0000000001308370

AUTHOR

Carsten Sönnichsen

showing 65 related works from this author

Cytotoxicity of Metal and Semiconductor Nanoparticles Indicated by Cellular Micromotility

2009

In the growing field of nanotechnology, there is an urgent need to sensitively determine the toxicity of nanoparticles since many technical and medical applications are based on controlled exposure to particles, that is, as contrast agents or for drug delivery. Before the in vivo implementation, in vitro cell experiments are required to achieve a detailed knowledge of toxicity and biodegradation as a function of the nanoparticles' physical and chemical properties. In this study, we show that the micromotility of animal cells as monitored by electrical cell-substrate impedance analysis (ECIS) is highly suitable to quantify in vitro cytotoxicity of semiconductor quantum dots and gold nanorods…

Materials scienceContrast MediaMetal NanoparticlesGeneral Physics and AstronomyNanoparticleNanotechnologyDrug Delivery SystemsIn vivoQuantum DotsMicroscopyElectric ImpedanceAnimalsHumansNanotechnologyGeneral Materials ScienceCytotoxicityFluorescent DyesGeneral EngineeringIn vitroBiodegradation EnvironmentalSemiconductorsMetalsQuantum dotDrug deliveryNanoparticlesNanorodGoldACS Nano
researchProduct

Single Particle Plasmon Sensors as Label-Free Technique To Monitor MinDE Protein Wave Propagation on Membranes.

2016

We use individual gold nanorods as pointlike detectors for the intrinsic dynamics of an oscillating biological system. We chose the pattern forming MinDE protein system from Escherichia coli (E. coli), a prominent example for self-organized chemical oscillations of membrane-associated proteins that are involved in the bacterial cell division process. Similar to surface plasmon resonance (SPR), the gold nanorods report changes in their protein surface coverage without the need for fluorescence labeling, a technique we refer to as NanoSPR. Comparing the dynamics for fluorescence labeled and unlabeled proteins, we find a reduction of the oscillation period by about 20%. The absence of photoble…

0301 basic medicineLipid BilayersAnalytical chemistryBioengineeringCell Cycle Proteins02 engineering and technologyBiosensing Techniques03 medical and health sciencesMin SystemEscherichia coliGeneral Materials ScienceSurface plasmon resonancePlasmonFluorescent DyesAdenosine TriphosphatasesNanotubesOscillationChemistryMechanical EngineeringEscherichia coli ProteinsGeneral ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsFluorescencePhotobleaching030104 developmental biologyBiophysicsNanorodGold0210 nano-technologyBiosensorNano letters
researchProduct

LbL multilayer capsules: recent progress and future outlook for their use in life sciences.

2010

In this review we provide an overview of the recent progress in designing composite polymer capsules based on the Layer-by-Layer (LbL) technology demonstrated so far in material science, focusing on their potential applications in medicine, drug delivery and catalysis. The benefits and limits of current systems are discussed and the perspectives on emerging strategies for designing novel classes of therapeutic vehicles are highlighted. © 2010 The Royal Society of Chemistry.

Materials scienceDrug Delivery SystemsPharmaceutical PreparationsPolymersComposite polymerDrug deliveryGeneral Materials ScienceNanotechnologyCapsuleslayer-by-layer; polymer capsules; biological applicationsBiological Science DisciplinesCatalysisNanoscale
researchProduct

Angular Trapping of Anisometric Nano-Objects in a Fluid

2012

We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the objec…

10120 Department of ChemistryOptics and Photonics3104 Condensed Matter PhysicsSilverMaterials scienceMacromolecular SubstancesSurface PropertiesStatic Electricity2210 Mechanical EngineeringMetal Nanoparticles1600 General ChemistryBioengineeringTrap (computing)OpticsOrientation (geometry)540 ChemistryNano-ElectrochemistryNanotechnologyScattering RadiationGeneral Materials ScienceFluidicsSurface chargeParticle Size1502 Bioengineeringbusiness.industryPhysicsMechanical EngineeringElectrostatic unitsDNAGeneral ChemistryCondensed Matter Physics2500 General Materials ScienceSymmetry (physics)KineticsHydrodynamicsLevitationAnisotropybusinessNano Letters
researchProduct

Detecting Intruders on the Nanoscale

2011

MultidisciplinaryMaterials scienceNanotechnologyNanoscopic scaleScience
researchProduct

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

2014

In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, …

Materials scienceGeneral Physics and AstronomyNanoparticleNanotechnologyengineering.materiallcsh:Chemical technologylcsh:TechnologyFull Research Paperbasolateral application; cytotoxicity; electric cell–substrate impedance sensing; gold; nanoparticlesPulmonary surfactantCoatingNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Surface chargeElectrical and Electronic Engineeringlcsh:Sciencelcsh:Tgoldlcsh:QC1-999Dielectric spectroscopyNanoscienceSurface coatingChemical engineeringelectric cell–substrate impedance sensingengineeringParticlebasolateral applicationcytotoxicityNanorodnanoparticleslcsh:Qlcsh:Physics
researchProduct

En-Face differential absorption optical coherence tomography with gold nanorods as the contrast agent

2008

A new variety of nanoparticles showing unique and characteristic optical properties, appeals for its use as contrast agents in medical imaging. Gold nanospheres, nanorods and nanoshells with a silica core are new forms of promising contrast agents which can be tuned to specific absorption or scattering characteristics within the near-infrared (NIR) spectrum ranging from 650 - 1300 nm. They have the ability to be used for both image enhancement and as photosensitive markers due to their well designable scattering and absorption properties. Furthermore, their strong optical absorption permits treatment of malignant cells by photoablation processes, induced when heating them with a matched lig…

genetic structuresmedicine.diagnostic_testChemistryScatteringbusiness.industryNear-infrared spectroscopyPhotoablationNanoshellWavelengthOpticsOptical coherence tomographymedicineNanorodsense organsAbsorption (electromagnetic radiation)business1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics
researchProduct

Growth of gold tips onto hyperbranched CdTe nanostructures

2008

Materials scienceNanostructureMechanics of MaterialsMechanical EngineeringGeneral Materials ScienceNanotechnologyHybrid materialSemiconductor NanoparticlesCadmium telluride photovoltaics
researchProduct

Momentum Distribution of Electrons Emitted from Resonantly Excited Individual Gold Nanorods.

2017

Electron emission by femtosecond laser pulses from individual Au nanorods is studied with a time-of-flight momentum resolving photoemission electron microscope (ToF k-PEEM). The Au nanorods adhere to a transparent indium–tin oxide substrate, allowing for illumination from the rear side at normal incidence. Localized plasmon polaritons are resonantly excited at 800 nm with 100 fs long pulses. The momentum distribution of emitted electrons reveals two distinct emission mechanisms: a coherent multiphoton photoemission process from the optically heated electron gas leads to an isotropic emission distribution. In contrast, an additional emission process resulting from the optical field enhanceme…

Materials scienceMechanical EngineeringPhysics::OpticsBioengineering02 engineering and technologyGeneral ChemistryElectron021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaser01 natural scienceslaw.inventionCondensed Matter::Materials SciencePhotoemission electron microscopylawExcited state0103 physical sciencesFemtosecondPolaritonGeneral Materials ScienceNanorodAtomic physics010306 general physics0210 nano-technologyPlasmonNano letters
researchProduct

Absorption Properties of Metal–Semiconductor Hybrid Nanoparticles

2011

The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as input…

Optics and PhotonicsMaterials sciencemetalJanus particlesMetal NanoparticlesPhysics::OpticsGeneral Physics and AstronomyNanoparticleNanotechnologyJanus particlesDielectricSulfidesDiscrete dipole approximationAbsorptionotpical absorption; metal; semiconductor; nanoparticleshybrid nanoparticlesplasmonCondensed Matter::Materials ScienceMicroscopy Electron TransmissionQuantum DotsCadmium CompoundsElectrochemistryNanotechnologyComputer SimulationGeneral Materials ScienceAbsorption (electromagnetic radiation)PlasmonexcitonGeneral Engineeringotpical absorptionsemiconductorCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemiconductorsMetalsQuantum dotChemical physicsHybrid systemnanoparticlesGoldDDAACS Nano
researchProduct

Protein-membrane interaction probed by single plasmonic nanoparticles.

