0000000001302631
AUTHOR
Chebrolu P. Rao
Synthesis and characterization of vanadyl(IV) complexes of Schiff bases derived from anthranilic acid and salicylaldehyde (or its derivatives) or acetylacetone. Single crystal X-ray structures of the oxidized products
Anhydrous, dimeric vanadyl(IV) complexes of Schiff bases derived from [1+1] condensation of salicylaldehyde (or its derivatives) and anthranilic acid, have been synthesized from CH3CN and were characterized by elemental analysis, FTIR, EPR, absorption, TGA, cyclic voltammetry and room temperature magnetic susceptibility measurements. These complexes were found to be oxidized by air in polar solvents like MeOH and DMF to V-V products. The E(1/2) values were found to be around 660 mV indicating that the carboxylate group favours vanadyl(IV) binding when compared to the alkoxo-bound vanadium complexes. Oxidative instability of these complexes are dependent on the substituent on the salicylalde…
Synthesis, structural diversity, inter-conversion and reactivity of Cu(II) complexes of hydroxy-rich molecules
Tetranuclear Cu(II) complexes having linear, cubane and pseudodouble-cubane cores were synthesized using hydroxy-rich molecules possessing amine and imine groups. The products were structurally characterized and were studied for their ability to oxidize catechol as well as for their inter-conversion between mono- and tetra-nuclear complexes.
Complexation behaviour of hexadentate ligands possessing N2O4and N2O2S2cores: differential reactivity towards Co(ii), Ni(ii) and Zn(ii) salts and structures of the products
Reactions of divalent metal salts of Co, Ni and Zn with 1,2-di(salicylaldimino-o-phenylthio) ethane (H2L1) and 1,2-di(naphthaldimino-o-phenylthio) ethane (H2L2), having N2O2S2 cores, and 1,2-di(O-salicylaldimino-o-hydroxyphenyl) ethane (H2L3), having a N2O4 core, have been explored. Out of the three ligands and the nine products obtained from the corresponding reactions, two ligands and seven products were crystallographically characterized. However, all the ligands and the products were characterized by analytical and spectral methods. Reaction of H2L1 and H2L2 with Co(II) salts results in oxidative cleavage of the C-S bond to produce a Co(III) product bound to two dissimilar tridentate li…
Crystal structure of 4,6-O-ethylidene-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine
4,6-O-Ethylidene-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine was synthesized and characterized using analytical, spectral and single-crystal X-ray diffraction methods. The anomeric nature of the saccharide moiety was proposed based on 1H NMR studies and was confirmed by the crystal structure. The lattice structure of this compound was compared with that of its analogues.
Synthesis and characterization of 4,6-O-butylidene-N-(2-hydroxybenzylidene)-beta-D-glucopyranosylamine: crystal structures of 4,6-O-butylidene-alpha-D-glucopyranose, 4,6-O-butylidene-beta-D-glucopyranosylamine and 4,6-O-butylidene-N-(2-hydroxybenzylidene)-beta-D-glucopyranosylamine
4,6-O-Butylidene-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine was synthesized and characterized using analytical, spectral and single-crystal X-ray diffraction methods. 1H and 13C NMR studies showed the presence of the β-anomer, which has also been confirmed by the crystal structure. The molecular structure of this compound showed the presence of the tridentate ONO ligation-core. Both precursors, 4,6-O-butylidene-α-D-glucopyranose and 4,6-O-butylidene-β-D-glucopyranosylamine were characterized using single crystal X-ray diffraction. The α-anomeric nature of the former and β-anomeric nature of the latter were proposed based on 1H NMR studies and were confirmed by determining the crystal …
Interaction of metal ions with D-glucobenzothiazoline: isolation and characterization of the resultant products
Six different metal-ion complexes of D-glucobenzothiazoline were synthesized and characterized by analytical and spectral techniques. Formation of different types of species (ML and ML2) were observed with Cu2+, Ag+, Cd2+, Hg2+, and Zn2+ ions. Existence of an anomeric mixture in the case of the Cu2+ complex is identified from the EPR spectra, and the results were further supported by the simulated spectra. The structures were proposed based on different studies.
Unusual interaction extended between the pyranose ring oxygen and Zn(II) center in the complexes derived from 4,6-O-butylidene/ethylidene-N-(α-hydroxynaphthylidene/o-hydroxybenzylidene)-β-d-glucopyranosylamine: Evidence for a pseudo-bicapped tetrahedral complex of Zn(II) based on the crystal structure
The Zn(II) complexes of 4,6-O-butylidene/ethylidene-N-(α-hydroxynaphthylidene/o-hydroxybenzylidene)-β-Image -glucopyranosylamine have been synthesized and characterized using spectral and analytical methods and structure for one of the products was established. The geometry of the complexes vary from unusual distorted trigonal bipyramidal to pseudo-bicapped tetrahedron depending upon the extent of binding of pyranose ring oxygens to the Zn(II) ion, as evidenced from crystal structures. Such interaction is also reflected on the optical rotation and CD spectral properties of these complexes in solution.
