0000000000553631

AUTHOR

Andrea Zaffora

showing 55 related works from this author

Energy harvesting by waste acid/base neutralization via bipolar membrane reverse electrodialysis

2020

Bipolar Membrane Reverse Electrodialysis (BMRED) can be used to produce electricity exploiting acid-base neutralization, thus representing a valuable route in reusing waste streams. The present work investigates the performance of a lab-scale BMRED module under several operating conditions. By feeding the stack with 1 M HCl and NaOH streams, a maximum power density of ~17 W m−2 was obtained at 100 A m−2 with a 10-triplet stack with a flow velocity of 1 cm s−1, while an energy density of ~10 kWh m−3 acid could be extracted by a complete neutralization. Parasitic currents along feed and drain manifolds significantly affected the performance of the stack when equipped with a higher number of t…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciControl and OptimizationMaterials scienceEnergy Engineering and Power TechnologySalt (chemistry)02 engineering and technology010501 environmental sciencespH gradient; waste to energy; ion-exchange membrane; wastewater valorization; controlled neutralization7. Clean energy01 natural scienceslcsh:TechnologyStack (abstract data type)Reversed electrodialysisWastewater valorizationElectrical and Electronic EngineeringIon-exchange membraneEngineering (miscellaneous)pH gradient0105 earth and related environmental sciencesPower densitychemistry.chemical_classificationRenewable Energy Sustainability and the Environmentlcsh:T021001 nanoscience & nanotechnology6. Clean waterWaste to energyMembraneSettore ING-IND/23 - Chimica Fisica ApplicatachemistryFlow velocityChemical engineeringAcid–base reaction0210 nano-technologyControlled neutralizationEnergy (miscellaneous)
researchProduct

Enhancing Biocompatibility and Antibacterial Activity of Ti6Al4V by Entrapping Ag and Hydroxyapatite Inside Alginate Filled Pores of TiO 2 Layer Grow…

2022

A three-step electrochemical process is developed to grow a coating on Ti6Al4V alloy for biomedical applications aimed to enhance its bioactivity. The coating is composed by a porous titanium oxide filled with Ag, alginic acid, and hydroxyapatite to provide antibacterial properties and, at the same time, osteointegration capability. Anodized and treated with the electrochemical process samples are characterized by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction, and Raman Spectroscopy to have information about morphology and composition soon after the fabrication and after immersion in Hanks' solution. Bioactivity of the samples is also prov…

Settore ING-IND/23 - Chimica Fisica Applicataantibacterial activitybioactivityMechanics of MaterialsMechanical EngineeringhydroxyapatitealginateAgTi alloysAdvanced Materials Interfaces
researchProduct

Synergistic Use of Electrochemical Impedance Spectroscopy and Photoelectrochemical Measurements for Studying Solid State Properties of Anodic HfO2

2017

Within the past years, intense research has been carried out on HfO2 as high k material, promising candidate to replace SiO2 as gate dielectric in CMOS based devices (1), and as metal oxide for resistive random access memory (ReRAM) (2). For both technological applications compact, uniform and flat oxides are necessary, and a detailed understanding of their physical properties as a function of the fabrication conditions is strongly. Hafnia performance can be significantly influenced by carrier trapping taking place at pre-existing precursors states (induced by oxygen vacancies, interstitial ions, impurities acting as dopants), or by self-trapping in a perfect lattice, where the potential we…

EngineeringSettore ING-IND/23 - Chimica Fisica Applicataanodizing HfO2 CMOS ReRAM Electrochemical Impedance Spectroscopy Photoelectrochemical Measurements Solid State Propertiesbusiness.industrySolid-stateAnodizing Hafnium oxide Nb doped HfO2 Electrochemical Impedance Spectroscopy Photocurrent Spectroscopy Solid State Properties CMOS ReRAMNanotechnologybusinessAnodeDielectric spectroscopy
researchProduct

Electrochemically prepared oxides for resistive switching devices

2018

Redox-based resistive switching memories (ReRAM) based on metal oxides are considered as the next generation non-volatile memories and building units for neuromorphic computing. Using different deposition techniques results however in different structural and electric properties, modulating the device performance. In this study HfO2 and Nb2O5 were prepared electrochemically by anodizing sputtering-deposited Hf and Nb in borate buffer solution. Photoelectrochemical measurements were used to study the solid state properties of the anodic oxides, such as band gap and flat band potential. In the case of anodic HfO2, detected photocurrent is ascribed to optical transitions between localized (gen…

Nb oxideReRAMGeneral Chemical Engineering02 engineering and technologyAnodizing010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicataElectrochemistryHf oxideResistive switchingChemical Engineering (all)0210 nano-technologyElectrochimica Acta
researchProduct

Photocurrent Spectroscopy in Corrosion and Passivity Studies. A Critical Assessment

2016

Photocurrent Spectroscopy (PCS) is currently employed for the characterization of solid-state properties of semiconducting and insulating materials, since the knowledge of their band gap is a prerequisite to any possible application in different fields such as: solar energy conversion (photoelectrochemical and photovoltaic solar cells, photocatalysis) and microelectronics (high-k, high band-gap materials) (1-2). In the last 20-30 years an increasing number of scientists working in the area of corrosion has been attracted by this technique owing to its versatility and ability to scrutinize in situ corrosion layers and passive films having semiconducting or insulating behaviour. In previous w…

PhotocurrentMaterials scienceBand gapPassivityOxideAnalytical chemistryThermodynamicsPhotocurrent Spectroscopy Corrosion Passivity StudiesCorrosionElectronegativitychemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryCritical assessmentSpectroscopy
researchProduct

Fabrication of Bismuth Absorber Arrays for NTD-Ge Hard X-ray Microcalorimeters

2020

The high-spectral-resolution detection of hard X-rays (E > 20 keV) is a challenging and nearly unexplored area in space astrophysics. Traditionally hard X-ray detectors present moderate spectral resolutions, although few tens of eV one could open new frontiers in the study of nuclear processes and high-temperature plasma dynamics in energetic processes. This can be achieved by using cryogenic microcalorimeters. Within a research activity aimed at developing arrays of neutron transmutation-doped germanium (NTD-Ge) microcalorimeters for the high-spectral-resolution detection (about 50 eV@60 keV) of hard X-rays (20 keV < E<100 keV), we developed an electroplating process to fabricate …

Hard X-rays · Low-temperature detectors · NTD-Ge microcalorimeters ·Bismuth absorbers · Bismuth electroplatingMaterials scienceFabricationPhysics::Instrumentation and Detectorsbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaDetectorX-raychemistry.chemical_elementGermaniumPlasmaCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasBismuthSettore FIS/05 - Astronomia E AstrofisicachemistryHard X-rays0103 physical sciencesOptoelectronicsGeneral Materials ScienceNeutron010306 general physicsbusiness
researchProduct

Methanol and proton transport through chitosan-phosphotungstic acid membranes for direct methanol fuel cell

