0000000001302017
AUTHOR
Roland Roesler
Isolation of Free Phenylide-like Carbanions with N-Heterocyclic Carbene Frameworks
A series of 1,3-bis(2,6-diisopropylphenyl)-5-methyl-1,3-diaza-4,6-diborabenzenes with methyl, phenyl, and dimethylamino substituents on the ring boron atoms were prepared using the cyclocondensation reaction between N,N′-bis(2,6-diisopropylphenyl)trimethylsilylformamidine and the appropriately substituted 1,1-bis(organochloroboryl)ethane, followed by deprotonation of the cationic ring intermediate. The planar, heterocyclic benzene analogues could be further deprotonated at the other ring carbon using an additional equivalent of potassium hexamethyldisilazide to yield organometallic derivatives akin to the potassium phenylide. The potassium cations could be efficiently sequestered in both so…
The influence of electron delocalization upon the stability and structure of potential N-heterocyclic carbene precursors with 1,3-diaryl-imidazolidine-4,5-dione skeletons
Targeting N-heterocyclic carbenes (NHCs) with increased π-acceptor character featuring N-fluorophenyl substituents, the molecular 2-chloro-1,3-bis(fluorophenyl)imidazolidine-4,5-diones (1a–c) were isolated from the condensation of the corresponding formamidine with oxalyl chloride. These formal adducts of NHCs with hydrogen chloride demonstrated reactivity akin to that of alkyl halides: 1,3,1′,3′-tetrakis(2,6-dimethylphenyl)-[2,2′]diimidazolidinyl-4,5,4′,5′-tetraone (2b) was formed via the reductive coupling of 1b, while 1,3-bis(2,6-diisopropylphenyl)-4,5-dioxoimidazolidin-2-yl acetate (3c) was formed as the result of a metathesis reaction with mercury(II) acetate. Chloride abstraction resu…
A sigma-donor with a planar six-pi-electron B2N2C2 framework: anionic N-heterocyclic carbene or heterocyclic terphenyl anion?
Isolation of Free Phenylide-like Carbanions with N-Heterocyclic Carbene Frameworks
A series of 1,3-bis(2,6-diisopropylphenyl)-5-methyl-1,3-diaza-4,6-diborabenzenes with methyl, phenyl, and dimethylamino substituents on the ring boron atoms were prepared using the cyclocondensation reaction between N,N'-bis(2,6-diisopropylphenyl)trimethylsilylformamidine and the appropriately substituted 1,1-bis(organochloroboryl)ethane, followed by deprotonation of the cationic ring intermediate. The planar, heterocyclic benzene analogues could be further deprotonated at the other ring carbon using an additional equivalent of potassium hexamethyldisilazide to yield organometallic derivatives akin to the potassium phenylide. The potassium cations could be efficiently sequestered in both so…
More electron rich than cyclopentadienyl: 1,2-diaza-3,5-diborolyl as a ligand in ferrocene and ruthenocene analogs
Ruthenium and iron sandwich complexes incorporating cyclopentadienyl analogs with CB(2)N(2)(-) skeletons were characterized. Electrochemical measurements supported by computational studies revealed that in combination with larger metal ions such as Ru the CB(2)N(2)(-) ligand can be more electron-rich than its organic counterpart.
