0000000001298886
AUTHOR
Félix Zamora
Electrical conductivity and strong luminescence in copper Iodide double chains with isonicotinato derivatives
Direct reactions between CuI and isonicotinic acid (HIN) or the corresponding esters, ethyl isonicotinate (EtIN) or methyl isonicotinate (MeIN), give rise to the formation of the coordination polymers [CuI(L)] with L=EtIN (1), MeIN (2) and HIN (3). Polymers 1-3 show similar structures based on a CuI double chain in which ethyl-, methyl isonicotinate or isonicotinic acid are coordinated as terminal ligands. Albeit, their supramolecular architecture differs considerably, affecting the distances and angles of the central CuI double chains and thereby their physical properties. Hence, the photoluminescence shows remarkable differences; 1 and 2 show a strong yellow emission, whereas 3 displays a…
Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer
A coordination polymer is fully exfoliated by solvent-assisted interaction only. The soft-delamination process results from the structure of the starting material, which shows a layered structure with weak layer-to-layer interactions and cavities with the ability to locate several solvents in an unselective way. These results represent a significant step forward towards the production of structurally designed one-molecule thick 2D materials with tailored physico-chemical properties.
Rational Design of Copper(II)-Uracil Nanoprocessed Coordination Polymers to Improve Their Cytotoxic Activity in Biological Media
This work is focused on the rational structural design of two isostructural Cu(II) nano-coordination polymers (NCPs) with uracil-1-acetic acid (UAcOH) (CP1n) and 5-fluorouracil-1-acetic acid (CP2n). Suitable single crystals for ꭕ-ray diffraction studies of CP1 and CP2 were prepared under hydrothermal conditions, enabling their structural determination as 1D-CP ladder-like polymeric structures. The control of the synthetic parameters allows their processability into water colloids based on nanoplates (CP1n and CP2n). These NCPs are stable in water at physiological pHs for long periods. However, interestingly, CP1n is chemically altered in culture media. These transformations provoke the part…
Exfoliation of Alpha-Germanium: A Covalent Diamond-Like Structure
2D materials have opened a new field in materials science with outstanding scientific and technological impact. A largely explored route for the preparation of 2D materials is the exfoliation of layered crystals with weak forces between their layers. However, its application to covalent crystals remains elusive. Herein, a further step is taken by introducing the exfoliation of germanium, a narrow-bandgap semiconductor presenting a 3D diamond-like structure with strong covalent bonds. Pure α-germanium is exfoliated following a simple one-step procedure assisted by wet ball-milling, allowing gram-scale fabrication of high-quality layers with large lateral dimensions and nanometer thicknesses.…
Unprecedented layered coordination polymers of dithiolene group 10 metals: Magnetic and electrical properties
One-pot reactions between Ni(ii), Pd(ii) or Pt(ii) salts and 3,6-dichloro-1,2-benzenedithiol (HSC6H2Cl2SH) in KOH medium under argon lead to a series of bis-dithiolene coordination polymers. X-ray analysis shows the presence of a common square planar complex [M(SC6H2Cl2S)2]2- linked to potassium cations forming either a two-dimensional coordination polymer network for {[K2(μ-H2O)2(μ-thf)(thf)2][M(SC6H2Cl2S)2]}n [M = Ni (1) and Pd (2)] or a one-dimensional coordination polymer for {[K2(μ-H2O)2(thf)6][Pt(SC6H2Cl2S)2]}n (3). In 3 the coordination environment of the potassium ions may slightly change leading to the two-dimensional coordination polymer {[K2(μ-H2O)(μ-thf)2][Pt(SC6H2Cl2S)2]}n (4) …
Reversible Solvent‐Exchange‐Driven Transformations in Multifunctional Coordination Polymers Based on Copper‐Containing Organosulfur Ligands
The preparation by simple direct synthesis of a series of coordination polymers based on copper with chloride or bromide and dipyrimidinedisulfide is reported. The structural characterisations of these compounds reveal a rich structural variety as a result of the number of coordination modes available to the organosulfur ligand, in combination with the bridging capabilities of the halides. Interestingly, some of the polymers displayed fully reversible solvent exchange/removal crystal-to-crystal 2D to 0D and 2D to 2D transformations. These materials show multifunctional electronic properties. Thus, some of them are semiconductors and present weak antiferromagnetic interactions, and the CuI/C…
Smart composite films of nanometric thickness based on copper-iodine coordination polymers. Toward sensors.