2020

Composite chitosan-phosphotungstic acid membranes were synthesized by ionotropic gelation. Their liquid uptake is higher for thin membranes (23 ± 2 μm), while it is lower (~70%) for thicker membranes (50-70 μm). Polarization curves recorded using single module fuel cell at 70°C allowed to estimate a peak power density of 60 mW cm−2 by using 1 M as methanol and low Pt and Pt/Ru loadings (0.5 and 3 mg cm−2) at the cathode and at the anode, respectively. Electrochemical impedance spectroscopy was used to estimate the membrane conductivity and to model the electrochemical behavior of methanol electrooxidation inside the fuel cell revealing a two-step mechanism mainly responsible of overall kine…

Renewable Energy Sustainability and the EnvironmentChitosan direct methanol fuel cells methanol permeability phosphotungstic acid proton conductivityEnergy Engineering and Power TechnologyChitosanchemistry.chemical_compoundDirect methanol fuel cellFuel TechnologyMembraneSettore ING-IND/23 - Chimica Fisica ApplicataNuclear Energy and EngineeringchemistryProton transportMethanolPhosphotungstic acidNuclear chemistry
researchProduct

The Effect of Nb Incorporation on the Electronic Properties of Anodic HfO2

2017

Hafnium oxide and Nb doped HfO2 were grown by anodizing sputtering-deposited Hf and Hf-4at.%Nb. Photoelectrochemical characterization was carried out in order to estimate solid state properties such as band gap, flat band potential and electrons internal photoemission threshold energy as a function of thickness and composition of anodic oxides. Optical transitions at energy lower than the band gap value of the investigated anodic films were evidenced, and they are attributed to optical transitions involving localized states inside the band gap. Such states were located at 3.6 eV and 3.9 eV below the conduction band edge for the Nb free and Nb containing hafnium oxide, respectively. Impedanc…

Materials scienceSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringAnodic oxides Electrochemical Impedance Spectroscopy HfO2 Nb incorporation Photoelectrochemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectronic propertiesAnode
researchProduct

The Effect of Anodizing Bath Composition on the Electronic Properties of Anodic Ta-Nb Mixed Oxides

2022

Anodic oxides were grown to 50 V on Ta-Nb sputtering deposited alloys, with high Nb content, in acetate ions containing an aqueous solution to study the effect of the anodizing bath composition on anodic layers’ dielectric properties. Photoelectrochemical measurements proved the presence of a photocurrent in the band gap of photon energy lower than oxides, due to optical transitions involving localized electronic states as a consequence of acetate ions incorporation. Flat band potential value estimates assessed the insulating nature of the anodic oxides grown in the acetate buffer solution. Differential capacitance measurements showed that the highest capacitance value was measured for the …

Settore ING-IND/23 - Chimica Fisica ApplicataNb oxide Ta oxide anodizing capacitance electrolytic capacitors mixed oxidesGeneral Chemical Engineeringanodizing; capacitance; electrolytic capacitors; mixed oxides; Ta oxide; Nb oxideGeneral Materials ScienceNanomaterials; Volume 12; Issue 24; Pages: 4439
researchProduct

Corrosion of stainless steel in food and pharmaceutical industry

2021

Abstract Stainless steels are widely used in the food and pharmaceutical industry because of their high corrosion resistance and superior mechanical properties. These features are crucial because produced foodstuffs and drugs must comply with high purity and quality standards. Just a proper selection of stainless steel grade can prevent corrosion phenomena that can be detrimental to the whole manufacturing process. Food/drugs production process phases will be here analyzed and discussed with a particular emphasis on the possible corrosion mechanism of stainless steels in those particular operating conditions. Recent advances on the methods to assess corrosion of stainless steels in food and…

Materials sciencebusiness.industryManufacturing processMetallurgy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAnalytical ChemistryCorrosionCitric acidSettore ING-IND/23 - Chimica Fisica ApplicataRougingDrugs productionAusteniticElectrochemistryCleaning in place0210 nano-technologybusinessMetal releasePharmaceutical industryCurrent Opinion in Electrochemistry
researchProduct

Electrochemically prepared oxides for resistive switching memories

2018

Redox-based resistive switching memories (ReRAMs) are the strongest candidates for next generation nonvolatile memories. These devices are commonly composed of metal/solid electrolyte/metal junctions, where the solid electrolyte is usually an oxide layer. A key aspect in the ReRAMs development is the solid electrolyte engineering, since it is crucial to tailor the material properties for obtaining excellent switching properties (e.g. retention, endurance, etc.). Here we present an anodizing process as a non vacuum and low temperature electrochemical technique for growing oxides with tailored structural and electronic properties. The effect of the anodizing conditions on the solid state prop…

Materials sciencebusiness.industryAnodizingOxide02 engineering and technologyElectrolyte010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciences0104 chemical sciencesAnodeResistive random-access memorychemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryOptoelectronicsPhysical and Theoretical ChemistryThin film0210 nano-technologybusinessLayer (electronics)Faraday Discussions
researchProduct

Highly Active and Stable NiCuMo Electrocatalyst Supported on 304 Stainless Steel Porous Transport Layer for Hydrogen Evolution in Alkaline Water Elec…

2023

Several functionalized porous transport layers with Pt-free electrocatalysts for hydrogen evolution reaction in alkaline conditions, based on Ni, Cu, and Mo, are prepared through electrodeposition onto a 304 stainless steel mesh. Morphological characterization confirms the fabrication of electrodes with high electrochemical surface active area due to the formation of hierarchical nanostructures. Mo presence into the electrocatalysts increases the activity toward the hydrogen evolution reaction. The optimization of electrodeposition process leads to the preparation of highly active NiCuMo electrocatalyst that exhibits near zero onset overpotential and overpotentials of 15 and 113 mV at 10 an…

hydrogen evolutionSettore ING-IND/23 - Chimica Fisica ApplicataPt-free electrocatalystsRenewable Energy Sustainability and the Environmentelectrocatalysisalkaline electrolyzersporous transport layersGeneral Environmental Science
researchProduct

The influence of composition on band gap and dielectric constant of anodic Al-Ta mixed oxides

2015

Al-Ta mixed oxides were grown by anodizing sputter-deposited Al-Ta alloys of different composition. Photocurrent spectra revealed a band gap, Eg, slightly independent on Ta content and very close to that of anodic Ta2O5 (∼4.3 eV) with the exception of the anodic film on Al-10at% Ta, which resulted to be not photoactive under strong anodic polarization. The photoelectrochemical characterization allowed to estimate also the oxides flat band potential and to get the necessary information to sketch the energetic of the metal/oxide/electrolyte interfaces. Impedance measurements allowed to confirm the formation of insulating material and to estimate the dielectric constant of the oxides, which re…

Materials scienceAnodizingBand gapGeneral Chemical EngineeringOxideAnalytical chemistryDielectricElectrolyteAnodizingElectrochemistryMetalchemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica Applicatachemistryvisual_artBand gapvisual_art.visual_art_mediumAl-Ta mixed oxideElectrochemistryDielectric constantChemical Engineering (all)Polarization (electrochemistry)Flat band potential
researchProduct

On the modelling of an Acid/Base Flow Battery: An innovative electrical energy storage device based on pH and salinity gradients