Haptotropism in a Nickel Complex with a Neutral, π‐Bridging cyclo ‐P 4 Ligand Analogous to Cyclobutadiene
Haptotropism in a Nickel Complex with a Neutral, π‐Bridging cyclo‐P4 Ligand Analogous to Cyclobutadiene
The reaction of ( 1 )Ni(η 2 -cod), 2 , incorporating a chelating bis( N -heterocyclic carbene) 1 , with P 4 in pentane yielded the dinuclear complex [( 2 )Ni] 2 (μ 2 ,η 2 :η 2 -P 4 ), 3 , formally featuring a cyclobutadiene-like, neutral, rectangular, π-bridging P 4 -ring. In toluene, the butterfly-shaped complex [( 1 )Ni] 2 (μ 2 ,η 2 :η 2 -P 2 ), 4 , with a formally neutral P 2 -unit was obtained from 2 and either P 4 or 3 . Computational studies showed that a low energy barrier haptotropic rearrangement involving two isomers of the μ 2 ,η 2 :η 2 -P 4 coordination mode and a low energy μ 2 ,η 4 :η 4 -P 4 coordination mode, as previously predicted for related nickel cyclobutadiene complexes…
N-Heterocyclic Carbenes with Inorganic Backbones: Electronic Structures and Ligand Properties
The electronic structures of known N-heterocyclic carbenes (NHCs) with boron, nitrogen, and phosphorus backbones are examined using quantum chemical methods and compared to the experimental results and to the computational data obtained for a classical carbon analogue, imidazol-2-ylidene. The σ-donor and π-acceptor abilities of the studied NHCs in selected transition-metal complexes are evaluated using a variety of approaches such as energy and charge decomposition analysis, as well as calculated acidity constants and carbonyl stretching frequencies. The study shows that the introduction of selected heteroatoms into the NHC backbone generally leads to stronger metal−carbene bonds and theref…
Characterization of β-B-Agostic Isomers in Zirconocene Amidoborane Complexes
The reaction of Cpx2ZrCl2 (Cpx = Cp, Cp*) with ammonia borane in presence of n-butyllithium yielded Cp2Zr(Cl)NH2BH3 and Cpx2Zr(H)NH2BH3. These derivatives are isoelectronic with the ethyl zirconocene chloride and hydride, respectively, and feature a chelating amidoborane ligand coordinating through a Zr−N bond and a Zr−H−B bridge. In solution, each of the complexes consists of an equilibrium mixture of two isomers differing in the orientation of the amidoborane ligand with respect to the Zr−X bond (X = H, Cl), while in the solid state, only one isomer was observed. Such isomers have not been characterized for any metal complexes containing the isoelectronic β-agostic ethyl ligand or any oth…
Bis[cyclic (alkyl)(amino)carbene] isomers: Stable trans -bis(CAAC) versus facile olefin formation for cis -bis(CAAC)
A trans-bis(CAAC) was isolated and shown to be a ditopic ligand for rhodium and iridium. The cis-isomer is unstable towards intramolecular CC-bond formation, however, its formal insertion products into the bonds of H2O and NH3 were identified.
Paramagnetic aluminium β-diketiminate
The β-diketiminate ligand framework is shown to undergo reduction to form a neutral main group radical stabilized by spiroconjugation of the unpaired electron over the group 13 element centre. The synthesized paramagnetic complex was characterized by EPR spectroscopy and computational chemistry. peerReviewed
Electronic Structures of Main-Group Carbene Analogues
The electronic structures of 15 group 13−16 carbene analogues are analyzed using various quantum chemical methods and compared to the data obtained for the parent N-heterocyclic carbene (NHC), imidazol-2-ylidene. The results of this study present a uniform analysis of the similarities and differences in the electronic structures of p-block main-group carbene analogues. Though all systems are formally isovalent, the theoretical analyses unambiguously indicate that their electronic structures run the gamut from CC localized (group 13) to CN localized (group 16) via intermediate, more delocalized, systems. In particular, neither the stibenium ion nor any of the chalcogenium dications is a dire…
Paramagnetic aluminium β-diketiminate
The β-diketiminate ligand framework is shown to undergo reduction to form a neutral main group radical stabilized by spiroconjugation of the unpaired electron over the group 13 element centre. The synthesized paramagnetic complex was characterized by EPR spectroscopy and computational chemistry.
A σ-Donor with a Planar Six-π-Electron B2N2C2 Framework: Anionic N-Heterocyclic Carbene or Heterocyclic Terphenyl Anion?