One-pot reactions between CuI and methyl or methyl 2-amino-isonicotinate give rise to the formation of two coordination polymers (CPs) based on double zig-zag Cu2I2 chains. The presence of a NH2 group in the isonicotinate ligand produces different supramolecular interactions affecting the Cu-Cu distances and symmetry of the Cu2I2 chains. These structural variations significantly modulate their physical properties. Thus, both CPs are semiconductors and also show reversible thermo/mechanoluminescence. X-ray diffraction studies carried out under different temperature and pressure conditions in combination with theoretical calculations have been used to rationalize the multi-stimuli-responsive …
Control and Simplicity in the Nanoprocessing of Semiconducting Copper-Iodine Double Chain Coordination Polymers
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00364
A photoresponsive graphene oxide-C60 conjugate.
An all-carbon donor-acceptor hybrid combining graphene oxide (GO) and C60 has been prepared. Laser flash photolysis measurements revealed the occurrence of photoinduced electron transfer from the GO electron donor to the C60 electron acceptor in the conjugate
Copper(II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers
This is the peer reviewed version of the following article: Vegas, V. G., Lorca, R., Latorre, A., Hassanein, K., Gómez‐García, C. J., Castillo, O., ... & Amo‐Ochoa, P. (2017). Copper (II)–Thymine Coordination Polymer Nanoribbons as Potential Oligonucleotide Nanocarriers. Angewandte Chemie International Edition, 56(4), 987-991, which has been published in final form at https://doi.org/10.1002/anie.201609031. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions
Single layers of a multifunctional laminar Cu(I,II) coordination polymer.
A multifunctional bidimensional mixed-valence copper coordination polymer [Cu2Br(IN)2]n (IN = isonicotinato) has been characterized in crystal phase and isolated on graphite surface as single sheets.
Back Cover: Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives (Chem. Eur. J. 48/2015)
Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets
Abstract Antimonene, a monolayer of β-antimony, is increasingly attracting considerable attention, more than that of other monoelemental two-dimensional materials, due to its intriguing physical and chemical properties. Under ambient conditions, antimonene exhibits a high thermodynamic stability and good structural integrity. Some theoretical calculations predicted that antimonene would have a high oxidation tendency. However, it remains poorly investigated from the experimental point of view. In this work, we study the oxidation behavior of antimonene nanosheets (ANS) prepared by ultrasonication-assisted liquid-phase exfoliation. Using a set of forefront analytical techniques, a clear effe…
Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II) Coordination Polymer and NiAl-Layered Double Hydroxides
The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH) nanosheets and a 1D-coordination polymer (1D-CP) has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized demonstrating that the 1D-CP moieties are intercalated as well as adsorbed on the surface of the LDH, giving rise to a layered assembly with the coexistence of the functionalities of their initial constituents. This hybrid represents the first example of the assembly of 1D/2D nanomaterials combining LDH with CP and opens the door for a plethora…
Electrical Conductivity and Luminescence in Coordination Polymers Based on Copper(I)-Halides and Sulfur-Pyrimidine Ligands
The solvothermal reactions between pyrimidinedisulfide (pym(2)S(2)) and CuI or CuBr(2) in CH(2)Cl(2):CH(3)CN lead to the formation of [Cu(11)I(7)(pymS)(4)](n) (pymSH = pyrimidine-2(1H)-thione) (1) and the dimer [Cu(II)(μ-Br)(Br)L](2) (L = 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde) (2). In the later reaction, there is an in situ S-S, S-C(sp(2)), and C(sp(2))-N multiple bond cleavage of the pyrimidinedisulfide resulting in the formation of 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde. Interestingly, similar reactions carried out just with a change in the solvent (H(2)O:CH(3)CN instead of CH(2)Cl(2):CH(3)CN) give rise to the formation of coordination polymers with rather diffe…