2020

Abstract Electrical energy storage can enhance the efficiency in the use of fluctuating renewable sources, e.g. solar and wind energy. The Acid/Base Flow Battery is an innovative and sustainable process to store electrical energy in the form of pH and salinity gradients via electrodialytic reversible techniques. Two electromembrane processes are involved: Bipolar Membrane Electrodialysis during the charge phase and its opposite, Bipolar Membrane Reverse Electrodialysis, during the discharge phase. For the first time, the present work aims at predicting the performance of this energy storage device via the development of a dynamic mathematical model based on a multi-scale approach with distr…

Battery (electricity)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)Wind powerbusiness.industry020209 energyMechanical EngineeringElectric potential energy02 engineering and technologyBuilding and ConstructionManagement Monitoring Policy and LawElectrodialysis7. Clean energy6. Clean waterEnergy storageRenewable energyGeneral Energy020401 chemical engineeringReversed electrodialysisElectrochemical energy storage Electrodialytic battery Ion-exchange membrane Ionic shortcut currents Process modelling Water splitting0202 electrical engineering electronic engineering information engineeringEnvironmental science0204 chemical engineeringProcess engineeringbusinessApplied Energy
researchProduct

Modellazione matematica di una Acid/Base Flow Battery: un dispositivo innovativo di accumulo di energia elettrica basato su gradienti di salinità e d…

2019

La Acid/Base Flow Battery (AB-FB) è una batteria innovativa che rappresenta un metodo sostenibile di immagazzinare energia elettrica. Questa batteria può, in linea teorica, garantire una densità di energia pari a 11 kWh/m3 che è un valore maggiore rispetto a quello fornito dalle tecnologie attualmente più utilizzate nel mondo quali quelle che sfruttano l’energia idroelettrica, l’energia osmotica o ancora l’aria compressa. La batteria AB-FB accumula energia sottoforma di gradienti di salinità e di pH. In particolare, essa funziona grazie ad una unità chiamata “stack” al cui interno ospita una serie di canali che permettono il passaggio di soluzioni elettrolitiche a diversi pH e concentrazion…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciFlow batterymembrana bipolareRound Trip Efficiencymodellazione
researchProduct

Performance of H2-fed fuel cell with chitosan/silicotungstic acid membrane as proton conductor

2020

Composite organic–inorganic proton exchange membranes for H2–O2 fuel cells were fabricated by ionotropic gelation process combining a biopolymer (chitosan) with a heteropolyacid (silicotungstic acid). According to scanning electron microscopy analysis, compact, homogeneous and free-standing thin layers were synthesized. X-ray diffraction proved the crystallinity of the fabricated membranes and showed the presence of Chitosan Form I polymorph soon after the reticulation step and of the Form II polymorph after the functionalization step. Fourier-transform infrared spectroscopy demonstrated that the Keggin structure of the heteropolyacid is maintained inside the membrane even after the fabrica…

Materials scienceGeneral Chemical Engineering202 engineering and technologySilicotungstic acidSilicotungstic acid010402 general chemistryElectrochemistry01 natural sciencesChitosanchemistry.chemical_compoundKeggin structureCrystallinityHMaterials ChemistryElectrochemistryProton conductorChitosan021001 nanoscience & nanotechnology–O0104 chemical sciencesComposite membraneMembraneSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryHydrogen fuelPEMFC0210 nano-technology
researchProduct

Physico-Chemical Characterization of Anodic Oxides on Hf as a Function of the Anodizing Conditions

2016

Anodic films were grown to 5 V (Ag/AgCl) on mechanically polished Hf in 0.1 M ammonium biborate and 0.1 M NaOH. Independent of the anodizing conditions, the photoelectrochemical characterization allowed the observation of optical transitions at 3.25 eV, i.e. at photon energy lower than the bandgap of HfO2. They are attributed to localized states inside the gap of the oxide induced by the presence of oxygen vacancies. From the cathodic photocurrent spectra, it was possible to estimate an energy threshold of ∼2.15 eV for internal electron photoemission phenomena. The impedance measurements proved the formation of insulating oxides with ϵ =19. The anodizing occurs under a high field regime wit…

Materials Chemistry2506 Metals and AlloysMaterials scienceRenewable Energy Sustainability and the EnvironmentAnodizingElectronic Optical and Magnetic MaterialMetallurgySurfaces Coatings and FilmCondensed Matter Physic02 engineering and technologyFunction (mathematics)010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCharacterization (materials science)AnodeSettore ING-IND/23 - Chimica Fisica ApplicataMaterials ChemistryElectrochemistry0210 nano-technologyJournal of The Electrochemical Society
researchProduct

TiO2 in memristors and resistive random access memory devices

2021

Abstract One of the most recent applications of TiO2 thin films is as an oxide layer in memristors, electronic devices considered as one of the most promising nonvolatile memories and as possible building units for neuromorphic computing. This chapter aims to describe several fabrication ways, either (electro)chemical or physical methods, of TiO2 thin films and to highlight the relationship between method and layer properties. Some fundamentals on the mechanism of memristors’ operation, that is, resistive switching in oxide thin films, will be given, classifying the different types of devices based on the used electrode materials and underlying physicochemical processes. Finally, it will be…

Materials scienceFabricationbusiness.industryOxideMemristorResistive random-access memorylaw.inventionchemistry.chemical_compoundchemistryNeuromorphic engineeringlawOptoelectronicsElectronicsThin filmbusinessLayer (electronics)
researchProduct

Photocurrent spectroscopy in passivity studies

2018

The aim of this article is to present photocurrent spectroscopy as useful in situ technique for the physicochemical characterization of passive films and corrosion layers. The response of (both amorphous and crystalline) semiconductor/electrolyte junction under irradiation is treated and discussed in order to get information about solid-state properties such as band gap and flat band potential. The possibility to use Photocurrent Spectroscopy (PCS), in a quantitative way, to get information on the composition of corrosion layers is discussed through a semiempirical correlation between the band gap of the oxides (or hydroxides) and the difference of electronegativity of their constituents. F…

Materials scienceBand gapPassive film/electrolyte energetics02 engineering and technologyElectrolyte01 natural sciencesCorrosionElectronegativityPhotoelectrochemistryOptical band gap0103 physical sciencesSpectroscopy010302 applied physicsPhotocurrentBilayer filmsbusiness.industryCorrosion layersOxide layersAmorphous semiconductors021001 nanoscience & nanotechnologyAmorphous solidSemiconductorHydroxide layersSettore ING-IND/23 - Chimica Fisica ApplicataOptoelectronicsPassive films0210 nano-technologybusinessFlat band potential
researchProduct

Critical Review—Photocurrent Spectroscopy in Corrosion and Passivity Studies: A Critical Assessment of the Use of Band Gap Value to Estimate the Oxid…

2017

A critical assessment of the Photocurrent Spectroscopy (PCS) Technique for the semi-quantitative characterization of passive film and corrosion layers composition is carried out. We take into account more than three decades of PCS usage as "in-situ" analytical technique and related results as well as the criticism of the underlying semi-empirical correlation relating the measured optical bandgap (Eg) to the passive film composition. The discrepancies between the experimental data, gathered by PCS measurements, and Egestimates originating from recently developed Density Functional Theory based modeling of solid state properties are stressed with particular emphasis on the case of anodic pass…