2008

We present a nanosized and addressable sensor platform based on membrane coated plasmonic particles and show unequivocally the covering with lipid bilayers as well as the subsequent detection of streptavidin binding to biotinylated lipids. The binding is detected on membrane covered gold nanorods by monitoring the spectral shift by fast single particle spectroscopy (fastSPS) on many particles in parallel. Our approach allows for local analysis of protein interaction with biological membranes as a function of the lateral composition of phase separated membranes.

StreptavidinMaterials scienceNanoparticleMolecular Probe TechniquesBioengineeringNanotechnologyResonance (particle physics)Spectral lineQuantitative Biology::Subcellular Processeschemistry.chemical_compoundProtein Interaction MappingGeneral Materials ScienceSurface plasmon resonanceSpectroscopyLipid bilayerPlasmonPlasmonic nanoparticlesbusiness.industryChemistryMechanical EngineeringCell MembraneMembrane ProteinsBiological membraneGeneral ChemistrySurface Plasmon ResonanceCondensed Matter PhysicsDark field microscopyMembraneTransmission electron microscopyBiotinylationParticleOptoelectronicsNanoparticlesbusinessNano letters
researchProduct

Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level

2009

We create large gold domains (up to 15 nm) exclusively on one side of CdS or CdSe/CdS quantum rods by photoreduction of gold ions under anaerobic conditions. Electrons generated in the semiconductor by UV stimulation migrate to one tip where they reduce gold ions. Large gold domains eventually form; these support efficient plasmon oscillations with a light scattering cross section large enough to visualize single hybrid particles in a dark-field microscope during growth in real time.

MicroscopeMaterials scienceChemistrybusiness.industryMechanical EngineeringPhysics::OpticsNanoparticleBioengineeringNanotechnologyGeneral ChemistryElectronCondensed Matter PhysicsDark field microscopyLight scatteringIonlaw.inventionCondensed Matter::Materials ScienceSemiconductorNanocrystallawParticleOptoelectronicsGeneral Materials SciencebusinessPlasmonColloidal Quantum Dots for Biomedical Applications V
researchProduct

Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals

2009

We present a continuous flow synthesis of gold and silver nanorods allowing tailored design of particles with desired shapes and online monitoring of particle growth.

SilverMaterials sciencemedicine.diagnostic_testContinuous flowMicrofluidicsMetal NanoparticlesGeneral Physics and AstronomyNanotechnologySolutionsTransition metalNanocrystalSpectrophotometrySpectrophotometryParticle growthmedicineParticleGoldPhysical and Theoretical ChemistrySilver nanorodsPhys. Chem. Chem. Phys.
researchProduct

Self-Assembly of Amphiphilic Nanocrystals

2009

Amphiphilic hybrid materials are formed from polymer-coated semiconductor nanoparticles that simulate a surfactant-like response (see picture). The strength and density of the surface coating are the key assembling forces driving a transition from single particles to cylindrical or vesicular superstructures.

Materials scienceSurface PropertiesNanoparticleNanotechnologyGeneral ChemistryCatalysisSurface-Active AgentsSurface coatingNanocrystalQuantum DotsAmphiphileNanoparticlesSelf-assemblyHybrid materialHydrophobic and Hydrophilic InteractionsSemiconductor NanoparticlesAngewandte Chemie International Edition
researchProduct

Synthesis of Au-CdS@CdSe Hybrid Nanoparticles with a Highly Reactive Gold Domain.

2017

We propose a novel route to synthesize semiconductor–gold hybrid nanoparticles directly in water, resulting in much larger gold domains than previous protocols (up to 50 nm) with very reactive surfaces which allow further functionalization. This method advances the possibility of self-assembly into complex structures with catalytic activity toward the reduction of nitro compounds by hydrides. The large size of these gold domains in hybrid particles supports efficient light scattering at the plasmon resonance frequency, making such structures attractive for single-particle studies.

Materials scienceReduction of nitro compoundsNanoparticleNanotechnology02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesLight scattering0104 chemical sciencesDomain (software engineering)CatalysisElectrochemistrySurface modificationGeneral Materials ScienceSurface plasmon resonance0210 nano-technologySpectroscopyLarge sizeLangmuir : the ACS journal of surfaces and colloids
researchProduct

Mechanical properties of MDCK II cells exposed to gold nanorods

2015

Background: The impact of gold nanoparticles on cell viability has been extensively studied in the past. Size, shape and surface functionalization including opsonization of gold particles ranging from a few nanometers to hundreds of nanometers are among the most crucial parameters that have been focussed on. Cytoxicity of nanomaterial has been assessed by common cytotoxicity assays targeting enzymatic activity such as LDH, MTT and ECIS. So far, however, less attention has been paid to the mechanical parameters of cells exposed to gold particles, which is an important reporter on the cellular response to external stimuli.Results: Mechanical properties of confluent MDCK II cells exposed to go…

Materials scienceGeneral Physics and AstronomyNanotechnologylcsh:Chemical technologylcsh:TechnologyFull Research Papermembrane tensionNanomaterialsMicroscopyNanotechnologylcsh:TP1-1185General Materials ScienceElectrical and Electronic Engineeringlcsh:Scienceatomic force microscopylcsh:TCTABQuartz crystal microbalanceDynamic mechanical analysisgold nanorodslcsh:QC1-999NanoscienceMembraneColloidal goldQCMMDCK II cellsBiophysicsSurface modificationlcsh:QNanorodlcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

2015

In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot) nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in compa…

Materials scienceBiocompatibilitymedia_common.quotation_subjectJanus particlesGeneral Physics and AstronomyNanoparticleJanus particlesNanotechnologyquantum dotslcsh:Chemical technologylcsh:TechnologyFull Research PaperNanotechnologylcsh:TP1-1185General Materials ScienceViability assayElectrical and Electronic Engineeringlcsh:ScienceInternalizationNanoparticle Applicationcell viabilitymedia_commonlcsh:Tlcsh:QC1-999internalizationNanoscienceColloidal goldgold nanoparticlesSurface modificationlcsh:Qlcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features

2018

6 p.-4 fig.