Synthesis, characterization and the first crystal structure of the Zn(II) complex of 4,6-O-ethylidine-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine
4,6-O-Ethylidine-N-(2-hydroxybenzylidene)-β-D-glucopyranosylamine (H3L1) and N-(5-bromo-2-hydroxybenzylidene-4,6-O-ethylidine-β-D-glucopyranosylamine (H3L2) molecules possessing a–C-1–N=C(H)–moiety for metal-ion binding were synthesized by condensing the 4,6–O–ethylidene–β–D–glucopyranosylamine with salicylaldehyde or 5–bromosalicylaldehyde. Complexes of these ligands with Zn(II) were isolated and characterized using elemental analysis, FTIR, UV–Vis absorption, NMR spectroscopic and FAB mass spectrometric techniques. The structure of the Zn(II) complex derived from H3L1 was established for the first time by a single-crystal X-ray diffraction study. The anomeric nature of the saccharide moie…
Synthesis, structure and reactivity of trans-UO22+ complexes of OH-containing ligands †
trans-Dioxouranium dinuclear complexes of a few OH-containing ligands possessing N-, O-binding sites were synthesized and characterised. Seven of these were also structurally characterised by single crystal X-ray diffraction. All these complexes exhibit symmetric U2O2 core structures in addition to having a seven-co-ordinated environment about each uranium centre. Even when the ligand possessed more than one CH2OH group, only one such group was found to be involved both in chelation as well as in bridging. These complexes exhibited facile transmetallation reactions with vanadium and molybdenum precursors. Though their core structures are alike, the complexes differ in their lattice arrangem…
Transition metal–saccharide chemistry: synthesis, characterization and solution stability studies of cis-dioxomolybdenum saccharide complexes
Six cis-dioxomolybdenum(VI) complexes of simple monosaccharides (D-glucose, D-fructose, D-galactose, D-mannose, D-ribose and D-xylose) have been synthesized and characterized by a variety of analytical and spectral methods. Both the solution and solid-state studies have supported the presence of dimeric structures, formed through the cis-MoO2 moieties and the bridging saccharide units. Solution stability of these complexes as a function of time has also been addressed.
Glycosylamines of 4,6-O-butylidene-α-d-glucopyranose: synthesis and characterization of glycosylamines, and the crystal structure of 4,6-O-butylidene-N-(o-chlorophenyl)-β-d-glucopyranosylamine
A total of nine glycosylamines of 4,6-O-butylidene-α-D-glucopyranose were synthesized using primary amines having various groups in their ortho- or para-positions. Among these, six are monoglycosylamines, including one primary glycosylamine, and three are bis-glycosylamines. All these compounds were characterized by 1H, 1H–1H COSY, 1H–13C COSY and 13C NMR spectroscopy and FTIR spectra. The FAB mass spectra provided the molecular weights of the products by exhibiting the corresponding molecular ion peaks. The crystal structure of 4,6-O-butylidene-N-(o-chlorophenyl)-β-D-glucopyranosylamine revealed the C-1 glycosylation, the β-anomeric nature, and the 4C1 chair conformation of the saccharide …
C–S bond cleavage by cobalt: synthesis, characterization and crystal structure determination of 1,2-di-(o-salicylaldiminophenylthio)ethane and its Co(III) product with C–S bond cleaved fragments
1,2-Di-(o-salicylaldiminophenylthio)ethane reacts with Co(II) salts to form a complex with oxidative cleavage of the C–S bond, to result in the formation of a Co(III) complex of the cleaved ligands.
Lanthanide–saccharide chemistry: synthesis and characterisation of Ce(III)–saccharide complexes
A series of nine Ce(III) complexes has been synthesised with seven different monosaccharides (D-glucose, D-fructose, D-galactose, D-mannose, L-sorbose, D-ribose and D-xylose) and two different disaccharides (D-maltose and L-lactose), and these have been characterised with various analytical, spectral, magnetic and electrochemical techniques. The NMR studies have highlighted some interesting features about the metal-ion-binding pattern of the saccharides. Some additional coordination has been proposed along with the chelating groups in the saccharide molecules, based on the shifts in 13C NMR spectra. On the other hand, solution absorption studies and solid-state magnetic susceptibilities hav…
Synthesis and characterization of Sn(IV) complexes of lower rim 1,3-diacid derivative of calix[4]arene and their protective effects on tissue oxidative stress and essential metal concentration in lead exposed male Wistar rats
The two Sn(IV) complexes synthesized using calix[4]arene-1,3-di-acid derivative were characterized by analytical, 1H, 13C and 119Sn NMR, matrix assisted laser desorption ionization mass, and 119Sn Mossbauer techniques and found that the complexes are tetranuclear possessing structurally two different types of tin centers. These complexes were evaluated for their protective value against blood and tissue oxidative stress in lead exposed male albino rats of Wistar strain. The results suggest that the two tin complexes significantly protect changes in lead induced biochemical variables indicative of heme synthesis pathway and exhibit only moderate effect on tissue oxidative stress. The benefic…
Synthesis and characterisation of N-glycosyl amines from the reaction between 4,6-O-benzylidene-D-glucopyranose and substituted aromatic amines and also between 2-(o-aminophenyl)benzimidazole and pentoses or hexoses.
