0000000001298881
AUTHOR
Oscar Castillo
Electrical conductivity and strong luminescence in copper Iodide double chains with isonicotinato derivatives
Direct reactions between CuI and isonicotinic acid (HIN) or the corresponding esters, ethyl isonicotinate (EtIN) or methyl isonicotinate (MeIN), give rise to the formation of the coordination polymers [CuI(L)] with L=EtIN (1), MeIN (2) and HIN (3). Polymers 1-3 show similar structures based on a CuI double chain in which ethyl-, methyl isonicotinate or isonicotinic acid are coordinated as terminal ligands. Albeit, their supramolecular architecture differs considerably, affecting the distances and angles of the central CuI double chains and thereby their physical properties. Hence, the photoluminescence shows remarkable differences; 1 and 2 show a strong yellow emission, whereas 3 displays a…
Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer
A coordination polymer is fully exfoliated by solvent-assisted interaction only. The soft-delamination process results from the structure of the starting material, which shows a layered structure with weak layer-to-layer interactions and cavities with the ability to locate several solvents in an unselective way. These results represent a significant step forward towards the production of structurally designed one-molecule thick 2D materials with tailored physico-chemical properties.
Rational Design of Copper(II)-Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media
This work is focused on the rational structural design of two isostructural Cu(II) nano-coordination polymers (NCPs) with uracil-1-acetic acid (UAcOH) (CP1n) and 5-fluorouracil-1-acetic acid (CP2n). Suitable single crystals for ꭕ-ray diffraction studies of CP1 and CP2 were prepared under hydrothermal conditions, enabling their structural determination as 1D-CP ladder-like polymeric structures. The control of the synthetic parameters allows their processability into water colloids based on nanoplates (CP1n and CP2n). These NCPs are stable in water at physiological pHs for long periods. However, interestingly, CP1n is chemically altered in culture media. These transformations provoke the part…
One-dimensional oxalato-bridged copper(II) complexes with 3-hydroxypyridine and 2-amino-4-methylpyridine
Two new one-dimensional oxalato-bridged copper(II) compounds of formula [Cu(ox)L2]n (1) and {[Cu2(ox)2L%3]·L%}n (2) [ox oxalate dianion, L3-hydroxypyridine (pyOH) and L% 2-amino-4-methylpyridine (ampy)] have been synthesized and characterized by FT-IR spectroscopy, variable-temperature magnetic measurements and single-crystal X-ray diffraction. The crystal structure of 1 comprises chains of copper atoms in which cis-[Cu(pyOH)2] 2 units are sequentially bridged by asymmetric bis-bidentate oxalato ligands with an intrachain copper‐copper separation of 5.548(1) A, . Each copper atom is six-coordinated: four oxygen atoms belonging to two bridging oxalato ligands and two nitrogen atoms from two …
Reversible Solvent‐Exchange‐Driven Transformations in Multifunctional Coordination Polymers Based on Copper‐Containing Organosulfur Ligands
The preparation by simple direct synthesis of a series of coordination polymers based on copper with chloride or bromide and dipyrimidinedisulfide is reported. The structural characterisations of these compounds reveal a rich structural variety as a result of the number of coordination modes available to the organosulfur ligand, in combination with the bridging capabilities of the halides. Interestingly, some of the polymers displayed fully reversible solvent exchange/removal crystal-to-crystal 2D to 0D and 2D to 2D transformations. These materials show multifunctional electronic properties. Thus, some of them are semiconductors and present weak antiferromagnetic interactions, and the CuI/C…
Control and Simplicity in the Nanoprocessing of Semiconducting Copper-Iodine Double Chain Coordination Polymers
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00364
Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers
This is the peer reviewed version of the following article: Vegas, V. G., Lorca, R., Latorre, A., Hassanein, K., Gómez‐García, C. J., Castillo, O., ... & Amo‐Ochoa, P. (2017). Copper (II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie International Edition, 56(4), 987-991, which has been published in final form at https://doi.org/10.1002/anie.201609031. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
Back Cover: Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives (Chem. Eur. J. 48/2015)
Ferromagnetic coupling through a carbonate bridge in the copper (II) chain [Cu(CO3)(4-apy)2] · H2O (4-apy = 4-aminopyridine)
Abstract Atmospheric CO2 fixation by aqueous solutions containing copper(II) bromide and 4-aminopyridine (4-apy) yields the first carbonatobridged copper(II) chain of formula [Cu(CO3)(4-apy)2] · H2O that exhibits an intrachain ferromagnetic coupling.