Materials Chemistry2506 Metals and AlloysMaterials scienceBand gapPassivityOxideSurfaces Coatings and Film02 engineering and technology010402 general chemistry01 natural sciencesCorrosionchemistry.chemical_compoundMaterials ChemistryElectrochemistrySpectroscopyPhotocurrentCondensed matter physicsRenewable Energy Sustainability and the EnvironmentElectronic Optical and Magnetic Material021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSettore ING-IND/23 - Chimica Fisica ApplicatachemistryCritical assessment0210 nano-technologyValue (mathematics)Journal of The Electrochemical Society
researchProduct

Fabrication and characterization of microscale HfO2-based Memristors

2017

Memristors are metal/insulator/metal devices whose resistance can be switched between two different states (i.e. the low resistive state LRS, and the high resistive state, HRS) by applying a proper voltage value over the two metal contacts [1], [2]. Their simple structure makes memristors prone to extreme down scaling and 3-D stacking potentiality, and excellent compatibility with the complementary metal-oxide-semiconductor (CMOS) technology. Moreover, because of their low power consumption and high speed, memristors are rightly considered the elemental bricks for a next generation of high-density nonvolatile memories. HfO2 has attracted much attention as an oxide material for memristor app…

Memristor HfO2 PLDSettore ING-INF/01 - Elettronica
researchProduct

Fabrication and characterization of micrometer-scale ZnO memristors

2015

Memristors are an interesting class of resistive random access memory (RRAM) based on the electrical switching of metal oxide film resistivity . They are characterized for exhibiting resistive switching between a high-resistance state (HRS) and a low-resistance state (LRS) and have been recently considered as one of the most promising candidates for next-generation nonvolatile memory devices because of their low power consumption, fast switching operation, nondestructive readout, and remarkable scalability. The device structure is simply an oxide layer sandwiched between two metal electrodes. The switching behaviour is dependent both on the oxide material and the choice of metal electrodes.…

Settore ING-IND/23 - Chimica Fisica ApplicataFabrication and characterization micrometer-scale ZnO memristorsSettore ING-INF/01 - Elettronica
researchProduct

Electrochemical Oxidation of Hf-Nb Alloys as a Valuable Route to Prepare Mixed Oxides of Tailored Dielectric Properties

2018

Metal oxides with high dielectric constant are extensively studied in the frame of substituting SiO2 as gate dielectric in nanoelectronic devices. Here, high-k mixed HfO2/Nb2O5 oxides are prepared by a facile electrochemical route starting from sputtering-deposited Hf–Nb alloys with several compositions. Transmission electron microscopy, grazing incidence X-ray diffraction, and glow discharge optical emission spectroscopy are employed to study the oxide structures, disclosing a crystalline–amorphous transition of the electrochemically prepared oxides by increasing the Nb content. Photo-electrochemical measurements allow the observation of optical transitions ascribed to localized states ins…

leakage currentImaginationThesaurus (information retrieval)Materials scienceChemical substanceEOTmedia_common.quotation_subjectNanotechnologyhigh-k material02 engineering and technologyDielectric010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsSearch engineElectrochemical oxidationSettore ING-IND/23 - Chimica Fisica ApplicataHf oxide0210 nano-technologyScience technology and societymedia_commonAdvanced Electronic Materials
researchProduct

Photoelectrochemical evidence of inhomogeneous composition at nm length scale of anodic films on valve metals alloys

2016

Abstract Anodic films of different thickness (∼30 nm and 70 nm) were grown by anodizing sputtering-deposited Ta-19at% Al to different formation voltages. N incorporation into the anodic films was inducing by performing the anodizing process in ammonium containing solutions. Layered anodic films were prepared by a double formation procedure with a first anodizing step in ammonium biborate solution and second anodizing step in borate buffer solution, or vice versa. Glow Discharge Optical Emission Spectroscopy was employed to show the distribution of N across the oxide. Photoelectrochemical measurements evidenced a red shift of the light absorption threshold due to N incorporation. A model was…

Materials scienceBand gap020209 energyGeneral Chemical EngineeringPhotoelectrochemistryAnalytical chemistryOxideQuantum yield02 engineering and technologyPhoton energyAnodizingElectrochemistryN incorporationchemistry.chemical_compoundPhotoelectrochemistry0202 electrical engineering electronic engineering information engineeringElectrochemistryChemical Engineering (all)Double-layered anodic filmAnodizingMetallurgy021001 nanoscience & nanotechnologyAnodeRed shiftSettore ING-IND/23 - Chimica Fisica Applicatachemistry0210 nano-technology
researchProduct

Anodization and anodic oxides

2018

Anodizing is a low-temperature, low-cost electrochemical process allowing for the growth, on the surface of valve metals and valve metal alloys, of anodic oxides of tunable composition and properties. This article is an overview on theoretical aspects concerning the general aspects of the kinetics of growth of barrier and porous anodic oxides and some of their present and possibly future technological applications of anodic oxides. The first part of the article is devoted to anodic oxide growth models, from Guntherschulze and Betz work (in 1934) to the more recent results on barrier and porous oxide films. The second part is focused on industrial processes to fabricate anodic oxides and the…

Materials scienceNanotechnology02 engineering and technologyDielectricAnodizingElectrochemistryCorrosionAl alloysMicroelectronicsCoatings0502 economics and businessGrowth kineticsValve metals050207 economicsThin filmPorosityHigh-k materialsElectrolytic capacitorBarrier-type oxidesAnodizing05 social sciencesMetallurgy021001 nanoscience & nanotechnologyPorous-type oxidesAnodeCorrosionSettore ING-IND/23 - Chimica Fisica ApplicataAnodic oxidesAlumina membranesDielectrics0210 nano-technologyAluminum
researchProduct

Photoelectrochemical evidence of nitrogen incorporation during anodizing sputtering--deposited Al-Ta alloys.

2015

Anodic films were grown to 20 V on sputtering-deposited Al–Ta alloys in ammonium biborate and borate buffer solutions. According to glow discharge optical emission spectroscopy, anodizing in ammonium containing solution leads to the formation of N containing anodic layers. Impedance measurements did not evidence significant differences between the dielectric properties of the anodic films as a function of the anodizing electrolyte. Photoelectrochemical investigation allowed evidencing that N incorporation induces a red-shift in the light absorption threshold of the films due to the formation of allowed localized states inside their mobility gap. The estimated Fowler threshold for the intern…

AnodizingChemistry020209 energyAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementNanotechnology02 engineering and technologyElectrolyteElectronDielectric021001 nanoscience & nanotechnologyNitrogenAnodePhysics and Astronomy (all)Settore ING-IND/23 - Chimica Fisica ApplicataSputtering0202 electrical engineering electronic engineering information engineeringDensity of statesPhysical and Theoretical Chemistry0210 nano-technologyPhysical chemistry chemical physics : PCCP
researchProduct

A Generalized Semiempirical Approach to the Modeling of the Optical Band Gap of Ternary Al-(Ga, Nb, Ta, W) Oxides Containing Different Alumina Polymo…