02 engineering and technologyEscherichia-coli010402 general chemistryCurvature01 natural sciencesBiochemistryCatalysisQuantitative Biology::Subcellular ProcessesColloid and Surface ChemistryNanosensorSpectroscopyPlasmonPhospholipidsHydrophobic residuesPlasmonic nanoparticlesChemistryScatteringSensorsGeneral ChemistryBinding021001 nanoscience & nanotechnology0104 chemical sciencesMembraneMembrane curvatureChemical physics0210 nano-technology
researchProduct

The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective

2016

We provide a microscopic view of the role of halides in controlling the anisotropic growth of gold nanorods through a combined computational and experimental study. Atomistic molecular dynamics simulations unveil that Br− adsorption is not only responsible for surface passivation, but also acts as the driving force for CTAB micelle adsorption and stabilization on the gold surface in a facet-dependent way. The partial replacement of Br− by Cl− decreases the difference between facets and the surfactant density. Finally, in the CTAC solution, no halides or micellar structures protect the gold surface and further gold reduction should be uniformly possible. Experimentally observed nanoparticle'…

Materials scienceInorganic chemistryGeneral Physics and AstronomyHalideNanoparticle02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMicelle0104 chemical sciencesMolecular dynamicsAdsorptionPulmonary surfactantChemical engineeringColloidal goldNanorodPhysical and Theoretical Chemistry0210 nano-technologyPhysical Chemistry Chemical Physics
researchProduct

Novel plasmonic sensor design using plasmon-induced transparency

2010

We introduce a novel sensor concept in the field of plasmonics, namely plasmon-induced transparency sensors. These sensors combine localized particle plasmon resonances with extremely small sensing volume with excellent sharp spectral resonances that show a good respose to refractive index changes of the surrounding environment. The principle is based on the plasmonic analog of electromagnetically induced transparency (EIT) between a radiative dipole and a nonradiative quadrupole antenna. This effect yields a spectrally narrow resonance within a broad localized particle plasmon resonance in the near-infrared spectral region [1, 2]. Using deposition of biotin and streptavidin, we demonstrate…

Materials scienceElectromagnetically induced transparencybusiness.industryPhysics::OpticsResonancelaw.inventionDipoleOpticslawFigure of meritOptoelectronicsDipole antennaSurface plasmon resonancebusinessRefractive indexPlasmon2010 IEEE Sensors
researchProduct

CTAB Stabilizes Silver on Gold Nanorods

2020

We present a study that allows us to explain the chemical changes behind the often observed but so far ununderstood drift of the plasmon resonance of chemically prepared gold nanorods in microfluid...

Materials scienceGeneral Chemical EngineeringMaterials ChemistryNanotechnologyNanorod02 engineering and technologyGeneral ChemistrySurface plasmon resonance010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesChemistry of Materials
researchProduct

Self-assembly of small gold colloids with functionalized gold nanorods.

2007

We present a general strategy to stabilize gold nanorod suspensions with mono- and bifunctional polyethylene glycol (PEG) and to attach a controlled number of nanoparticles or biomolecules. Characterization by gel electrophoresis, transmission electron microscopy (TEM), and optical dark-field microscopy show the specific binding of functionalized nanorods to their target while avoiding nonspecific binding to substrates, matrices, and other particles. Such nanorods are well suited for self-assembly of nanostructures and single-molecule labeling.

chemistry.chemical_classificationNanostructureMaterials scienceMechanical EngineeringBiomoleculeNanoparticleBioengineeringNanotechnologyGeneral ChemistryPolyethylene glycolCondensed Matter Physicschemistry.chemical_compoundchemistryTransmission electron microscopyGeneral Materials ScienceNanorodSelf-assemblyBifunctionalNano letters
researchProduct

Gold Nanorods as Plasmonic Sensors for Particle Diffusion.

2016

Plasmonic gold nanoparticles are normally used as sensor to detect analytes permanently bound to their surface. If the interaction between the analyte and the nanosensor surface is negligible, it only diffuses through the sensor’s sensing volume, causing a small temporal shift of the plasmon resonance position. By using a very sensitive and fast detection scheme, we are able to detect these small fluctuations in the plasmon resonance. With the help of a theoretical model consistent with our detection geometry, we determine the analyte’s diffusion coefficient. The method is verified by observing the trends upon changing diffusor size and medium viscosity, and the diffusion coefficients obtai…

AnalyteChemistrybusiness.industryPhysics::OpticsNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanosensorColloidal goldOptoelectronicsGeneral Materials SciencePhysical and Theoretical ChemistrySurface plasmon resonanceDiffusion (business)0210 nano-technologybusinessPlasmonLocalized surface plasmonThe journal of physical chemistry letters
researchProduct

Plasmonic Nanosensors for the Determination of Drug Effectiveness on Membrane Receptors.

2016

We demonstrate the potential of the NanoSPR (nanoscale surface plasmon resonance sensors) method as a simple and cheap tool for the quantitative study of membrane protein–protein interactions. We use NanoSPR to determine the effectiveness of two potential drug candidates that inhibit the protein complex formation between FtsA and ZipA at initial stages of bacterial division. As the NanoSPR method relies on individual gold nanorods as sensing elements, there is no need for fluorescent labels or organic cosolvents, and it provides intrinsically high statistics. NanoSPR could become a powerful tool in drug development, drug delivery, and membrane studies.

0301 basic medicineDrugMaterials sciencemedia_common.quotation_subjectNanotechnologyCell Cycle Proteins02 engineering and technology03 medical and health sciencesBacterial ProteinsNanosensorEscherichia coliGeneral Materials ScienceSurface plasmon resonancePlasmonmedia_commonEscherichia coli ProteinsSurface Plasmon Resonance021001 nanoscience & nanotechnologyNanostructuresCytoskeletal Proteins030104 developmental biologyMembraneDrug developmentDrug deliveryFtsA0210 nano-technologyCarrier ProteinsProtein BindingACS applied materialsinterfaces
researchProduct

Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles

2012

The ultimate detection limit in analytic chemistry and biology is the single molecule. Commonly, fluorescent dye labels or enzymatic amplification are employed. This requires additional labeling of the analyte, which modifies the species under investigation and therefore influences biological processes. Here, we utilize single gold nanoparticles to detect single unlabeled proteins with extremely high temporal resolution. This allows for monitoring the dynamic evolution of a single protein binding event on a millisecond time scale. The technique even resolves equilibrium coverage fluctuations, opening a window into Brownian dynamics of unlabeled macromolecules. Therefore, our method enables …

Protein FoldingAnalyteSurface PropertiesMetal NanoparticlesBioengineeringNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesNanotechnologyGeneral Materials ScienceSoft matterSurface plasmon resonancePlasmonic nanoparticlesChemistryMechanical EngineeringProteinsGeneral ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesKineticsBrownian dynamicsProtein foldingAdsorptionGold0210 nano-technologyBiological systemMacromoleculeProtein adsorptionNano Letters
researchProduct

Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells

2010

Nanoparticle exposure is monitored by a combination of two label-free and non-invasive biosensor devices which detect cellular shape and viscoelasticity (quartz crystal microbalance), cell motility and the dynamics of epithelial cell-cell contacts (electric cell-substrate impedance sensing). With these tools we have studied the impact of nanoparticle shape on cellular physiology. Gold (Au) nanoparticles coated with CTAB were synthesized and studied in two distinct shapes: Spheres with a diameter of (43 ± 4) nm and rods with a size of (38 ± 7) nm × (17 ± 3) nm. Dose-response experiments were accompanied by conventional cytotoxicity tests as well as fluorescence and dark-field microscopy to v…

Materials scienceSurface PropertiesBiomedical EngineeringAnalytical chemistryMetal NanoparticlesNanoparticle02 engineering and technology010402 general chemistryToxicology01 natural sciencesCell LineSurface-Active AgentsCell MovementMicroscopyAnimalsParticle SizeCytoskeletonDose-Response Relationship DrugCetrimoniumEpithelial CellsQuartz crystal microbalance021001 nanoscience & nanotechnology0104 chemical sciencesColloidal goldCetrimonium CompoundsBiophysicsParticleSurface modificationGoldParticle sizeReactive Oxygen Species0210 nano-technologyBiosensorNanotoxicology
researchProduct

Enhanced Thermal Stability of Gold and Silver Nanorods by Thin Surface Layers

2007

Using in situ transmission electron microscopy, we find that a carbon shell governs the morphological transitions of gold and silver nanorods upon heating. Encapsulated Ag nanorods show a surprising nonuniform sublimation behavior starting from one side and leaving behind the shell. Uncovered gold nanorods transform their shape to spheres well below the bulk melting temperature through surface diffusion, which is prevented by a thin carbon shell.