Continuous‐Flow Synthesis of High‐Quality Few‐Layer Antimonene Hexagons
2D materials show outstanding properties that can bring many applications in different technological fields. However, their uses are still limited by production methods. In this context, antimonene is recently suggested as a new 2D material to fabricate different (opto)electronic devices, among other potential applications. This work focuses on optimizing the synthetic parameters to produce high-quality antimonene hexagons and their implementation in a large-scale manufacturing procedure. By means of a continuous-flow synthesis, few-layer antimonene hexagons with ultra-large lateral dimensions (up to several microns) and a few nanometers thick are isolated. The suitable chemical post-treatm…
On the Road to MM′X Polymers: Redox Properties of Heterometallic Ni···Pt Paddlewheel Complexes
On the quest of heterometallic mixed-valence MM'X chains, we have prepared two stable discrete bimetallic compounds: the reduced (PPN)[ClNi(μ-OSCPh)4Pt] (PPN = bis(triphenylphosphine)iminium; OSCPh = benzothiocarboxylato) and the oxidized [(H2O)Ni(μ-OSCPh)4PtCl] species. The role of the aqua and chlorido axial ligands is crucial to facilitate oxidation of the {Ni(μ-OSCPh)4Pt} core. Experimental and theoretical analyses indicate that a NiPt-Cl/Cl-NiPt isomerization process occurs in the oxidized species. The electronic structure of the reduced system shows two unpaired electrons, one located in a d(x(2)-y(2)) orbital of the Ni(II) ion and a second in the antibonding d(z(2)-dz(2)) combination…
Electrical Bistability around Room Temperature in an Unprecedented One-Dimensional Coordination Magnetic Polymer
The synthesis, crystal structure, and physical properties of an unprecedented one-dimensional (1D) coordination polymer containing [Fe2(S2C6H2Cl2)4](2-) entities bridged by dicationic [K2(μ-H2O)2(THF)4](2+) units are described. The magnetic properties show that the title compound presents pairwise Fe-Fe antiferromagnetic interactions that can be well reproduced with a S = 1/2 dimer model with an exchange coupling, J = -23 cm(-1). The electrical conductivity measurements show that the title compound is a semiconductor with an activation energy of about 290 meV and two different transitions, both with large hysteresis of about 60 and 30 K at 260-320 K and 350-380 K, respectively. These two tr…
Semiconductive and Magnetic One-Dimensional Coordination Polymers of Cu(II) with Modified Nucleobases
Four new copper(II) coordination complexes, obtained by reaction of CuX2 (X = acetate or chloride) with thymine-1-acetic acid and uracil-1-propionic acid as ligands, of formulas [Cu(TAcO)2(H2O)4]·4H2O (1), [Cu(TAcO)2(H2O)2]n (2), [Cu3(TAcO)4(H2O)2(OH)2]n·4H2O (3), and [Cu3(UPrO)2Cl2(OH)2(H2O)2]n (4) (TAcOH = thymine-1-acetic acid, UPrOH = uracil-1-propionic acid) are described. While 1 is a discrete complex, 2-4 are one-dimensional coordination polymers. Complexes 2-4 present dc conductivity values between 10(-6) and 10(-9) S/cm(-1). The magnetic behavior of complex 2 is typical for almost isolated Cu(II) metal centers. Moderate-weak antiferromagnetic interactions have been found in complex…
Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene
Covalent Organic Frameworks (COFs) based on polyimine with several metal ions (FeIII, CoII and NiII) adsorbed into their cavities have shown the ability to generate N-doped porous graphene from their pyrolysis under controlled conditions. These highly corrugated and porous graphene sheets exhibit high values of specific capacitance, which make them useful as electrode materials for supercapacitors.