Electrical Conductivity and Luminescence in Coordination Polymers Based on Copper(I)-Halides and Sulfur-Pyrimidine Ligands
The solvothermal reactions between pyrimidinedisulfide (pym(2)S(2)) and CuI or CuBr(2) in CH(2)Cl(2):CH(3)CN lead to the formation of [Cu(11)I(7)(pymS)(4)](n) (pymSH = pyrimidine-2(1H)-thione) (1) and the dimer [Cu(II)(μ-Br)(Br)L](2) (L = 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde) (2). In the later reaction, there is an in situ S-S, S-C(sp(2)), and C(sp(2))-N multiple bond cleavage of the pyrimidinedisulfide resulting in the formation of 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde. Interestingly, similar reactions carried out just with a change in the solvent (H(2)O:CH(3)CN instead of CH(2)Cl(2):CH(3)CN) give rise to the formation of coordination polymers with rather diffe…
On the Road to MM′X Polymers: Redox Properties of Heterometallic Ni···Pt Paddlewheel Complexes
On the quest of heterometallic mixed-valence MM'X chains, we have prepared two stable discrete bimetallic compounds: the reduced (PPN)[ClNi(μ-OSCPh)4Pt] (PPN = bis(triphenylphosphine)iminium; OSCPh = benzothiocarboxylato) and the oxidized [(H2O)Ni(μ-OSCPh)4PtCl] species. The role of the aqua and chlorido axial ligands is crucial to facilitate oxidation of the {Ni(μ-OSCPh)4Pt} core. Experimental and theoretical analyses indicate that a NiPt-Cl/Cl-NiPt isomerization process occurs in the oxidized species. The electronic structure of the reduced system shows two unpaired electrons, one located in a d(x(2)-y(2)) orbital of the Ni(II) ion and a second in the antibonding d(z(2)-dz(2)) combination…
Semiconductive and Magnetic One-Dimensional Coordination Polymers of Cu(II) with Modified Nucleobases
Four new copper(II) coordination complexes, obtained by reaction of CuX2 (X = acetate or chloride) with thymine-1-acetic acid and uracil-1-propionic acid as ligands, of formulas [Cu(TAcO)2(H2O)4]·4H2O (1), [Cu(TAcO)2(H2O)2]n (2), [Cu3(TAcO)4(H2O)2(OH)2]n·4H2O (3), and [Cu3(UPrO)2Cl2(OH)2(H2O)2]n (4) (TAcOH = thymine-1-acetic acid, UPrOH = uracil-1-propionic acid) are described. While 1 is a discrete complex, 2-4 are one-dimensional coordination polymers. Complexes 2-4 present dc conductivity values between 10(-6) and 10(-9) S/cm(-1). The magnetic behavior of complex 2 is typical for almost isolated Cu(II) metal centers. Moderate-weak antiferromagnetic interactions have been found in complex…
Reversible stimulus-responsive Cu(i) iodide pyridine coordination polymer
We present a structurally flexible copper–iodide–pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations.