Surface diffusionMaterials scienceMelting temperatureNanotechnologySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIn situ transmission electron microscopyGeneral EnergyChemical engineeringSPHERESThermal stabilitySublimation (phase transition)NanorodPhysical and Theoretical ChemistrySilver nanorodsThe Journal of Physical Chemistry C
researchProduct

Particle Plasmons as Dipole Antennas: State Representation of Relative Observables

2018

The strong interactions between light and plasmons (in metal nanoparticles) allow to observe chemical and physical processes on and around the particle on nanometer length scales as well as they al...

PhysicsCondensed matter physicsPhysics::OpticsObservable02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionGeneral EnergylawParticleNanometreDipole antennaPhysical and Theoretical Chemistry0210 nano-technologyMetal nanoparticlesPlasmonState representationThe Journal of Physical Chemistry C
researchProduct

Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry.

2008

We study the wavelength and polarization dependent plasmon resonances of single silver and gold nanorods, triangles, cubes, and dimers with a novel single particle spectroscopy method (RotPOL). In RotPOL, a rotating wedge-shaped polarizer encodes the full polarization information of each particle within one image. This reveals the symmetry of the particles and their plasmon modes, allows analyzing inhomogeneous samples and the monitoring of particle shape changes during growth in situ.

Materials scienceSilverPhysics::OpticsMetal NanoparticlesBioengineeringElectronMolecular physicslaw.inventionOpticsMicroscopy Electron TransmissionlawPhysics::Atomic and Molecular ClustersGeneral Materials ScienceAnisotropySpectroscopyPlasmonbusiness.industryMechanical EngineeringGeneral ChemistryPolarizerCondensed Matter PhysicsPolarization (waves)AnisotropyNanorodGoldbusinessLocalized surface plasmonNano letters
researchProduct

Multiplexed plasmon sensor for rapid label-free analyte detection.

2013

Efficient and cost-effective multiplexed detection schemes for proteins in small liquid samples would bring drastic advances to fields like disease detection or water quality monitoring. We present a novel multiplexed sensor with randomly deposited aptamer functionalized gold nanorods. The spectral position of plasmon resonances of individual nanorods, monitored by dark-field spectroscopy, respond specifically to different proteins. We demonstrate nanomolar sensitivity, sensor recycling, and the potential to upscale to hundreds or thousands of targets.

AnalyteMaterials scienceAptamerNanophotonicsProtein Array AnalysisBioengineeringNanotechnology02 engineering and technologyBiosensing Techniques010402 general chemistry01 natural sciencesMultiplexingNanotechnologyGeneral Materials ScienceSpectroscopyPlasmonLabel freeStaining and LabelingMechanical EngineeringProteinsGeneral ChemistryEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesEquipment Failure AnalysisNanorod0210 nano-technologyNano letters
researchProduct

Highly Sensitive plasmonic silver nanorods

2011

We compare the single-particle plasmonic sensitivity of silver and gold nanorods with similar resonance wavelengths by monitoring the plasmon resonance shift upon changing the environment from water to 12.5% sucrose solution. We find that silver nanoparticles have 1.2 to 2 times higher sensitivity than gold, in good agreement with simulations based on the boundary-elements-method (BEM). To exclude the effect of particle volume on sensitivity, we test gold rods with increasing particle width at a given resonance wavelength. Using the Drude-model of optical properties of metals together with the quasi-static approximation (QSA) for localized surface plasmons, we show that the dominant contrib…

Materials sciencebusiness.industryGeneral EngineeringAnalytical chemistryPhysics::OpticsGeneral Physics and AstronomyResonance02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSilver nanoparticle0104 chemical sciencesWavelengthPhysics::Atomic and Molecular ClustersOptoelectronicsParticleGeneral Materials ScienceNanorodsense organsSurface plasmon resonance0210 nano-technologybusinessPlasmonLocalized surface plasmonACS Nano
researchProduct

Plasmonic Focusing Reduces Ensemble Linewidth of Silver-Coated Gold Nanorods

2008

Silver coating gold nanorods reduces the ensemble plasmon line width by changing the relation connecting particle shape and plasmon resonance wavelength. This change, we term "plasmonic focusing", leads to less variation of resonance wavelengths for the same particle size distribution. We also find smaller single particle linewidth comparing resonances at the same wavelength but show that this does not contribute to the ensemble linewidth narrowing.

SilverMaterials scienceMacromolecular SubstancesSurface PropertiesMolecular ConformationPhysics::OpticsBioengineeringLaser linewidthOpticsMaterials TestingPhysics::Atomic and Molecular ClustersNanotechnologyGeneral Materials ScienceParticle SizeSurface plasmon resonancePlasmonNanotubesbusiness.industryMechanical EngineeringResonanceGeneral ChemistrySurface Plasmon ResonanceCondensed Matter PhysicsWavelengthParticle-size distributionOptoelectronicsParticleNanorodGoldCrystallizationbusinessNano Letters
researchProduct

Interfacial States Cause Equal Decay of Plasmons and Hot Electrons at Gold-Metal Oxide Interfaces.

2020

We compare the decay of plasmons and "conventional" hot electrons within the same series of gold/metal oxide interfaces. We found an accelerated decay of hot electrons at gold-metal oxide interfaces with decreasing band gap of the oxide material. The decay is accelerated by the increased phase space for electron scattering caused by additional interfacial states. Since plasmons decay faster within the same series of gold-metal oxide interfaces, we propose plasmons are able to decay into the same interfacial states as hot electrons. The similarity of plasmon damping to conventional hot electron decay implies that many classical surface analysis techniques and theoretical concepts are transfe…

Materials scienceCondensed matter physicsMechanical EngineeringOxidePhysics::OpticsBioengineering02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMetalCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryvisual_artvisual_art.visual_art_mediumHigh Energy Physics::ExperimentGeneral Materials ScienceAstrophysics::Earth and Planetary AstrophysicsPhysics::Chemical Physics0210 nano-technologyHot electronPlasmonNano letters
researchProduct

Plasmonic-photonic hybrid cavity for tailored light-matter coupling

2010

We propose and demonstrate a hybrid cavity system in which metal nanoparticles are evanescently coupled to a dielectric photonic crystal cavity using a nanoassembly method. While the metal constituents lead to strongly localized fields, optical feedback is provided by the surrounding photonic crystal structure. The combined effect of plasmonic field enhancement and high quality factor (Q ≈ 900) opens new routes for the control of light-matter interaction at the nanoscale.

Materials sciencebusiness.industryNear-field opticsPhysics::OpticsNanoparticleNanotechnologyDielectricCoupling (physics)Hybrid systemOptoelectronicsPhotonicsbusinessPlasmonPhotonic crystalPhotonic and Phononic Crystal Materials and Devices X
researchProduct

Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling.