NB! The anionic ligand 2 was synthesized through deprotonation of a planar, formally zwitterionic diazadiborine precursor, isolated as a lithium salt, and structurally characterized. According to experimental evidence and theoretical calculations, 2 can be considered as an intermediate between two classical classes of ligands: N-heterocyclic carbenes 1 and terphenyls 3. peerReviewed
Ammonia Activation by a Nickel NCN-Pincer Complex featuring a Non-Innocent N-Heterocyclic Carbene: Ammine and Amido Complexes in Equilibrium
A Ni0-NCN pincer complex featuring a six-membered N-heterocyclic carbene (NHC) central platform and amidine pendant arms was synthesized by deprotonation of its NiII precursor. It retained chloride in the square-planar coordination sphere of nickel and was expected to be highly susceptible to oxidative addition reactions. The Ni0 complex rapidly activated ammonia at room temperature, in a ligand-assisted process where the carbene carbon atom played the unprecedented role of proton acceptor. For the first time, the coordinated (ammine) and activated (amido) species were observed together in solution, in a solvent-dependent equilibrium. A structural analysis of the Ni complexes provided insig…
Unusual B4N2C2 Ligand in a Ruthenium Pseudo-Triple-Decker Sandwich Complex Displaying Three Reversible Electron-Transfer Steps
Open, sesame: The reaction of a heterobicyclic pentalenediyl-like Me2Ph4B4N2C2 dianion with [{(C5Me5)RuCl}4] cleaves the N[BOND]N bond of the ligand and affords a pseudo-triple-decker sandwich complex containing a B4N2C2 middle deck (see picture). This eight-membered ring features nearly linear B-N-B moieties and brings the ruthenium centers unusually close. Cyclic voltammetry indicates efficient electron delocalization over the framework. peerReviewed
N-Heterocyclic Carbenes with Inorganic Backbones: Electronic Structures and Ligand Properties
The electronic structures of known N-heterocyclic carbenes (NHCs) with boron, nitrogen, and phosphorus backbones are examined using quantum chemical methods and compared to the experimental results and to the computational data obtained for a classical carbon analogue, imidazol-2-ylidene. The sigma-donor and pi-acceptor abilities of the studied NHCs in selected transition-metal complexes are evaluated using a variety of approaches such as energy and charge decomposition analysis, as well as calculated acidity constants and carbonyl stretching frequencies. The study shows that the introduction of selected heteroatoms into the NHC backbone generally leads to stronger metal-carbene bonds and t…
Side‐on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel
Abstract A nickel complex incorporating an N2O ligand with a rare η2‐N,N′‐coordination mode was isolated and characterized by X‐ray crystallography, as well as by IR and solid‐state NMR spectroscopy augmented by 15N‐labeling experiments. The isoelectronic nickel CO2 complex reported for comparison features a very similar solid‐state structure. Computational studies revealed that η2‐N2O binds to nickel slightly stronger than η2‐CO2 in this case, and comparably to or slightly stronger than η2‐CO2 to transition metals in general. Comparable transition‐state energies for the formation of isomeric η2‐N,N′‐ and η2‐N,O‐complexes, and a negligible activation barrier for the decomposition of the lat…
Characterization of β-B-Agostic Isomers in Zirconocene Amidoborane Complexes
The reaction of Cp(x)(2)ZrCl(2) (Cp(x) = Cp, Cp*) with ammonia borane in presence of n-butyllithium yielded Cp(2)Zr(Cl)NH(2)BH(3) and Cp(x)(2)Zr(H)NH(2)BH(3). These derivatives are isoelectronic with the ethyl zirconocene chloride and hydride, respectively, and feature a chelating amidoborane ligand coordinating through a Zr-N bond and a Zr-H-B bridge. In solution, each of the complexes consists of an equilibrium mixture of two isomers differing in the orientation of the amidoborane ligand with respect to the Zr-X bond (X = H, Cl), while in the solid state, only one isomer was observed. Such isomers have not been characterized for any metal complexes containing the isoelectronic beta-agosti…
Assembly of a planar, tricyclic B4N8 framework with s-indacene structure.
A neutral, formally 16pi-electron, tricyclic tetrahydrazidotetraborane was obtained in a two-step procedure involving self-assembly of a dilithiodiborate with B(4)N(8) framework and subsequent oxidation of the phenylborate moieties to boranes and biphenyl using Fe(II) as an oxidant.