Electrical Behaviour of Heterobimetallic [MM′(EtCS2)4] (MM′=NiPd, NiPt, PdPt) and MM′X-Chain Polymers [PtM(EtCS2)4I] (M=Ni, Pd)
Herein, we report the isolation of new heterobimetallic complexes [Ni0.6Pd1.4ACHTUNGTRENUNG(EtCS2)4] (1), [NiPtACHTUNGTRENUNG(EtCS2)4] (2) and [Pd0.4Pt1.6ACHTUNGTRENUNG(EtCS2)4] (3), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM'X monodimensional chains [Ni0.6Pt1.4ACHTUNGTRENUNG(EtCS2)4I] (4) and [Ni0.1Pd0.3Pt1.6ACHTUNGTRENUNG(EtCS2)4I] (5). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt2ACHTUNGTRENUNG(EtCS2)4I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spont…
A bioinspired metal–organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition
The direct reaction between Cu(CH3COO)2 and uracil-1-acetic acid in water gives rise to the formation of a hydrogel consisting of entangled nanometric ribbons of a crystalline antiferromagnetic 1D Cu(ii) coordination polymer (CP) decorated with biocompatible uracil nucleobases. This hydrogel is the precursor for the preparation of a meso/macroporous ultralight aerogel that shows a remarkable Young's modulus. As a proof-of-concept of the molecular recognition capability of the terminal uracil moieties anchored at Cu(ii) CP chains, this material has been tested as the selective stationary phase for the separation of nucleobase derivatives in HPLC columns.
A crystalline and free-standing silver thiocarboxylate thin-film showing high green to yellow luminescence
The simple direct synthesis of Cu(ii) and Ag(i) salts and thiobenzoic acid under ambient conditions allows the preparation of two bidimensional coordination polymers [M(TB)] (TB = thiobenzoate; M = Cu (1) or Ag (2)). Their electrical and luminescent properties show that these are multifunctional materials. Interestingly 1 and 2 undergo a reversible solubilization process. This unusual feature and their simple preparation allow us to prepare a crystalline and free-standing thin-film of 2, using an interfacial procedure, which shows a remarkable thermochromic luminescence.
Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties
The properties recently reported on the Cu(I)-iodide pyrimidine nonporous 1D-coordination polymer [CuI(ANP)] (ANP = 2-amino-5-nitropyridine) showing reversible physically and chemically driven electrical response have prompted us to carry a comparative study with the series of [CuX(ANP)] (X = Cl (1), X = Br (2), X = CN (4), and X = SCN (5)) in order to understand the potential influence of the halide and pseudohalide bridging ligands on the physical properties and their electrical response to vapors of these materials. The structural characterization of the series shows a common feature, the presence of -X-Cu(ANP)-X- (X = Cl, Br, I, SCN) double chain structure. Complex [Cu(ANP)(CN)] (4) pre…
Synthesis, characterisation, crystal structures, and magnetic properties of one-dimensional oxalato-bridged metal(II) complexes with 3-hydroxypyridine and isoquinoline
One-dimensional oxalato-bridged metal(II) compounds of formula [M(-ox)(L)2]n [L = 3-hydroxypyridine (pyOH) or isoquinoline (isq)] have been synthesised and characterised by FT-IR spectroscopy, TG-DTA techniques, variable-temperature magnetic measurements and X-ray diffraction methods. The complexes [M(-ox)(pyOH)2]n [M= Co (1), Ni (2)] are isomorphous and crystallise in the orthorhombic space group Pnab. The compounds [M(-ox)(isq)2]n [M= Co (3), Ni (4), Cu (5)] are also isomorphous and belong to the monoclinic space group C2/c. Crystal structures consist of zig-zag chains in which cis-[M(L)2] 2 + units are sequentially bridged by bis-bidentate oxalato ligands with intrachain M···M distances …
Group 10 Metal Benzene-1,2-dithiolate Derivatives in the Synthesis of Coordination Polymers Containing Potassium Countercations
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b01775
One-dimensional oxalato-bridged copper(II) complex possessing two structurally different metallic centres
Abstract The crystal structure of the oxalato-bridged copper(II) compound [Cu2(μ-ox)2(ampy)3]n 1 (ox=oxalate dianion, ampy=2-amino-3-methylpyridine) consists of infinite corrugated one-dimensional chains in which two types of copper(II) centres, five- and six-coordinated, are bridged sequentially by asymmetric bis-bidentate oxalato ligands. Magnetic susceptibility measurements show the occurrence of a significant intrachain antiferromagnetic coupling (J=−22.9 cm −1 ) .