2010

We propose and demonstrate a hybrid cavity system in which metal nanoparticles are evanescently coupled to a dielectric photonic crystal cavity using a nanoassembly method. While the metal constituents lead to strongly localized fields, optical feedback is provided by the surrounding photonic crystal structure. The combined effect of plasmonic field enhancement and high quality factor (Q approximately 900) opens new routes for the control of light-matter interaction at the nanoscale.

PhotonsNanostructureMaterials sciencebusiness.industryMechanical EngineeringTransducersPhysics::OpticsNanoparticleBioengineeringNanotechnologyGeneral ChemistryDielectricEquipment DesignSurface Plasmon ResonanceCondensed Matter PhysicsEquipment Failure AnalysisCoupling (physics)RefractometryNanotechnologyGeneral Materials SciencePhotonicsbusinessNanoscopic scalePlasmonPhotonic crystalNano letters
researchProduct

Selbstorganisation amphiphiler Nanokristalle

2009

Amphiphile Hybridmaterialien bestehen aus polymerbeschichteten Halbleiternanopartikeln, die ein stark tensidahnliches Verhalten aufweisen (siehe Bild). Die Starke und Dichte der Oberflachenbeschichtung sind die treibenden Organisationskrafte hinter dem Ubergang von isolierten Partikeln zu zylindrischen oder vesikularen Uberstrukturen.

General MedicineAngewandte Chemie
researchProduct

Plasmonic Core–Satellite Assemblies as Highly Sensitive Refractive Index Sensors

2015

Highly sensitive and spectrally tunable plasmonic nanostructures are of great demand for applications such as SERS and parallel biosensing. However, there is a lack of such nanostructures for the midvisible spectral regions as most available chemically stable nanostructures offer high sensitivity in the red to far red spectrum. In this work, we report the assembly of highly sensitive nanoparticle structures using a hydroxylamine mediated core–satellite assembly of 20 nm gold nanoparticle satellites onto 60 nm spherical gold cores. The average number of satellites allows tuning the plasmon resonance wavelength from 543 to 575 nm. The core–satellite nanostructures are stable in pH ranges from…

Materials scienceNanostructurebusiness.industryNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCore (optical fiber)WavelengthGeneral EnergyOptoelectronicsPhysical and Theoretical ChemistrySurface plasmon resonance0210 nano-technologybusinessBiosensorRefractive indexPlasmonThe Journal of Physical Chemistry C
researchProduct

Plasmon damping depends on the chemical nature of the nanoparticle interface

2019

Damping of gold nanorod plasmons by surface-adsorbed molecules is best explained by scattering off adsorbate-induced dipoles.

Materials scienceDephasingMaterials ScienceNanoparticlePhysics::Optics02 engineering and technology010402 general chemistry01 natural sciencesCondensed Matter::Materials ScienceSurface plasmon resonancePhysics::Chemical PhysicsSpectroscopyQuantumPlasmonResearch ArticlesMultidisciplinaryScatteringtechnology industry and agricultureSciAdv r-articlesrespiratory system021001 nanoscience & nanotechnology0104 chemical sciencesCondensed Matter::Soft Condensed MatterElectric dipole momentChemical physicsPhysical Sciences0210 nano-technologyResearch ArticleScience Advances
researchProduct

A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy.

2012

Toxicological effects of nanoparticles are associated with their internalization into cells. Hence, there is a strong need for techniques revealing the interaction between particles and cells as well as quantifying the uptake at the same time. For that reason, herein optical dark-field microscopy is used in conjunction with transmission electron microscopy to investigate the uptake of gold nanoparticles into epithelial cells with respect to shape, stabilizing agent, and surface charge. The number of internalized particles is strongly dependent on the stabilizing agent, but not on the particle shape. A test of metabolic activity shows no direct correlation with the number of internalized par…

Materials scienceSurface PropertiesNanoparticleMetal NanoparticlesNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesMadin Darby Canine Kidney CellsBiomaterialsExcipientsDogsMicroscopy Electron TransmissionMicroscopyAnimalsGeneral Materials ScienceSurface chargeParticle SizeEpithelial CellsGeneral Chemistry021001 nanoscience & nanotechnologyDark field microscopy0104 chemical sciencesTransmission electron microscopyColloidal goldBiophysicsParticleParticle sizeGold0210 nano-technologyBiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing.

2009

We experimentally demonstrate a planar metamaterial analogue of electromagnetically induced transparency at optical frequencies. The structure consists of an optically bright dipole antenna and an optically dark quadrupole antenna, which are cut-out structures in a thin gold film. A pronounced coupling-induced reflectance peak is observed within a broad resonance spectrum. A metamaterial sensor based on these coupling effects is experimentally demonstrated and yields a sensitivity of 588 nm/RIU and a figure of merit of 3.8.

Optics and PhotonicsMaterials scienceElectromagnetically induced transparencySurface PropertiesPhysics::OpticsBioengineeringlaw.inventionPlanarOpticsElectromagnetic FieldslawFigure of meritNanotechnologyGeneral Materials ScienceDipole antennaParticle SizePlasmonbusiness.industryMechanical EngineeringMetamaterialResonanceMembranes ArtificialGeneral ChemistryEquipment DesignCondensed Matter PhysicsRefractometryOptoelectronicsGoldAntenna (radio)businessNano letters
researchProduct

Organization into Higher Ordered Ring Structures Counteracts Membrane Binding of IM30, a Protein Associated with Inner Membranes in Chloroplasts and …

2016

The IM30 (inner membrane-associated protein of 30 kDa), also known as the Vipp1 (vesicle-inducing protein in plastids 1), has a crucial role in thylakoid membrane biogenesis and maintenance. Recent results suggest that the protein binds peripherally to membranes containing negatively charged lipids. However, although IM30 monomers interact and assemble into large oligomeric ring complexes with different numbers of monomers, it is still an open question whether ring formation is crucial for membrane interaction. Here we show that binding of IM30 rings to negatively charged phosphatidylglycerol membrane surfaces results in a higher ordered membrane state, both in the head group and in the inn…

0301 basic medicineChloroplastsMembrane lipids02 engineering and technologyBiologyBiochemistryThylakoids03 medical and health scienceschemistry.chemical_compoundMembrane LipidsBacterial ProteinsMembrane BiologyLipid bilayerProtein Structure QuaternaryMolecular BiologyPhosphatidylglycerolSynechocystisMembrane ProteinsBiological membranePhosphatidylglycerolsCell BiologySurface Plasmon Resonance021001 nanoscience & nanotechnologyKinetics030104 developmental biologyMembranechemistryBiochemistryMembrane proteinThylakoidMembrane biogenesisBiophysicsMutant ProteinsProtein Multimerization0210 nano-technologyProtein BindingThe Journal of biological chemistry
researchProduct

Single Out-of-Resonance Dielectric Nanoparticles as Molecular Sensors.