Assembly of a planar, tricyclic B4N8 framework with s-indacene structure
A neutral, formally 16π-electron, tricyclic tetrahydrazidotetraborane was obtained in a two-step procedure involving self-assembly of a dilithiodiborate with B4N8 framework and subsequent oxidation of the phenylborate moieties to boranes and biphenyl using Fe(II) as an oxidant. peerReviewed
Bis[cyclic (alkyl)(amino)carbene] isomers : Stable trans-bis(CAAC) versus facile olefin formation for cis-bis(CAAC)
Isomeric bis(aldiminium) salts with a 1,4-cyclohexylene framework were synthesized. The first isolable bis(CAAC) was prepared from the trans-stereoisomer and its ditopic ligand competency was proven by conversion to iridium(I) and rhodium(I) complexes. Upon deprotonation, the cis-isomer yielded an electron rich olefin via a classic, proton-catalyzed pathway. The C[double bond, length as m-dash]C bond formation from the desired cis-bis(CAAC) was shown to be thermodynamically very favorable and to involve a small activation barrier. Compounds that can be described as insertion products of the cis-bis(CAAC) into the E–H bonds of NH3, CH3CN and H2O were also identified. peerReviewed
Unusual B4N2C2 Ligand in a Ruthenium Pseudo-Triple-Decker Sandwich Complex Displaying Three Reversible Electron-Transfer Steps
Nickel as a Lewis Base in a T‐Shaped Nickel(0) Germylene Complex Incorporating a Flexible Bis(NHC) Ligand
Flexible, chelating bis(NHC) ligand 2, able to accommodate both cis- and trans-coordination modes, was used to synthesize (2)Ni(η 2 -cod), 3. In reaction with GeCl2, this produced (2)NiGeCl2, 4, featuring a T-shaped Ni(0) and a pyramidal Ge center. Complex 4 could also be prepared from [(2)GeCl]Cl, 5, and Ni(cod)2, in a reaction that formally involved Ni-Ge transmetalation, followed by coordination of the extruded GeCl2 moiety to Ni. A computational analysis showed that 4 possesses considerable multiconfigurational character and the Ni→Ge bond is formed through σ-donation from the Ni 4s, 4p, and 3d orbitals to Ge. (NHC)2Ni(cod) complexes 9 and 10, as well as (NHC)2GeCl2 derivative 11, incor…
More electron rich than cyclopentadienyl: 1,2-diaza-3,5-diborolyl as a ligand in ferrocene and ruthenocene analogs
Ruthenium and iron sandwich complexes incorporating cyclopentadienyl analogs with CB2N2− skeletons were characterized. Electrochemical measurements supported by computational studies revealed that in combination with larger metal ions such as Ru the CB2N2− ligand can be more electron-rich than its organic counterpart. peerReviewed
CCDC 1861477: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1861476: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1861475: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1861479: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 2115737: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692
CCDC 1405505: Experimental Crystal Structure Determination
Related Article: Rudy M. Brown, Javier Borau Garcia, Juuso Valjus, Christopher J. Roberts, Heikki M. Tuononen, Masood Parvez, and Roland Roesler|2015|Angew.Chem.,Int.Ed.|54|6274|doi:10.1002/anie.201500453
CCDC 2023412: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 2131009: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2131017: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2131011: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2115739: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692
CCDC 1861473: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 2023411: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 1861471: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 2115738: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692
CCDC 2131016: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 868803: Experimental Crystal Structure Determination
Related Article: Jani Moilanen, Javier Borau-Garcia, Roland Roesler and Heikki M. Tuononen|2012|Chem.Commun.|48|8949|doi:10.1039/C2CC34051H
CCDC 2023413: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 1861472: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1861474: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 2131007: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2131010: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1861478: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 2131013: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2023414: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 2131014: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1405504: Experimental Crystal Structure Determination
Related Article: Rudy M. Brown, Javier Borau Garcia, Juuso Valjus, Christopher J. Roberts, Heikki M. Tuononen, Masood Parvez, and Roland Roesler|2015|Angew.Chem.,Int.Ed.|54|6274|doi:10.1002/anie.201500453
CCDC 2131015: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2131012: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2131008: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A