Reversible stimulus-responsive Cu(i) iodide pyridine coordination polymer
We present a structurally flexible copper–iodide–pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations.
Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule
[EN] A hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl-LDH ferromagnetic layers intercalated with thermoresponsive 4-(4-anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In…
Electrical conductive coordination polymers
Coordination polymers are currently one of the hottest topics in Inorganic and Supramolecular Chemistry. This critical review summarizes the current state-of-the-art on electrical conductive coordination polymers (CPs), also named metal-organic frameworks (MOFs). The data were collected following two sort criteria of the CPs structure: dimensionality and bridging ligands (151 references).
Electrical Behaviour of Heterobimetallic [MM′(EtCS2)4] (MM′=NiPd, NiPt, PdPt) and MM′X-Chain Polymers [PtM(EtCS2)4I] (M=Ni, Pd)
Herein, we report the isolation of new heterobimetallic complexes [Ni0.6Pd1.4ACHTUNGTRENUNG(EtCS2)4] (1), [NiPtACHTUNGTRENUNG(EtCS2)4] (2) and [Pd0.4Pt1.6ACHTUNGTRENUNG(EtCS2)4] (3), which were constructed by using transmetallation procedures. Subsequent oxidation with iodine furnished the MM'X monodimensional chains [Ni0.6Pt1.4ACHTUNGTRENUNG(EtCS2)4I] (4) and [Ni0.1Pd0.3Pt1.6ACHTUNGTRENUNG(EtCS2)4I] (5). The physical properties of these systems were investigated and the chain structures 4 and 5 were found to be reminiscent of the parent [Pt2ACHTUNGTRENUNG(EtCS2)4I] species. However, they were more sensitively dependent on the localised nature of the charge on the Ni ion, which caused spont…
Intrinsic electrical conductivity of nanostructured metal-organic polymer chains
One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 104 S m−1, three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crysta…
A bioinspired metal–organic approach to cross-linked functional 3D nanofibrous hydro- and aero-gels with effective mixture separation of nucleobases by molecular recognition
The direct reaction between Cu(CH3COO)2 and uracil-1-acetic acid in water gives rise to the formation of a hydrogel consisting of entangled nanometric ribbons of a crystalline antiferromagnetic 1D Cu(ii) coordination polymer (CP) decorated with biocompatible uracil nucleobases. This hydrogel is the precursor for the preparation of a meso/macroporous ultralight aerogel that shows a remarkable Young's modulus. As a proof-of-concept of the molecular recognition capability of the terminal uracil moieties anchored at Cu(ii) CP chains, this material has been tested as the selective stationary phase for the separation of nucleobase derivatives in HPLC columns.
A crystalline and free-standing silver thiocarboxylate thin-film showing high green to yellow luminescence
The simple direct synthesis of Cu(ii) and Ag(i) salts and thiobenzoic acid under ambient conditions allows the preparation of two bidimensional coordination polymers [M(TB)] (TB = thiobenzoate; M = Cu (1) or Ag (2)). Their electrical and luminescent properties show that these are multifunctional materials. Interestingly 1 and 2 undergo a reversible solubilization process. This unusual feature and their simple preparation allow us to prepare a crystalline and free-standing thin-film of 2, using an interfacial procedure, which shows a remarkable thermochromic luminescence.