2021

Light scattering from single nanoparticles and nanostructures is a commonly used readout method for nanosensors. Increasing the spectral sensitivity of resonant nanosensors to changes in their local surrounding has been the focus of many studies. Switching from spectral to intensity monitoring allows one to investigate nonresonant or out-of-resonance dielectric nanoparticles. Here, we systematically compared such dielectric silica nanoparticles with plasmonic gold nanorods by deriving analytical expressions and by performing experiments. The experiments show a similar sensitivity for the detection of an adsorbate layer for both particle types, which is in good agreement with theory. The fla…

NanostructureMaterials sciencePhysics::OpticsNanoparticleBioengineering02 engineering and technologyDielectric01 natural sciencesLight scatteringCondensed Matter::Materials ScienceNanosensorInstrumentationPlasmonFluid Flow and Transfer ProcessesNanotubesbusiness.industryProcess Chemistry and Technology010401 analytical chemistrySurface Plasmon Resonance021001 nanoscience & nanotechnology0104 chemical sciencesNanostructuresSpectral sensitivityOptoelectronicsNanoparticlesNanorodGold0210 nano-technologybusinessACS sensors
researchProduct

Evaluation of Nanoparticles as Contrast Agent for Photoacoustic Imaging in Living Cells

2010

Materials sciencemedia_common.quotation_subjectContrast (vision)NanoparticlePhotoacoustic imaging in biomedicinemedia_commonBiomedical engineering
researchProduct

Au@MnO-“Nanoblumen” - Hybrid-Nanokomposite zur selektiven dualen Funktionalisierung und Bildgebung

2010

In j ngster Vergangenheit hat das Interesse f r die Entwicklung von Hybrid-Nanostrukturen, die sich aus verschiedenen Materialien zusammensetzen, in erheblichem Mase zugenommen. Es wurde berichtet, dass die Zusammenf hrung verschiedener Nanomaterialien, die ihrerseits spezifische optische, magnetische oder elektronische Eigenschaften aufweisen, zu Kompositen aus mehreren dieser Komponenten, deren individuelle Eigenschaften ver ndern oder sogar verbessern k nnen. Durch gezielte Optimierung der Struktur und der Grenzfl chenwechselwirkung innerhalb der Nanokomposite k nnte eine breite Basis f r zuk nftige Technologien geschaffen werden, beispielweise f r die synchrone Biomarkierung, Proteintre…

General MedicineAngewandte Chemie
researchProduct

Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity.

2009

We prepared rod-shaped gold nanorattles solid gold nanorods surrounded by a thin gold shell using a galvanic replacement process starting with silver-coated gold nanorods. These structures are very promising candidates for catalytic applications and optimized plasmon sensors. They combine the advantages of rods (low plasmon resonance frequency, large polarizability, small damping) with the high surface area of hollow structures. The plasmon sensitivity to changes in the dielectric environment is up to 50% higher for gold nanorattles compared to gold nanorods with the same resonance frequency and 6x higher than for plasmons in spherical gold nanoparticles. The catalytic activity measured for…

Chemistrytechnology industry and agricultureNanotechnologyGeneral ChemistryDielectricBiochemistryCatalysisRodCatalysisColloid and Surface ChemistryPolarizabilityColloidal goldNanorodsense organsSurface plasmon resonancePlasmonJournal of the American Chemical Society
researchProduct

Chemical Interface Damping Depends on Electrons Reaching the Surface.

2017

Metallic nanoparticles show extraordinary strong light absorption near their plasmon resonance, orders of magnitude larger compared to nonmetallic nanoparticles. This "antenna" effect has recently been exploited to transfer electrons into empty states of an attached material, for example to create electric currents in photovoltaic devices or to induce chemical reactions. It is generally assumed that plasmons decay into hot electrons, which then transfer to the attached material. Ultrafast electron-electron scattering reduces the lifetime of hot electrons drastically in metals and therefore strongly limits the efficiency of plasmon induced hot electron transfer. However, recent work has revi…

Work (thermodynamics)ChemistryOrders of magnitude (temperature)ScatteringSurface plasmonGeneral EngineeringPhysics::OpticsGeneral Physics and Astronomy02 engineering and technologyElectron010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesGeneral Materials ScienceSurface plasmon resonanceElectric currentAtomic physics0210 nano-technologyPlasmonACS nano
researchProduct

Phase separated Cu@Fe3O4 heterodimer nanoparticles from organometallic reactants

2011

Cu@Fe3O4 heteroparticles with distinct morphologies were synthesized from organometallic reactants. The shape of the magnetic domains could be controlled by the solvent and reaction conditions. They display magnetic and optical properties that are useful for simultaneous magnetic and optical detection. After functionalization, the Cu@Fe3O4 heterodimers become water soluble. The morphology, structure, magnetic and optical properties of the as-synthesized heterodimer nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), mossbauer spectroscopy, superconducting quantum interference device (SQUID) magnetometry, and dark field imaging. A special a…

Magnetic domainMagnetometerChemistryNanoparticleGeneral Chemistryequipment and suppliesDark field microscopylaw.inventionSQUIDCrystallographylawTransmission electron microscopyPhase (matter)Mössbauer spectroscopyMaterials Chemistryhuman activitiesJournal of Materials Chemistry
researchProduct

Au@MnO nanoflowers: hybrid nanocomposites for selective dual functionalization and imaging.

2010

Recently, the development of hybrid nanostructures consisting of various materials has attracted considerable interest. The assembly of different nanomaterials with specific optical, magnetic, or electronic properties to multicomponent composites can change and even enhance the properties of the individual constituents. Specifically tuning the structure and interface interactions within the nanocomposites has resulted in novel platforms of materials that may lead the way to various future technologies, such as synchronous biolabeling, protein separation and detection, heterogeneous catalysis, and multimodal imaging in biomedicine. Of the various kinds of nanomaterials, gold nanorods show an…

Materials scienceNanocompositeCatecholsOligonucleotidesNanoparticleMetal NanoparticlesNanotechnologyOxidesGeneral ChemistryNanoflowerMagnetic Resonance ImagingCatalysisNanomaterialschemistry.chemical_compoundParamagnetismMagneticschemistryManganese CompoundsOleylamineCell Line TumorMagnetic nanoparticlesHumansNanorodGoldAngewandte Chemie (International ed. in English)
researchProduct

Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns.

2020

We introduce a new approach to monitor the dynamics and spatial patterns of biological molecular assemblies. Our molecular imaging method relies on plasmonic gold nanoparticles as point-like detectors and requires no labeling of the molecules. We show spatial resolution of up to 5 μm and 30 ms temporal resolution, which is comparable to wide-field fluorescence microscopy, while requiring only readily available gold nanoparticles and a dark-field optical microscope. We demonstrate the method on MinDE proteins attaching to and detaching from lipid membranes of different composition for 24 h. We foresee our new imaging method as an indispensable tool in advanced molecular biology and biophysic…

Materials scienceCardiolipinsLipid BilayersMetal NanoparticlesNanotechnologyCell Cycle Proteins02 engineering and technology010402 general chemistry01 natural sciencesNanosensorFluorescence microscopeEscherichia coliGeneral Materials SciencePhysical and Theoretical ChemistryImage resolutionPlasmonAdenosine TriphosphatasesMicroscopyNanotubesEscherichia coli ProteinsPhosphatidylglycerols021001 nanoscience & nanotechnology0104 chemical sciencesMembraneColloidal goldTemporal resolutionPhosphatidylcholinesGoldMolecular imaging0210 nano-technologyThe journal of physical chemistry letters
researchProduct

Warhead Reactivity Limits the Speed of Inhibition of the Cysteine Protease Rhodesain.