2021

A generalization of the modeling equation of optical band gap values for ternary oxides, as a function of cationic ratio composition, is carried out based on the semiempirical correlation between the differences in the electronegativity of oxygen and the average cationic electronegativity proposed some years ago. In this work, a novel approach is suggested to account for the differences in the band gap values of the different polymorphs of binary oxides as well as for ternary oxides existing in different crystalline structures. A preliminary test on the validity of the proposed modeling equations has been carried out by using the numerous experimental data pertaining to alumina and gallia p…

010405 organic chemistryGeneralizationChemistryBand gapCationic polymerizationThermodynamicsFunction (mathematics)Aluminum oxideComposition (combinatorics)010402 general chemistry01 natural sciencesArticleMixed oxides0104 chemical sciencesInorganic ChemistryCondensed Matter::Materials ScienceSettore ING-IND/23 - Chimica Fisica ApplicataBand GapPhysics::Atomic and Molecular ClustersPhysics::Chemical PhysicsPhysical and Theoretical ChemistryTernary operation
researchProduct

Resistive switching in microscale anodic titanium dioxide-based memristors

2018

Licence CC BY-NC-ND The potentiality of anodic TiO2 as an oxide material for the realization of resistive switching memory cells has been explored in this paper. Cu/anodic-TiO2/Ti memristors of different sizes, ranging from 1 × 1 μm2 to 10 × 10 μm2 have been fabricated and characterized. The oxide films were grown by anodizing Ti films, using three different process conditions. Measured IV curves have shown similar asymmetric bipolar hysteresis behaviors in all the tested devices, with a gradual switching from the high resistance state to the low resistance state and vice versa, and a R_OFF/R_ON ratio of 80 for the thickest oxide film devices.

Materials scienceOxideNanotechnology02 engineering and technologyMemristorCondensed Matter PhysicAnodizing01 natural sciencesRRAMSettore ING-INF/01 - Elettronicalaw.inventionchemistry.chemical_compoundlaw0103 physical sciencesTiO2General Materials ScienceResistive switchingElectrical and Electronic EngineeringMicroscale chemistryAsymmetric hysteresi010302 applied physicsAnodizingbusiness.industryMemristor021001 nanoscience & nanotechnologyCondensed Matter PhysicsAnodeHysteresisSettore ING-IND/23 - Chimica Fisica ApplicatachemistryResistive switchingTitanium dioxideOptoelectronicsMaterials Science (all)0210 nano-technologybusiness
researchProduct

Photoelectrochemical characterization of photocatalysts

2021

Abstract This chapter aims to provide an overview of the photoelectrochemical characterization of semiconducting photocatalysts and, in particular, present Photocurrent Spectroscopy (PCS) as a useful tool in determining the band structure of semiconducting/insulating materials. Some fundamentals on PCS will be provided looking at the experimental setup and underlying its advantages and disadvantages. Then, the photoelectrochemical behavior of a semiconductor/electrolyte junction under irradiation will be presented, also taking into account its crystalline or amorphous nature, highlighting how it is possible to get information on the energetics of the junction. This will be exploited to show…

PhotocurrentMaterials scienceSemiconductorbusiness.industryOptoelectronicsIrradiationElectrolyteElectronic band structureSpectroscopybusinessAmorphous solidCharacterization (materials science)
researchProduct

Rhodamine (B) photocatalysis under solar light on high crystalline ZnO films grown by home-made DC sputtering

2018

Abstract ZnO thin films were deposited by home-made DC sputtering of zinc target under mixed gases (Argon, Oxygen) plasma on glass substrates. Films were deposited by varying oxygen partial pressure (PO2) from 0.09 to 1.3 mbar in the deposition chamber, at a fixed substrate temperature of 100 °C. The samples were characterized by photoluminescence (PL), X-ray diffraction (XRD), optical transmissions (UV–vis), scanning electron microscopy (SEM) and electrical (Hall effect) measurements. The results indicate that by varying the oxygen pressure in the deposition chamber, the films show a precise and well defined photoluminescence emissions for each range of pressure covering almost the entire …

010302 applied physicsMaterials sciencePhotoluminescenceZnO thin films Sputtering Photoluminescence Rhodamine (B) Solar light PhotocatalysisScanning electron microscopeBand gapAnalytical chemistry02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistrySputtering0103 physical sciencesPhotocatalysisRhodamine BElectrical and Electronic EngineeringThin film0210 nano-technology
researchProduct

Valence change ReRAMs (VCM) - Experiments and modelling: General discussion

2019

Valence change ReRAMs (VCM) - Experiments and modelling: General discussion

PhysicsValence (chemistry)Settore ING-IND/23 - Chimica Fisica ApplicataCondensed matter physicsUT-Hybrid-DValence change ReRAMs (VCM) Experiments modellingPhysical and Theoretical Chemistry22/4 OA procedure
researchProduct

Forming-Free and Self-Rectifying Resistive Switching Effect in Anodic Titanium Dioxide-Based Memristors

2018

The paper presents the resistive switching of electroforming-free Ti/anodic- TiO 2 /Cu memristors. Anodic TiO 2 thin films were prepared by anodizing Ti layers. Microscale devices were fabricated by direct laser-assisted photolithography. Experimental results showed a bipolar and self-rectifying behavior of the devices, which could be useful for crossbar array configurations. Moreover, a gradual resistive switching of the devices in both directions was observed, indicating the presence of multi-level resistance states.

Titanium DioxideMaterials sciencebusiness.industryAnodizingMemristorAnodizingMemristorRRAMSettore ING-INF/01 - Elettronicalaw.inventionAnodechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistrylawResistive switchingTitanium dioxideOptoelectronicsThin filmPhotolithographybusinessCrossbar arrayMultistate resistanceMicroscale chemistry
researchProduct

One-step electrodeposition of superhydrophobic coating on 316L stainless steel

2021

Superhydrophobic coatings were fabricated through a one-step electrochemical process onto the surface of 316L stainless steel samples. The presence of hierarchical structures at micro/nanoscale and manganese stearate into the coatings gave superhydrophobicity to the coating, with contact angle of ~160°, and self-cleaning ability. Corrosion resistance of 316L samples was also assessed also after the electrodeposition process through Electrochemical Impedance Spectra recorded in an aqueous solution mimicking seawater condition.

Materials science316L Electrodeposition Self-cleaning Stainless steel Stearic acid superhydrophobicitychemistry.chemical_elementOne-StepManganeseengineering.materialCorrosionContact anglechemistry.chemical_compoundCoatingStearate316LGeneral Materials ScienceComposite materialstainless steelAqueous solutionMining engineering. MetallurgyMetals and AlloysTN1-997stearic acidSuperhydrophobic coatingSettore ING-IND/23 - Chimica Fisica Applicatachemistryengineeringelectrodepositionself-cleaningsuperhydrophobicity
researchProduct

Boosting DMFC power output by adding sulfuric acid as a supporting electrolyte: Effect on cell performance equipped with platinum and platinum group …

2023

Direct methanol fuel cells (DMFCs) are promising electrochemical systems capable of producing electricity from the electrochemical oxidation of methanol and the reduction of oxygen. In this work, the effectiveness of the addition of sulfuric acid as a supporting electrolyte for methanol fuel composition was assessed. The results showed that the peak of power curve in DMFCs with Pt/C cathode electrocatalysts increased progressively from 70 mW cm−2 (0 mM of H2SO4) to 115 mW cm−2 with a concentration of 100 mM of H2SO4. These results underlined the positive effect of the addition of a supporting electrolyte in the methanol aqueous solution on the electrochemical output that was enhanced. Plati…