Direct formation of Sub-Micron and Nanoparticles of a bioinspired coordination polymer based on Copper with Adenine
We report on the use of different reaction conditions, e.g., temperature, time, and/or concentration of reactants, to gain control over the particle formation of a bioinspired coordination polymer based on copper(II) and adenine, allowing homogeneous particle production from microto submicro-, and up to nano-size. Additionally, studies on this reaction carried out in the presence of different surfactants gives rise to the control of the particle size due to the modulation of the electrostatic interactions. Stability of the water suspensions obtained within the time and pH has been evaluated. We have also studied that there is no significant effect of the size reduction in the magnetic prope…
Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties
The properties recently reported on the Cu(I)-iodide pyrimidine nonporous 1D-coordination polymer [CuI(ANP)] (ANP = 2-amino-5-nitropyridine) showing reversible physically and chemically driven electrical response have prompted us to carry a comparative study with the series of [CuX(ANP)] (X = Cl (1), X = Br (2), X = CN (4), and X = SCN (5)) in order to understand the potential influence of the halide and pseudohalide bridging ligands on the physical properties and their electrical response to vapors of these materials. The structural characterization of the series shows a common feature, the presence of -X-Cu(ANP)-X- (X = Cl, Br, I, SCN) double chain structure. Complex [Cu(ANP)(CN)] (4) pre…
ChemInform Abstract: Electrical Conductive Coordination Polymers
Coordination polymers are currently one of the hottest topics in Inorganic and Supramolecular Chemistry. This critical review summarizes the current state-of-the-art on electrical conductive coordination polymers (CPs), also named metal–organic frameworks (MOFs). The data were collected following two sort criteria of the CPs structure: dimensionality and bridging ligands (151 references).
Group 10 Metal Benzene-1,2-dithiolate Derivatives in the Synthesis of Coordination Polymers Containing Potassium Countercations
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b01775
Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties
Antimonene, a novel group 15 two-dimensional material, is attracting great attention due to its outstanding physical and chemical properties. Despite its thermodynamic stability, the pronounced covalent character of the interlayer interactions imposes severe limitations on its exfoliation into mono- and few-layer. Here, we develop a systematic study of liquid phase exfoliation (LPE) with the aim to optimize antimonene production in terms of concentration and dimensional anisotropy, investigating the most relevant experimental factors affecting the exfoliation: pre-processing of pristine antimony, solvent selection based on Hansen solubility parameters and ultrasound conditions. Moreover, ex…
Asymmetric and Symmetric Dicopper(II) Paddle-Wheel Units with Modified Nucleobases
New copper(II) paddle-wheel complexes with different modified nucleobases and simple molecules in the axial positions have been prepared by direct reactions between copper(II) salts and the corresponding uracil- or thymine-1-acetic acids under inert atmosphere to produce the two homoleptic complexes, [Cu2(μ-OOCCH2-T)4(G)2] and [Cu2(μ-OOCCH2-U)4(G)2], and the heteroleptic one [Cu2(μ-OOCCH2-T)2(μ-OOCCH2-U)2(G)2] (where OOCCH2-T = thymine-1-acetate, OOCCH2-U = uracil-1-acetate, and G = dimethylformamide, water, dimethylacetamide, or dimethyl sulfoxide). Interestingly, the crystal structures of this family of closely related molecules present significant differences in their supramolecular arra…
Conductive nanostructures of MMX chains
Crystals of [Pt-2(n-pentylCS(2))(4)I] show a transition from semiconductor to metallic with the increase of the temperature (conductivity is 0.3-1.4 S.cm(-1) at room temperature) and a second metallic metallic transition at 330 K, inferred by electrical conductivity measurements. X-ray diffraction studies carried out at different temperatures (100, 298, and 350 K) confirm the presence of three different phases. The valence-ordering of these phases is analyzed using structural, magnetic, and electrical data. Density functional theory calculations allow a further analysis of the band structure derived for each phase. Nanostructures adsorbed on an insulating surface show electrical conductivit…
Solvent-Induced Delamination of a Multifunctional Two Dimensional Coordination Polymer (Adv. Mater. 15/2013)