2021

Viral and parasitic pathogens rely critically on cysteine proteases for host invasion, replication, and infectivity. Their inhibition by synthetic inhibitors, such as vinyl sulfone compounds, has emerged as a promising treatment strategy. However, the individual reaction steps of protease inhibition are not fully understood. Using the trypanosomal cysteine protease rhodesain as a medically relevant target, we design photoinduced electron transfer (PET) fluorescence probes to detect kinetics of binding of reversible and irreversible vinyl sulfones directly in solution. Intriguingly, the irreversible inhibitor, apart from its unlimited residence time in the enzyme, reacts 5 times faster than …

0301 basic medicineProteasesmedicine.medical_treatmentKineticsCysteine Proteinase InhibitorsLigands01 natural sciencesBiochemistryFluorescence03 medical and health sciencesReaction rate constantmedicineReactivity (chemistry)chemistry.chemical_classificationProtease010405 organic chemistryGeneral MedicineCysteine protease0104 chemical sciencesCysteine EndopeptidasesKinetics030104 developmental biologyEnzymechemistryBiophysicsMolecular MedicineCysteineACS chemical biology
researchProduct

Plasmonic Nanosensors for Simultaneous Quantification of Multiple Protein–Protein Binding Affinities

2014

Most of current techniques used for the quantification of protein-protein interactions require the analysis of one pair of binding partners at a time. Herein we present a label-free, simple, fast, and cost-effective route to characterize binding affinities between multiple macromolecular partners simultaneously, using optical dark-field spectroscopy and individual protein-functionalized gold nanorods as sensing elements. Our NanoSPR method could easily become a simple and standard tool in biological, biochemical, and medical laboratories.

Models MolecularNanotubesBacteriaChemistryMechanical EngineeringProtein proteinBioengineeringNanotechnologyGeneral ChemistrySurface Plasmon ResonanceCondensed Matter PhysicsCytoskeletal ProteinsBacterial ProteinsNanosensorProtein Interaction MappingGeneral Materials ScienceNanorodGoldPlasmonProtein BindingBinding affinitiesMacromoleculeNano Letters
researchProduct

Gold Nanoparticle Growth Monitored in situ Using a Novel Fast Optical Single-Particle Spectroscopy Method

2007

Size- and shape-dependent optical properties of gold nanorods allow monitoring their growth using a novel fast single-particle spectroscopy (fastSPS) method. FastSPS uses a spatially addressable electronic shutter based on a liquid crystal device to investigate particles randomly deposited on a substrate, orders of magnitude faster than other techniques. We use fastSPS to observe nanoparticle growth in situ on a single-particle level and extract quantitative data on nanoparticle growth.

In situOptics and PhotonicsMaterials scienceMacromolecular SubstancesSurface PropertiesOrders of magnitude (temperature)Molecular ConformationPhysics::OpticsNanoparticleBioengineeringNanotechnologySubstrate (electronics)Liquid crystalMaterials TestingNanotechnologyGeneral Materials ScienceParticle SizeSpectroscopySpectrum AnalysisMechanical EngineeringGeneral ChemistryCondensed Matter PhysicsNanostructuresParticleNanorodGoldCrystallizationNano Letters
researchProduct

Probing the Size Effect of Co2FeGa-SiO2@C Nanocomposite Particles Prepared by a Chemical Approach

2010

In this contribution, we report the chemical synthesis of carbon coated, silica supported Co2FeGa (Co2FeGa-SiO2@C) nanocomposite particles. The particle size of Co2FeGa particles can be tuned by varying the amount of silica supports. The dependences of the crystal structure and magnetic properties on particle size have been investigated by synchrotron radiation based X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, transmission electron microscope (TEM), 57Fe Mossbauer spectroscopy, and superconducting quantum interference device (SQUID). The superparamagnetic critical size of Co2FeGa Heusler nanoparticles is found to be ∼17 nm by correlating the TEM derived par…

Materials scienceNanocompositeGeneral Chemical EngineeringNanoparticleNanotechnologyGeneral ChemistryX-ray absorption fine structureChemical engineeringMössbauer spectroscopyParticle-size distributionMaterials ChemistryParticle sizeSpectroscopySuperparamagnetismChemistry of Materials
researchProduct

Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein

2019

JBC papers in press xx, 16604-16619 (2019). doi:10.1074/jbc.RA119.009845

0301 basic medicineendocrine systemCircadian clockTranscription factor complex610BiochemistryProtein Structure SecondaryProtein–protein interaction03 medical and health sciencesTransactivationMiceProto-Oncogene Proteins c-mybProtein DomainsX-Ray DiffractionCircadian ClocksScattering Small AngleAnimalsddc:610Amino Acid SequenceCREB-binding proteinMolecular BiologyTernary complexTranscription factorBinding Sites030102 biochemistry & molecular biologybiologyChemistryARNTL Transcription FactorsCell BiologyHistone-Lysine N-MethyltransferaseSurface Plasmon ResonanceCREB-Binding ProteinRecombinant ProteinsCell biologyProtein Structure Tertiary030104 developmental biologyStructural biologyProtein Structure and Foldingbiology.proteinMutagenesis Site-DirectedMyeloid-Lymphoid Leukemia ProteinProtein Binding
researchProduct

Potassium Triggers a Reversible Specific Stiffness Transition of Polyethylene Glycol

2017

We use plasmon rulers made from two connected gold nanoparticles to monitor the conformation and stiffness of single PEG molecules and their response to cations. By observing equilibrium fluctuations of the interparticle distance, we obtain the spring constants or stiffness of the connecting single-molecule tether with pico-Newton sensitivity. We observe a transition of the PEG molecules’ extension and stiffness above about 1.2 mM K+ ion concentration which is specific to potassium ions. Molecular dynamics simulations reveal the formation of crown-like structures as the most likely molecular mechanism responsible for this specific effect.

StereochemistryPotassiumchemistry.chemical_elementmacromolecular substances02 engineering and technologyPolyethylene glycol010402 general chemistry01 natural sciencesIonchemistry.chemical_compoundMolecular dynamicsmedicineMoleculePhysical and Theoretical ChemistrySpecific modulustechnology industry and agricultureStiffness021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergychemistryColloidal goldChemical physicsmedicine.symptom0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Narrowing the Plasmonic Sensitivity Distribution by Considering the Individual Size of Gold Nanorods

2018

The plasmonic nanoparticle sensitivity, sensing volume, and the signal-to-noise ratio are strongly dependent on the nanoparticle dimensions. It is difficult to chemically produce or purify nanoparticles with a size variation of less than 10%. This size variation induces a systematic error in sensing experiments that can be reduced when the exact size of each individual nanoparticle is known. In this work, we show how the size of gold nanorods can be estimated directly from the optical spectra of single nanoparticles by using the increase of radiation damping with the nanoparticle size. We verify our approach by comparing these spectrally estimated sizes with the precise sizes of exactly the…

Materials sciencebusiness.industryScanning electron microscopePhysics::Medical PhysicsPhysics::OpticsNanoparticle02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyRadiation dampingColloidal goldOptoelectronicsParticleNanorodSensitivity (control systems)Physical and Theoretical Chemistry0210 nano-technologybusinessPlasmonThe Journal of Physical Chemistry C
researchProduct

Conformational dynamics of a single protein monitored for 24 hours at video rate

2018

We use plasmon rulers to follow the conformational dynamics of a single protein for up to 24 h at a video rate. The plasmon ruler consists of two gold nanospheres connected by a single protein linker. In our experiment, we follow the dynamics of the molecular chaperone heat shock protein 90 (Hsp90), which is known to show “open” and “closed” conformations. Our measurements confirm the previously known conformational dynamics with transition times in the second to minute time scale and reveals new dynamics on the time scale of minutes to hours. Plasmon rulers thus extend the observation bandwidth 3–4 orders of magnitude with respect to single-molecule fluorescence resonance energy transfer a…