Settore ING-IND/23 - Chimica Fisica ApplicataRenewable Energy Sustainability and the EnvironmentMethanolElectrocatalysiFuel cellEnergy Engineering and Power TechnologySupporting electrolyteElectrical and Electronic EngineeringPhysical and Theoretical ChemistryOxygen reduction reaction
researchProduct

Photoelectrochemical and EPR features of polymeric C 3 N 4 and O-modified C 3 N 4 employed for selective photocatalytic oxidation of alcohols to alde…

2019

Four different C 3 N 4 specimens have been prepared, a bulk one (MCN), a thermally etched (MCN-TE), a solid prepared by hydrothermally treating MCN with H 2 O 2 (MCN-H 2 O 2 ) and a polymeric carbon nitride-hydrogen peroxide adduct (MCN-TE-H 2 O 2 ). The principal aim of this work was to correlate the capability of the prepared material to generate reactive oxygen species (ROS), under irradiation, with their photocatalytic activities in terms of conversion and selectivity for partial oxidation reactions. Photoelectrochemical studies revealed that MCN-TE represented the best material in terms of photoconductivity, whereas MCN-H 2 O 2 was defective and evidenced a poor mobility of carriers. E…

O-modified C3402 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesPeroxideCatalysisC3N4Catalysischemistry.chemical_compoundPhotocatalytic partial oxidationCAromatic alcoholPartial oxidationcarbon nitride5-hydroxymethylfurfuralChemistry5-hydroxymethylfurfural Aromatic alcohol C3N4 carbon nitride EPR O-modified C3N4 Photocatalytic partial oxidation Selective photo-oxidationPhotoconductivityO-modified C3N4Prepared MaterialGeneral ChemistryN021001 nanoscience & nanotechnologySelective photo-oxidation0104 chemical sciencesAlcohol oxidationPhotocatalysisSettore CHIM/07 - Fondamenti Chimici Delle TecnologieEPR0210 nano-technologySelectivity
researchProduct

Electroplated bismuth absorbers for planar NTD-Ge sensor arrays applied to hard x-ray detection in astrophysics

2018

Single sensors or small arrays of manually assembled neutron transmutation doped germanium (NTD-Ge) based microcalorimeters have been widely used as high energy-resolution detectors from infrared to hard X-rays. Several planar technological processes were developed in the last years aimed at the fabrication of NTD-Ge arrays, specifically designed to produce soft X-ray detectors. One of these processes consists in the fabrication of the absorbers. In order to absorb efficiently hard X-ray photons, the absorber has to be properly designed and a suitable material has to be employed. Bismuth offers interesting properties in terms of absorbing capability, of low heat capacity (needed to obtain h…

Materials scienceFabricationelectroplatingNTD-GeX-ray detectorchemistry.chemical_elementGermaniumCondensed Matter Physic01 natural sciencesthick film010305 fluids & plasmasBismuthX-rayPlanarSettore FIS/05 - Astronomia E AstrofisicaMicrocalorimeter0103 physical sciencesbismuthElectrical and Electronic Engineering010306 general physicsElectroplatingbusiness.industryElectronic Optical and Magnetic MaterialDopingDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionApplied MathematicchemistryOptoelectronicsbusiness
researchProduct

Tuning of the Mg Alloy AZ31 Anodizing Process for Biodegradable Implants

2021

Coatings were grown on the AZ31 Mg alloy by a hard anodizing process in the hot glycerol phosphate-containing electrolyte. Anodizing conditions were optimized, maximizing corrosion resistance estimated by impedance measurements carried out in Hank's solution at 37 °C. A post anodizing annealing treatment (350 °C for 24 h) allowed us to further enhance the corrosion resistance of the coatings mainly containing magnesium phosphate according to energy-dispersive X-ray spectroscopy and Raman analyses. Gravimetric measurements revealed a hydrogen evolution rate within the limits acceptable for application of AZ31 in biomedical devices. In vitro tests demonstrated that the coatings are biocompati…

Materials scienceAnnealing (metallurgy)Surface PropertiesAlloyMagnesium Compounds02 engineering and technologyElectrolyteengineering.material010402 general chemistry01 natural sciencesbiomedicalCorrosionCell LinePhosphatesMiceCoated Materials BiocompatibleAbsorbable ImplantsMaterials TestingAlloysAnimalsGeneral Materials ScienceMg alloyElectrodesMagnesium phosphatecorrosion resistanceAnodizing021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopyCorrosionSettore ING-IND/23 - Chimica Fisica Applicataelectrochemical impedance spectroscopyChemical engineeringengineeringGravimetric analysishard anodizing0210 nano-technologyResearch ArticleACS Applied Materials & Interfaces
researchProduct

Ionic shortcut currents via manifolds in reverse electrodialysis stacks

2020

Abstract Reverse electrodialysis (RED) is a blue energy technology for clean and sustainable electricity harvesting from the mixing entropy of salinity gradients. Recently, many efforts have been devoted to improving the performance of RED units by developing new ion-exchange membranes and by reducing the detrimental phenomena affecting the process. Among these sources of “irreversibility”, the shortcut currents (or parasitic currents) flowing through alternative pathways may affect the process efficiency. Although such phenomena occur in several electrochemical processes (e.g. fuel cells, bipolar plate cells and vanadium redox flow batteries), they have received a poor attention in RED uni…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceGeneral Chemical Engineering02 engineering and technology7. Clean energyElectromembrane process020401 chemical engineeringElectrical resistance and conductanceStack (abstract data type)Reverse electrodialysisReversed electrodialysisGeneral Materials Science0204 chemical engineeringProcess engineeringIonic shortcut currentsWater Science and TechnologyIon exchange membraneParasitic phenomenaSalinity gradient energybusiness.industryMechanical EngineeringGeneral ChemistryElectrodialysis021001 nanoscience & nanotechnologyEnergy technology6. Clean waterMembraneSettore ING-IND/23 - Chimica Fisica ApplicataElectricity0210 nano-technologybusinessEnergy source
researchProduct

Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: general discussion

2019

Electrochemical metallization ReRAMs (ECM) - Experiments and modelling: General discussion

Settore ING-IND/23 - Chimica Fisica ApplicataMaterials scienceElectrochemical metallization ReRAMs Experiments modellingNanotechnologyOtaNanoPhysical and Theoretical ChemistryElectrochemistry22/4 OA procedure
researchProduct

METODO PER IL TRATTAMENTO SUPERFICIALE DI LEGHE DI MAGNESIO PER APPLICAZIONI BIOMEDICALI

2019

L’invenzione oggetto di questo brevetto riguarda il processo di anodizzazione per la produzione di rivestimenti (coatings) su leghe di Magnesio AZ31. Queste leghe sono potenzialmente utilizzabili per la produzione di dispositivi biomedicali quali protesi e stent che sono soggetti a fenomeni di corrosione all’interno del corpo umano che ne possono compromettere il funzionamento. Il vantaggio di queste leghe sta nel fatto che possiedono ottime proprietà meccaniche (il modulo elastico delle leghe di Magnesio AZ31 risulta essere confrontabile con quello dell’osso umano) e risultano biodegradabili, ovvero svolgono la loro funzione di sostegno meccanico per lo stretto periodo necessario, e quindi…