Multifunctional coordination polymers based on copper with modified nucleobases, easily modulated in size and conductivity.
This Accepted Manuscript will be available for reuse under a CC BY-NC-ND licence after 24 months of embargo period
Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases
New copper(II) paddle-wheel complexes with different modified nucleobases and simple molecules in the axial positions have been prepared by direct reactions between copper(II) salts and the corresponding uracil- or thymine-1-acetic acids under inert atmosphere to produce the two homoleptic complexes, [Cu2(μ-OOCCH2-T)4(G)2] and [Cu2(μ-OOCCH2-U)4(G)2], and the heteroleptic one [Cu2(μ-OOCCH2-T)2(μ-OOCCH2-U)2(G)2] (where OOCCH2-T = thymine-1-acetate, OOCCH2-U = uracil-1-acetate, and G = dimethylformamide, water, dimethylacetamide, or dimethyl sulfoxide). Interestingly, the crystal structures of this family of closely related molecules present significant differences in their supramolecular arra…
Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer (Adv. Mater. 15/2013)
CCDC 949552: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 1415834: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 883365: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 949551: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 1583018: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1047310: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 1582338: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1415833: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 921188: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 883368: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 1401258: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 1415830: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1583017: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 980426: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1551942: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, José I. Martínez, and Félix Zamora|2017|Inorg.Chem.|56|11810|doi:10.1021/acs.inorgchem.7b01775
CCDC 980427: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1583019: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1047311: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 1403318: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 921191: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 921190: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1013364: Experimental Crystal Structure Determination
Related Article: Marcello Gennari, Gonzalo Givaja, Oscar Castillo, Laura Hermosilla, Carlos J. Gómez-García, Carole Duboc, Agustí Lledós, Ruben Mas-Ballesté, and Felix Zamora|2014|Inorg.Chem.|53|10553|doi:10.1021/ic501659x
CCDC 980424: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1551944: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, José I. Martínez, and Félix Zamora|2017|Inorg.Chem.|56|11810|doi:10.1021/acs.inorgchem.7b01775
CCDC 1934515: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Noelia Maldonado, Oscar Castillo, Carlos J. Gómez-García, Pilar Amo-Ochoa|2019|J.Inorg.Biochem.|200|110805|doi:10.1016/j.jinorgbio.2019.110805
CCDC 1047309: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 921189: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 949549: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 980425: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1934514: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Noelia Maldonado, Oscar Castillo, Carlos J. Gómez-García, Pilar Amo-Ochoa|2019|J.Inorg.Biochem.|200|110805|doi:10.1016/j.jinorgbio.2019.110805
CCDC 921187: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1415832: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1415831: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1934513: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Noelia Maldonado, Oscar Castillo, Carlos J. Gómez-García, Pilar Amo-Ochoa|2019|J.Inorg.Biochem.|200|110805|doi:10.1016/j.jinorgbio.2019.110805
CCDC 883367: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 980423: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1551943: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, José I. Martínez, and Félix Zamora|2017|Inorg.Chem.|56|11810|doi:10.1021/acs.inorgchem.7b01775
CCDC 949550: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 1583016: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 980428: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1013365: Experimental Crystal Structure Determination
Related Article: Marcello Gennari, Gonzalo Givaja, Oscar Castillo, Laura Hermosilla, Carlos J. Gómez-García, Carole Duboc, Agustí Lledós, Ruben Mas-Ballesté, and Felix Zamora|2014|Inorg.Chem.|53|10553|doi:10.1021/ic501659x
CCDC 883366: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 1582337: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1415829: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1496195: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Romina Lorca, Ana Latorre, Khaled Hassanein, Carlos J. Gómez-García, Oscar Castillo, Álvaro Somoza, Félix Zamora, Pilar Amo-Ochoa|2017|Angew.Chem.,Int.Ed.|56|987|doi:10.1002/anie.201609031