Twelve N-glycosyl amines were synthesised using 4,6-O–benzylidene-D-glucopyranose and different substituted aromatic amines, including some diamines that resulted in bis-glycosyl amines. Another set of six N–glycosyl amines was synthesised using different hexoses and pentoses and 2–(o–aminophenyl)benzimidazole. All compounds were isolated as solid products and purified, their elemental compositions were established, and these were characterised by NMR (1H and 13C), UV–Vis, and FTIR spectroscopy, by FAB mass spectrometry (molecular-ion peaks gave molecular weights), and by their optical rotations. While the protected saccharide, 4,6-O-benzylidene-D-glucopyranose, exists as a mixture of β and…
Mono-, di- and tri-nuclear Ni(II) complexes of N-, O-donor ligands: structural diversity and reactivity
A series of mono-, di- and tri-nuclear Ni(II) complexes of N, O-donating molecules possessing ---H2C---NH--- and ---HC=N--- moieties have been synthesized and characterized and the structures have been determined by single crystal X-ray diffraction. All these exhibited interesting molecular packing in their crystal lattices. Di-nuclear complexes were found to be cleaved in pyridine to result in mononuclear ones with additional coordinations being provided by pyridine. Di-nuclear complexes were found to form urea adducts as demonstrated based on absorption and vibrational studies.
Interaction of metal ions with N-glycosylamines: isolation and characterization of the products of 4,6-O-benzylidene-N-(o-carboxyphenyl)-β-D-glucopyranosylamine with different metal ions
Metal-ion complexes of Li+, Na+, K+, Mg2+, Ca2+, Ba2+, Pb2+, Cd2+, Hg2+ with 4,6–O–benzylidene–N–(o–carboxyphenyl)–β–D–glucopyranosylamine were synthesized and isolated as solid products and characterized by analytical means as well as by spectral techniques, such as, 1H and 13C NMR, FTIR, absorption, FAB mass spectrometry, optical rotation and CD. While the alkali metal ions formed ML type of complexes, the other metal ions formed ML2 type complexes. Molecular weights of the complexes of Li+, Na+ and K+ were established based on the molecular-ion peaks in the FAB mass spectra. The saccharide portion remians in the β-anomeric form even after the complexation. The spectral data, as well as t…
Recognition of oxovanadium(V) species and its separation from other metal species through selective complexation by some acyclic ligands
Acyclic molecules possessing –OH (phenoxo and alkoxo type) groups and imine or amine moieties have been developed to sense the specific preference for VO3+ species. These molecules also showed a capability to quantitatively separate oxovanadium(V) species from a reaction mixture containing metal species of V, Mo, U, Fe, and Mn ions in solution. A cascade quantitative separation of VO3+ followed by cis–MoO2+2 followed by trans –UO2+2 species is demonstrated from their mixture. Synthesis and structural details of oxo-species of vanadium molybdenum and uranium are also discussed. Factors influencing the complexation of these molecules towards oxo metal species of V, Mo and U are also addressed.
First Crystallographic Investigation of Complexes of cis-VO2+, cis-MoO22+, and trans-UO22+ Species with Schiff-Base Molecules Derived from 4,6-O-Ethylidene-β-D-glucopyranosylamine
The interaction of Schiff-base ligands derived from 4,6-O-ethylidene-β-D-glucopyranosylamine with cis-VO 2 + , cis-MoO 2 2+ , and trans-UO 2 2+ species have been studied by isolating and characterizing the corresponding products. The structures of one complex of each type of species have been established by single-crystal X-ray diffraction analysis. In all the complexes, the saccharide moiety adopts a chair conformation and has a β-anomeric form. A gradual increase in coordination number (5, 6, and 7) and a gradual variation in the geometry (distorted trigonal-bipyramidal, distorted octahedral, and pentagonal-bipyramidal) are observed on going from the complexes of cis-VO 2 + (mononuclear) …
Mn(IV) and Co(III)-complexes of –OH-rich ligands possessing O2N, O3N and O4N cores: syntheses, characterization and crystal structures
Mn(IV) and Co(III) complexes of tridentate –OH–rich ligands possessing O2N, O3N and O4N donor sets were synthesized, characterized and their structures were established by single crystal X-ray diffraction, where the binding core is O4N2. In the structurally characterized complexes, the coordination geometry about the metal ion was found to be distorted octahedral.