Settore ING-IND/23 - Chimica Fisica ApplicataAZ31 coating biodegradazione biocompatibilità controllo della velocita di corrosione.
researchProduct

Heterogeneous crystallization of zinc hydroxystannate on galvanized steel for enhancing the bond strength at the rebar/concrete interface

2021

Abstract Zinc hydroxystannate (ZnSn(OH)6) coatings were deposited on galvanized carbon steel samples by an electroless heterogeneous crystallization process. Structural and morphological features of the coatings as a function of the immersion time were determined by X-ray diffraction, Raman Spectroscopy and Scanning Electron Microscopy revealing the presence of truncated octahedrons of crystalline ZnSn(OH)6. Electrochemical characterization in a simulated concrete pore solution without and with addition of chloride ions proved that the cathodic protection is preserved and that ZnSn(OH)6 improved the corrosion resistance of the rebars. Pull-out tests demonstrated an enhanced bond strength at…

Materials scienceCarbon steelGeneral Chemical EngineeringCorrosion resistanceRebarchemistry.chemical_element02 engineering and technologyZincengineering.material010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringlaw.inventionCorrosionCathodic protectionsymbols.namesakeHot-dip galvanizinglawEnvironmental ChemistryCrystallizationComposite materialBond strengthZinc hydroxystannateBond strengthGeneral Chemistry021001 nanoscience & nanotechnologyGalvanization0104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicatachemistryengineeringsymbolsCrystallization0210 nano-technologyConcreteChemical Engineering Journal
researchProduct

Electrochemical Tantalum Oxide for Resistive Switching Memories

2017

Redox-based resistive switching memories (ReRAMs) are strongest candidates for the next-generation nonvolatile memories fulfilling the criteria for fast, energy efficient, and scalable green IT. These types of devices can also be used for selector elements, alternative logic circuits and computing, and memristive and neuromorphic operations. ReRAMs are composed of metal/solid electrolyte/metal junctions in which the solid electrolyte is typically a metal oxide or multilayer oxides structures. Here, this study offers an effective and cheap electrochemical approach to fabricate Ta/Ta2O5-based devices by anodizing. This method allows to grow high-quality and dense oxide thin films onto a metal…

Materials scienceReRAMOxide02 engineering and technologyElectrolyte010402 general chemistry01 natural scienceschemistry.chemical_compoundmultilevelDispersion (optics)General Materials ScienceMechanics of MaterialThin filmAnodic thin filmbusiness.industryAnodizingresistive switchingMechanical EngineeringNanosecond021001 nanoscience & nanotechnology0104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicatachemistryNeuromorphic engineeringMechanics of MaterialsLogic gateOptoelectronicsMaterials Science (all)0210 nano-technologybusinesstantalum oxide
researchProduct

On the modelling of an Acid/Base Flow battery: an innovative electrical energy storage device based on pH and salinity gradients

2019

The Acid/Base Flow Battery (AB-FB) is an innovative and sustainable way to store electric energy. It can theoretically guarantee an energy density of about 11 kWh/m3, which is higher than that provided by pumped hydropower, osmotic energy storage and compressed air. The AB-FB stores energy as pH and salinity gradients by employing a stack provided with (i) channels, hosting the solutions at difference pH and concentrations, separated by (ii) monopolar and bipolar ion exchange membranes. Two different membrane processes are involved: the Bipolar Membrane Electrodialysis (ED-BM) as charging step and its opposite, Bipolar Membrane Reverse Electrodialysis (RED-BM) as discharging step. The prese…

Bipolar Reverse ElectrodialysiSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciBipolar ElectrodialysiIonic short-circuit currentAcid/Base Flow batteryProcess ModellingMulti-scale modelEnergy StorageSalinity Gradient Power
researchProduct

Band gap narrowing and dielectric constant enhancement of (NbxTa(1-x))2O5 by electrochemical nitrogen doping

2018

Abstract Anodic films were grown to 5 V and 50 V on Nb, Ta and Ta-Nb sputtering deposited alloys in 0.1 M ammonium biborate solutions in order to induce N incorporation. Their properties were compared to those of N free anodic films grown to the same formation voltages in 0.1 M NaOH. Photoelectrochemical measurements evidenced the presence of optical transitions at energy lower than the band gap of the oxides, attributed to localized states located close to the valence band mobility edge of the films, generated by N 2p orbitals, with consequent narrowing of the band gap. Since N incorporation occurs in the outer 70% of the anodic films, the dependence of the measured photocurrent as a funct…

PhotocurrentMaterials scienceDifferential capacitanceBand gapGeneral Chemical EngineeringDopingAnalytical chemistry02 engineering and technologyDielectricPhoton energy010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciences0104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicataSputteringElectrochemistryChemical Engineering (all)0210 nano-technologyElectrochimica Acta
researchProduct

Double Step Electrochemical Process for the Deposition of Superhydrophobic Coatings for Enhanced Corrosion Resistance

2021

Superhydrophobic surface on anodized AA5083 sample was obtained by an electrochemical process. Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy analyses revealed the hierarchical structure of the coating and the presence of manganese stearate. These features were crucial for the coating superhydrophobicity, demonstrated by a measured contact angle of ~ 163° and its self-cleaning ability. Electrochemical characterization in an aqueous solution mimicking seawater proved an enhanced corrosion resistance due to the superhydrophobic coating with respect to anodized AA5083 sample that also lasted after 20 immersion days in Cl- containing electrolyte.

Materials scienceRenewable Energy Sustainability and the EnvironmentAnodizingScanning electron microscopeengineering.materialCondensed Matter PhysicsSuperhydrophobic coatingSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCorrosionAA5083 Electrodeposition Marine corrosion Superhydrophobic Stearic acid Self-cleaningContact anglechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicataCoatingchemistryChemical engineeringStearateMaterials ChemistryElectrochemistryengineeringFourier transform infrared spectroscopy
researchProduct

Effect of TiO2 and Al2O3 Addition on the Performance of Chitosan/Phosphotungstic Composite Membranes for Direct Methanol Fuel Cells

2023

Composite chitosan/phosphotungstic acid (CS/PTA) with the addition of TiO2 and Al2O3 particles were synthesized to be used as proton exchange membranes in direct methanol fuel cells (DMFCs). The influence of fillers was assessed through X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, liquid uptake, ion exchange capacity and methanol permeability measurements. The addition of TiO2 particles into proton exchange membranes led to an increase in crystallinity and a decrease in liquid uptake and methanol permeability with respect to pristine CS/PTA membranes, whilst the effect of the introduction of Al2O3 particles on the characteristics of membranes is almost the op…

Al2O3; DMFC; TiO2; chitosan; hybrid membranes; inorganic filler; methanol permeability; phosphotungstic acid; power density; proton exchange membraneProcess Chemistry and TechnologyAl<sub>2</sub>O<sub>3</sub>power densityinorganic fillerFiltration and SeparationSettore ING-IND/23 - Chimica Fisica Applicataphosphotungstic acidAl2O3TiO2Chemical Engineering (miscellaneous)chitosanhybrid membranesmethanol permeabilityTiO<sub>2</sub>DMFCproton exchange membraneMembranes
researchProduct