CCDC 949552: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 1415834: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1826854: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 1865233: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Carlos. D. Redondo, J. Ignacio Martínez, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Pilar Amo-Ochoa|2018|Inorg.Chem.|57|7568|doi:10.1021/acs.inorgchem.8b00364
CCDC 1826851: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 883365: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 949551: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 1583018: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1047310: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 1826848: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 1054832: Experimental Crystal Structure Determination
Related Article: Samia Benmansour , Esther Delgado , Carlos J. Gómez-García , Diego Hernández , Elisa Hernández , Avelino Martin , Josefina Perles , and Félix Zamora|2015|Inorg.Chem.|54|2243|doi:10.1021/ic502789v
CCDC 1582338: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1054830: Experimental Crystal Structure Determination
Related Article: Samia Benmansour , Esther Delgado , Carlos J. Gómez-García , Diego Hernández , Elisa Hernández , Avelino Martin , Josefina Perles , and Félix Zamora|2015|Inorg.Chem.|54|2243|doi:10.1021/ic502789v
CCDC 1415833: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 921188: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 883368: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 1450247: Experimental Crystal Structure Determination
Related Article: Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, Félix Zamora|2016|Dalton Trans.|45|6696|doi:10.1039/C6DT00464D
CCDC 2064123: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Ana Latorre, María Luisa Marcos, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Jacobo Gómez, José Martínez-Costas, Miguel Vázquez López, Álvaro Somoza, Pilar Amo-Ochoa|2021|ACS Applied Materials and Interfaces|13|31|doi:10.1021/acsami.1c11612
CCDC 1401258: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 1415830: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1826858: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 1583017: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1054827: Experimental Crystal Structure Determination
Related Article: Samia Benmansour , Esther Delgado , Carlos J. Gómez-García , Diego Hernández , Elisa Hernández , Avelino Martin , Josefina Perles , and Félix Zamora|2015|Inorg.Chem.|54|2243|doi:10.1021/ic502789v
CCDC 980426: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1551942: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, José I. Martínez, and Félix Zamora|2017|Inorg.Chem.|56|11810|doi:10.1021/acs.inorgchem.7b01775
CCDC 1826857: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 980427: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1583019: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1826853: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 1047311: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 1403318: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 1481679: Experimental Crystal Structure Determination
Related Article: Javier Troyano, Óscar Castillo, Pilar Amo-Ochoa, Vanesa Fernández-Moreira, Carlos J. Gómez-García, Félix Zamora, Salomé Delgado|2016|J.Mater.Chem.C|4|8545|doi:10.1039/C6TC02401G
CCDC 921191: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1826849: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 921190: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1826850: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 980424: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1551944: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, José I. Martínez, and Félix Zamora|2017|Inorg.Chem.|56|11810|doi:10.1021/acs.inorgchem.7b01775
CCDC 1826847: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 1047309: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131
CCDC 921189: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1826855: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 1054831: Experimental Crystal Structure Determination
Related Article: Samia Benmansour , Esther Delgado , Carlos J. Gómez-García , Diego Hernández , Elisa Hernández , Avelino Martin , Josefina Perles , and Félix Zamora|2015|Inorg.Chem.|54|2243|doi:10.1021/ic502789v
