-Romero, Rosa Santillan, Norberto Farfán, Reijo Sillanpää, Antonio Sousa-Pedrares, Rosario Núñez, Francesc Teixidor|2014|Chem.-Eur.J.|20|9940|doi:10.1002/chem.201402396
CCDC 1871937: Experimental Crystal Structure Determination
Related Article: Zsolt Kelemen, Ariadna Pepiol, Marius Lupu, Reijo Sillanpää, Mikko M. Hänninen, Francesc Teixidor, Clara Viñas|2019|Chem.Commun.|55|8927|doi:10.1039/C9CC04526K
CCDC 1434444: Experimental Crystal Structure Determination
Related Article: Elena Oleshkevich, Francesc Teixidor, Duane Choquesillo-Lazarte, Reijo Sillanpää, Clara Viñas|2016|Chem.-Eur.J.|22|3665|doi:10.1002/chem.201504408
CCDC 1058314: Experimental Crystal Structure Determination
Related Article: Marius Lupu, Adnana Zaulet, Francesc Teixidor, Reijo Sillanpää, Clara Viñas|2015|J.Organomet.Chem.|798|171|doi:10.1016/j.jorganchem.2015.05.053
CCDC 906346: Experimental Crystal Structure Determination
Related Article: Arántzazu González-Campo, Albert Ferrer-Ugalde, Clara Viñas, Francesc Teixidor, Reijo Sillanpää, Jesús Rodríguez-Romero, Rosa Santillan, Norberto Farfán, Rosario Núñez|2013|Chem.-Eur.J.|19|6299|doi:10.1002/chem.201203771
CCDC 713126: Experimental Crystal Structure Determination
Related Article: Emilio José Juárez-Pérez, Rosario Núñez, Clara Viñas, Reijo Sillanpää, Francesc Teixidor|2010|Eur.J.Inorg.Chem.|2010|2385|doi:10.1002/ejic.201000157