Optimization of anodizing process of tantalum for Ta2O5-based capacitors

2020

Anodic oxides were grown to 50 V on Ta in several organic ions containing anodizing baths. Their properties were compared with anodic Ta oxide film grown to the same formation voltage in 0.1 M NaOH. Anodizing process carried out in sodium citrate led to the growth of the anodic oxide with the best blocking properties whilst, when Ta is anodized in sodium adipate, a significant part of the circulated charge is wasted in side reactions, such as oxygen evolution. Photoelectrochemical measurements showed the presence of optical transitions at energy lower than the band gap for the anodic films grown in citrate and tartrate electrolytes, attributed to localized electronic states located close to…

Materials scienceDifferential capacitanceBand gapAnodizingInorganic chemistryOxideTantalumSodium adipatechemistry.chemical_element02 engineering and technologyElectrolyte010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectrochemistry01 natural sciences0104 chemical scienceschemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryAnodizing Band gap Capacitor Dielectric properties Organic ions TantalumElectrochemistryGeneral Materials ScienceElectrical and Electronic Engineering0210 nano-technology
researchProduct

Photoelectrochemical evidence of Nitrogen Incorporation during Anodizing of valve metals alloys

2015

Amorphous and/or nanocrystalline oxide films can be easily prepared electrochemically by anodizing. The anodizing allows to grow oxides with structural and compositional features easily and strictly controlled by the process parameters.

Photoelectrochemical characterization Nitrogen Incorporation Anodizing valve metals alloys
researchProduct

Solid State Properties of Anodic Hf-Nb Mixed Oxides

2016

In last decades, HfO2 and Nb2O5 have been extensively studied due to their many potential applications, from corrosion protection to CMOS (as high-k gate dielectrics) [1-2] and ReRAM technologies [3-4]. For these technological applications compact, uniform and flat oxides are necessary, and a detailed understanding of their physical properties as a function of the fabrication conditions is needful. Scientific community gradually shifted its interest from pure metal oxides to mixed metal oxides trying to exploit the advantages of pure oxides and to suppress their disadvantages. Mixed oxides can be grown on valve metals alloys by anodizing, a simple and low cost electrochemical process for pr…

Settore ING-IND/23 - Chimica Fisica ApplicataSolid State Properties Anodizing Hf-Nb Mixed Oxides MOS based devices ReRAM technologies
researchProduct

Photocurrent Spectroscopy in Corrosion and Passivity Studies. A Critical Assessment

2016

Photocurrent Spectroscopy (PCS) is currently employed for the characterization of solid-state properties of semiconducting and insulating materials, since the knowledge of their band gap is a prerequisite to any possible application in different fields such as: solar energy conversion (photoelectrochemical and photovoltaic solar cells, photocatalysis) and microelectronics (high-k, high band-gap materials) (1-2). In the last 20-30 years an increasing number of scientists working in the area of corrosion has been attracted by this technique owing to its versatility and ability to scrutinize in situ corrosion layers and passive films having semiconducting or insulating behaviour. In previous w…

Settore ING-IND/23 - Chimica Fisica ApplicataPhotocurrent Spectroscopy Corrosion Passivity
researchProduct

Anodic TiO2 in ReRAM: Influence of Si-doping on the Resistive Switching Properties of Titanium Oxide

2016

TiO2 has attracted much attention due to its potential widespread applications, including capacitors, photocatalysis, solar energy conversion and, more recently, redox-based random access memories (ReRAM). For micro and nano-electronics applications, TiO2 is usually grown through Chemical and Physical Vapour Deposition techniques, such as Atomic Layer Deposition (ALD), Pulsed Laser Deposition (PLD), Sputtering and so on. In ReRAM field, the control of oxide structure (crystallinity, defects concentration etc.) and the choice of electrodes are crucial to have resistive switching phenomena inside the oxide. Thus, anodizing can be proposed as a simple and low cost way to grow TiO2 and to tune …

Settore ING-IND/23 - Chimica Fisica ApplicataAnodizing TiO2 ReRAM Si-doping Resistive Switching ReRAMSettore ING-INF/01 - Elettronica
researchProduct

Resistive switching of anodic TiO2-based Memristors

2018

In recent years, memristors have attracted great attention owing to their simple fabrication process, high scalability, good compatibility with the CMOS technology, high switching speed, low power consumption and low cost for next-generation non-volatile memory technology [1]. The basic cell structure of a memristor is an insulator sandwiched between two metal electrodes. Among the materials being studied for memristors fabrication, binary metal oxides, such as TiO2, are most favourable because of their simple constituents, compatible with CMOS processes, and resistive to thermal/chemical damages. Anodizing is a an electrochemical low cost process carried out at room temperature to grow oxi…

Settore ING-IND/23 - Chimica Fisica ApplicataSettore ING-INF/01 - ElettronicaMemristor RRAM Anodizing TiO2
researchProduct

The influence of composition on the solid state properties of anodic films on Al-Ta alloys

2015

Microelectronics is very important for almost all kinds of technology evolutions in the past four decades. In this area, the dielectrics science occupies a prominent place in providing the dominant technology in integrated capacitors or gate insulators.

Settore ING-IND/23 - Chimica Fisica Applicatasolid state properties anodic films Al-Ta alloys
researchProduct

Photoelectrochemical evidence of inhomogeneous composition at nm length scale of anodic films on valve metals alloys

2015

Anodic films of different thickness (∼30 nm and 70 nm) were grown by anodizing sputtering-deposited Ta-19at% Al to different formation voltages. N incorporation into the anodic films was inducing by performing the anodizing process in ammonium containing solutions. Layered anodic films were prepared by a double formation procedure with a first anodizing step in ammonium biborate solution and second anodizing step in borate buffer solution, or vice versa. Glow Discharge Optical Emission Spectroscopy was employed to show the distribution of N across the oxide. Photoelectrochemical measurements evidenced a red shift of the light absorption threshold due to N incorporation. A model was proposed…

Settore ING-IND/23 - Chimica Fisica ApplicataPhotoelectrochemical characterization nm length scale anodic films valve metals alloys
researchProduct

Photoelectrochemical evidence of Nitrogen Incorporation during Anodizing of Sputtering-Deposited Al-Ta alloys

2016

Anodic films were grown to 20 V on sputtering-deposited Al–Ta alloys in ammonium biborate and borate buffer solutions. According to glow discharge optical emission spectroscopy, anodizing in ammonium containing solution leads to the formation of N containing anodic layers. Impedance measurements did not evidence significant differences between the dielectric properties of the anodic films as a function of the anodizing electrolyte. Photoelectrochemical investigation allowed evidencing that N incorporation induces a red-shift in the light absorption threshold of the films due to the formation of allowed localized states inside their mobility gap. The estimated Fowler threshold for the intern…

Photoelectrochemical characterization Nitrogen Incorporation Anodizing Sputtering-Deposited Al-Ta alloysSettore ING-IND/23 - Chimica Fisica Applicata
researchProduct