Four-, five- and six-coordinated Zn-II complexes of OH-containing ligands: Syntheses, structure and reactivity
Four-, five- and six-coordinated complexes of Zn-II with OH-rich molecules possessing an ONO binding core were synthesized, characterized and their structures were established by single-crystal X-ray diffraction, The corresponding metal ion geometries were found to be distorted tetrahedral, square pyramidal and octahedral, respectively. The complexes exhibit interesting lattice structures such as layered and corrugated sheets owing to the presence of a number of weak intermolecular interactions. The five-coordinated, water-bound Zn-II complex was studied because of its putative hydrolysis property towards p-nitrophenyl acetate. (C) Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002.
N-Glycosylamines of 4,6-O-ethylidene-alpha-D-glucopyranose: synthesis, characterisation and structure of CO2H, Cl and F ortho-substituted phenyl derivatives and metal ion complexes of the CO2H derivative
A saccharide based ligand suitable for metal binding (HLCOOH) has been synthesized using 4,6-O-ethylidene-alpha-D-glucopyranose (4,6-O-EGP) and anthranilic acid. A few analogous glycosylamines with chloro and fluoro ortho substitutions have also been synthesized and characterised. Complexes of HLCOOH with Na+, K+, Mg2+, Ca2+, Ba2+, Cd2+ and Hg2+ have been isolated and characterised fully. The crystal structures of 4,6-O-EGP, the chloro analogue of HLCOOH and the K+ complex of L-COOH are established. The anomeric nature, orientation of the binding core and the co-ordination aspects of K+ have been derived from these structures.
Synthesis, characterisation and crystal structures of Schiff bases from the reaction of 4,6-O-ethylidene-β-D-glucopyranosylamine with substituted salicylaldehydes
Multiple chemical modifications were carried out on D-glucose to result in the corresponding Schiff bases. Such modifications performed on D-glucose not only helped in increasing the solubility of the products in nonaqueous solvents, but also restricted the anomerisation of the saccharide moiety in solution. NMR study of the products revealed the presence of the β-anomeric form of the saccharide moiety in Me2SO solution. All the compounds were characterised by analytical and spectral methods. The literature is devoid of any crystal structures of saccharide–Schiff base combinations of the type reported in this paper. The crystal structures of these molecules exhibited a tridentate, ONO bindi…
CCDC 216935: Experimental Crystal Structure Determination
Related Article: Gudneppanavar Rajsekhar, Chebrolu P. Rao, Pauli Saarenketo, Kalle Nättinen, Kari Rissanen|2004|New J.Chem.|28|75|doi:10.1039/b305313j
CCDC 216932: Experimental Crystal Structure Determination
Related Article: Gudneppanavar Rajsekhar, Chebrolu P. Rao, Pauli Saarenketo, Kalle Nättinen, Kari Rissanen|2004|New J.Chem.|28|75|doi:10.1039/b305313j
CCDC 216934: Experimental Crystal Structure Determination
Related Article: Gudneppanavar Rajsekhar, Chebrolu P. Rao, Pauli Saarenketo, Kalle Nättinen, Kari Rissanen|2004|New J.Chem.|28|75|doi:10.1039/b305313j
CCDC 216933: Experimental Crystal Structure Determination
Related Article: Gudneppanavar Rajsekhar, Chebrolu P. Rao, Pauli Saarenketo, Kalle Nättinen, Kari Rissanen|2004|New J.Chem.|28|75|doi:10.1039/b305313j
CCDC 216931: Experimental Crystal Structure Determination
Related Article: Gudneppanavar Rajsekhar, Chebrolu P. Rao, Pauli Saarenketo, Kalle Nättinen, Kari Rissanen|2004|New J.Chem.|28|75|doi:10.1039/b305313j
CCDC 216930: Experimental Crystal Structure Determination
Related Article: Gudneppanavar Rajsekhar, Chebrolu P. Rao, Pauli Saarenketo, Kalle Nättinen, Kari Rissanen|2004|New J.Chem.|28|75|doi:10.1039/b305313j
CCDC 216929: Experimental Crystal Structure Determination
Related Article: Gudneppanavar Rajsekhar, Chebrolu P. Rao, Pauli Saarenketo, Kalle Nättinen, Kari Rissanen|2004|New J.Chem.|28|75|doi:10.1039/b305313j