0301 basic medicineLetterProtein ConformationMolecular ConformationFOS: Physical sciencesHsp90Bioengineeringsingle molecule02 engineering and technology7. Clean energyQuantitative Biology - Quantitative Methods03 medical and health sciencesMolecular dynamicsFluorescence Resonance Energy TransferNanotechnologyGeneral Materials ScienceHSP90 Heat-Shock ProteinsPhysics - Biological PhysicsQuantitative Methods (q-bio.QM)PlasmonPhysicsVideo rateMechanical EngineeringProtein dynamics92Biomolecules (q-bio.BM)General ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsGold nanospheres030104 developmental biologyFörster resonance energy transferQuantitative Biology - BiomoleculesBiological Physics (physics.bio-ph)Chemical physicsFOS: Biological sciencesprotein dynamicsPlasmon rulernonergodicityGold0210 nano-technologyLinker
researchProduct

Liquid crystalline phases from polymer functionalised semiconducting nanorods

2008

The orientation of semiconducting nanomaterials is a hot topic in optoelectronic applications. Liquid crystallinity offers the potential to orient inorganic anisotropic nanorods, if they can be solubilised sufficiently as realised by polymer functionalisation. In this work we functionalised TiO2, SnO2, ZnO and CdTe nanorods with PMMA, PS and PDEGMEMA (poly(diethylene glycol monomethyl ether) methacrylate) diblock copolymers containing anchor groupsvia grafting-to. The block copolymers were synthesised by RAFT polymerisation (PDI ≈ 1.2) via reactive ester diblock copolymers, which were functionalised later with anchor units polymer-analogously. The surface coverage of the nanorods (determine…

chemistry.chemical_classificationMaterials scienceGeneral ChemistryPolymerMethacrylateOrganic semiconductorCrystallinitychemistryPolymerizationLiquid crystalPolymer chemistryMaterials ChemistryCopolymerNanorodJournal of Materials Chemistry
researchProduct

Implantable Sensors Based on Gold Nanoparticles for Continuous Long-Term Concentration Monitoring in the Body.

2021

Implantable sensors continuously transmit information on vital values or biomarker concentrations in bodily fluids, enabling physicians to survey disease progression and monitor therapeutic success. However, currently available technologies still face difficulties with long-term operation and transferability to different analytes. We show the potential of a generalizable platform based on gold nanoparticles embedded in a hydrogel for long-term implanted biosensing. Using optical imaging and an intelligent sensor/reference-design, we assess the tissue concentration of kanamycin in anesthetized rats by interrogating our implanted sensor noninvasively through the skin. Combining a tissue-integ…

Materials scienceMechanical EngineeringAptamerDisease progressionTransferabilityMetal NanoparticlesBioengineeringNanotechnologyHydrogels02 engineering and technologyGeneral ChemistryBiosensing TechniquesProstheses and Implants021001 nanoscience & nanotechnologyCondensed Matter PhysicsRatsOptical imagingIntelligent sensorColloidal goldStill faceAnimalsGeneral Materials ScienceGold0210 nano-technologyBiosensorNano letters
researchProduct

Quantitative Optical Trapping of Single Gold Nanorods

2008

We report a quantitative analysis of the forces acting on optically trapped single gold nanorods. Individual nanorods with diameters between 8 and 44 nm and aspect ratios between 1.7 and 5.6 were stably trapped in three dimensions using a laser wavelength exceeding their plasmon resonance wavelengths. The interaction between the electromagnetic field of an optical trap and a single gold nanorod correlated with particle polarizability, which is a function of both particle volume and aspect ratio.

Materials sciencegenetic structuresbusiness.industryMechanical EngineeringPhysics::OpticsBioengineeringGeneral ChemistryCondensed Matter PhysicsLaserlaw.inventionWavelengthOpticsOptical tweezersPolarizabilitylawOptoelectronicsParticleGeneral Materials ScienceNanorodsense organsPhysics::Atomic PhysicsSurface plasmon resonancebusinessPlasmonNano Letters
researchProduct

Plasmonic Silver Nanorod Sensitivity: Experiment and Simple Theoretical Treatment

2013

We compare the plasmonic sensitivity of silver and gold nanorods with similar resonance wavelengths by monitoring the plasmon resonance shift of single noble metal nanorods upon changing the environment from water to sucrose solution. We find that silver nanorods have 1.2 to 2 times higher sensitivity than gold in good agreement with simulations based on the boundary-elements-method (BEM). To exclude the effect of particle volume on sensitivity, we test gold rods with increasing particle width at a given resonance wavelength. Using the Drude-model of optical properties of metal together with the quasi-static approximation (QSA) for localized surface plas-mons, we show that the dominant cont…

Materials sciencebusiness.industrySurface plasmonPhysics::OpticsResonanceengineering.materialMolecular physicsOpticsPolarizabilityPhysics::Atomic and Molecular ClustersengineeringNoble metalNanorodSurface plasmon resonancebusinessRefractive indexPlasmonCLEO: 2013
researchProduct

Intensity-Based Single Particle Plasmon Sensing.

2021

Plasmon sensors respond to local changes of their surrounding environment with a shift in their resonance wavelength. This response is usually detected by measuring light scattering spectra to determine the resonance wavelength. However, single wavelength detection has become increasingly important because it simplifies the setup, increases speed, and improves statistics. Therefore, we investigated theoretically how the sensitivity toward such single wavelength scattering intensity changes depend on the material and shape of the plasmonic sensor. Surprisingly, simple equations describe this intensity sensitivity very accurately and allow us to distinguish the various contributions: Rayleigh…

PhysicsScatteringbusiness.industryMechanical EngineeringPhysics::OpticsBioengineering02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsLight scatteringSpectral linesymbols.namesakeWavelengthOpticssymbolsGeneral Materials ScienceRayleigh scattering0210 nano-technologySpectroscopybusinessIntensity (heat transfer)PlasmonNano letters
researchProduct

Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape

2007

We demonstrate the separation of gold and silver nanoparticles according to their size and shape by agarose gel electrophoresis after coating them with a charged polymer layer. The separation is monitored optically using the size- and shape-dependent plasmon resonance of noble metal particles and confirmed by transmission electron microscopy (TEM). Electrophoretic mobilities are quantitatively explained by a model based on the Henry formula, providing a theoretical framework for predicting gel mobilities of polymer coated nanoparticles.

SilverMaterials scienceAnalytical chemistryNanoparticleBioengineeringengineering.materialSilver nanoparticleNanotechnologyComputer SimulationGeneral Materials ScienceParticle SizeSurface plasmon resonancechemistry.chemical_classificationGel electrophoresisMechanical EngineeringGeneral ChemistryPolymerCondensed Matter PhysicsNanostructuresModels ChemicalchemistryAgarose gel electrophoresisengineeringNoble metalComet AssayGoldParticle sizeNano Letters
researchProduct

The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective† †Electronic supplementary information …

2016

We provide a microscopic view of the role of halides in controlling the anisotropic growth of gold nanorods through a combined computational and experimental study.

ChemistryPhysical Chemistry Chemical Physics
researchProduct

Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns

2020

Additional data to support our work on "Plasmonic Nanosensors for the Label-Free Imaging of Dynamic Protein Patterns" published in the Journal of Physical Chemistry Letters (DOI: 10.1021/acs.jpclett.0c01400) Movies: - S1: MinVideo_EColi.mp4 - S2: MinVideo_DOPC_DOPG_CL.mp4 - S3: MinVideo_DOPC_DOPG.mp4 Audio Files: - S1: MinSound_EColi.mp4 - S2: MinSound_DOPC_DOPG_CL.mp4 - S3: MinSound_DOPC_DOPG.mp4

Label-free NanosensorsProtein PatternsMinDE OscillationsMolecular Imaging
researchProduct