CCDC 949549: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 980425: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 921187: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1415832: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1415831: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 883367: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 980423: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1450248: Experimental Crystal Structure Determination
Related Article: Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, Félix Zamora|2016|Dalton Trans.|45|6696|doi:10.1039/C6DT00464D
CCDC 1054829: Experimental Crystal Structure Determination
Related Article: Samia Benmansour , Esther Delgado , Carlos J. Gómez-García , Diego Hernández , Elisa Hernández , Avelino Martin , Josefina Perles , and Félix Zamora|2015|Inorg.Chem.|54|2243|doi:10.1021/ic502789v
CCDC 1580668: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Carlos. D. Redondo, J. Ignacio Martínez, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Pilar Amo-Ochoa|2018|Inorg.Chem.|57|7568|doi:10.1021/acs.inorgchem.8b00364
CCDC 2064122: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Ana Latorre, María Luisa Marcos, Carlos J. Gómez-García, Óscar Castillo, Félix Zamora, Jacobo Gómez, José Martínez-Costas, Miguel Vázquez López, Álvaro Somoza, Pilar Amo-Ochoa|2021|ACS Applied Materials and Interfaces|13|31|doi:10.1021/acsami.1c11612
CCDC 1826852: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 1551943: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, José I. Martínez, and Félix Zamora|2017|Inorg.Chem.|56|11810|doi:10.1021/acs.inorgchem.7b01775
CCDC 949550: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Oscar Castillo, Carlos J. Gómez-García, Khaled Hassanein, Sandeep Verma, Jitendra Kumar, and Félix Zamora|2013|Inorg.Chem.|52|11428|doi:10.1021/ic401758w
CCDC 1583016: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1826846: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 980428: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Salome Delgado|2014|Eur.J.Inorg.Chem.||3879|doi:10.1002/ejic.201400085
CCDC 1450246: Experimental Crystal Structure Determination
Related Article: Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, Félix Zamora|2016|Dalton Trans.|45|6696|doi:10.1039/C6DT00464D
CCDC 1826856: Experimental Crystal Structure Determination
Related Article: Javier Conesa-Egea, Noemí Nogal, José Ignacio Martínez, Vanesa Fernández-Moreira, Ulises R. Rodríguez-Mendoza, Javier González-Platas, Carlos J. Gómez-García, Salomé Delgado, Félix Zamora, Pilar Amo-Ochoa|2018|Chemical Science|9|8000|doi:10.1039/C8SC03085E
CCDC 888484: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martin, and Félix Zamora|2013|Inorg.Chem.|52|5943|doi:10.1021/ic400158q
CCDC 883366: Experimental Crystal Structure Determination
Related Article: Almudena Gallego, Cristina Hermosa, Oscar Castillo, Isadora Berlanga, Carlos J. Gómez-García, Eva Mateo-Martí, José I. Martínez, Fernando Flores, Cristina Gómez-Navarro, Julio Gómez-Herrero, Salome Delgado, Félix Zamora|2013|Adv.Mater.|25|2141|doi:10.1002/adma.201204676
CCDC 1450245: Experimental Crystal Structure Determination
Related Article: Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Avelino Martín, Félix Zamora|2016|Dalton Trans.|45|6696|doi:10.1039/C6DT00464D
CCDC 1582337: Experimental Crystal Structure Determination
Related Article: Oscar Castillo, Esther Delgado, Carlos J. Gómez-García, Diego Hernández, Elisa Hernández, Pilar Herrasti, Avelino Martín, Félix Zamora|2018|Cryst.Growth Des.|18|2486|doi:10.1021/acs.cgd.8b00103
CCDC 1481680: Experimental Crystal Structure Determination
Related Article: Javier Troyano, Óscar Castillo, Pilar Amo-Ochoa, Vanesa Fernández-Moreira, Carlos J. Gómez-García, Félix Zamora, Salomé Delgado|2016|J.Mater.Chem.C|4|8545|doi:10.1039/C6TC02401G
CCDC 1415829: Experimental Crystal Structure Determination
Related Article: Khaled Hassanein, Oscar Castillo, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Cryst.Growth Des.|15|5485|doi:10.1021/acs.cgd.5b01110
CCDC 1496195: Experimental Crystal Structure Determination
Related Article: Verónica G. Vegas, Romina Lorca, Ana Latorre, Khaled Hassanein, Carlos J. Gómez-García, Oscar Castillo, Álvaro Somoza, Félix Zamora, Pilar Amo-Ochoa|2017|Angew.Chem.,Int.Ed.|56|987|doi:10.1002/anie.201609031
CCDC 1054828: Experimental Crystal Structure Determination
Related Article: Samia Benmansour , Esther Delgado , Carlos J. Gómez-García , Diego Hernández , Elisa Hernández , Avelino Martin , Josefina Perles , and Félix Zamora|2015|Inorg.Chem.|54|2243|doi:10.1021/ic502789v