0000000001314203
AUTHOR
Bodo Plachter
ID: 37
During the early phase of human cytomegalovirus (HCMV) infection, the Interferon- γ -Inducible factor 16 (IFI16) behaves as a pattern recognition receptor (PRR) sensing viral DNA and triggering antiviral cytokine release. Later on, it restricts virus replication by down-regulating expression of viral genes committed to DNA synthesis including UL54 and UL44. These activities are modulated by viral proteins including pUL83, a tegument protein involved in viral evasion. Here, we demonstrate that pUL83 interacts with IFI16 relieving its inhibitory activity on UL54 gene transcription. We also establish that, starting from 48 h post-infection, IFI16 is stabilized and protected from degradation by…
γδT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia.
Human cytomegalovirus (CMV) infections and relapse of disease remain major problems after allogeneic stem cell transplantation (allo-SCT), in particular in combination with CMV-negative donors or cordblood transplantations. Recent data suggest a paradoxical association between CMV reactivation after allo-SCT and reduced leukemic relapse. Given the potential of Vδ2-negative γδT cells to recognize CMV-infected cells and tumor cells, the molecular biology of distinct γδT-cell subsets expanding during CMV reactivation after allo-SCT was investigated. Vδ2(neg) γδT-cell expansions after CMV reactivation were observed not only with conventional but also cordblood donors. Expanded γδT cells were ca…
Human cytomegalovirus US3 modulates destruction of MHC class I molecules
Human cytomegalovirus (HCMV), a member of the Herpesviridae family, is proficient at establishing lifelong persistence within the host in part due to immune modulating genes that limit immune recognition. HCMV encodes at least five glycoproteins within its unique short (US) genomic region that interfere with MHC class I antigen presentation, thus hindering viral clearance by cytotoxic T lymphocytes (CTL). Specifically, US3 retains class I within the endoplasmic reticulum (ER), while US2 and US11 induce class I heavy chain destruction. A cooperative effect on class I down-regulation during stable expression of HCMV US2 and US3 has been established. To address the impact of US3 on US11-mediat…
Polo-like kinase 1 as a target for human cytomegalovirus pp65 lower matrix protein
ABSTRACT Human cytomegalovirus (HCMV) pp65 protein is the major constituent of viral dense bodies but is dispensable for viral growth in vitro. pp65 copurifies with a S/T kinase activity and has been implicated in phosphorylation of HCMV IE1 immediate-early protein and its escape from major histocompatibility complex 1 presentation. Furthermore, the presence of pp65 correlates with a virion-associated kinase activity. To clarify the role of pp65, yeast two-hybrid system (THS) screening was performed to identify pp65 cellular partners. A total of 18 out of 48 yeast clones harboring cDNAs for putative pp65 binding proteins encoded the Polo-like kinase 1 (Plk1) C-terminal domain. Plk1 behaved …
The Abundant Tegument Protein pUL25 of Human Cytomegalovirus Prevents Proteasomal Degradation of pUL26 and Supports Its Suppression of ISGylation
The tegument of human cytomegalovirus (HCMV) virions contains proteins that interfere with both the intrinsic and the innate immunity. One protein with a thus far unknown function is pUL25. The deletion of pUL25 in a viral mutant (Towne-ΔUL25) had no impact on the release of virions and subviral dense bodies or on virion morphogenesis. Proteomic analyses showed few alterations in the overall protein composition of extracellular particles. A surprising result, however, was the almost complete absence of pUL26 in virions and dense bodies of Towne-ΔUL25 and a reduction of the large isoform pUL26-p27 in mutant virus-infected cells. pUL26 had been shown to inhibit protein conjugation with the in…
Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus.
Human cytomegalovirus, a chief pathogen in immunocompromised people, can persist in a healthy immunocompetent host throughout life without being eliminated by the immune system. Here we show that pp65, the main tegument protein of human cytomegalovirus, inhibited natural killer cell cytotoxicity by an interaction with the activating receptor NKp30. This interaction was direct and specific, leading to dissociation of the linked CD3zeta from NKp30 and, consequently, to reduced killing. Thus, pp65 is a ligand for the NKp30 receptor and demonstrates a unique mechanism by which an intracellular viral protein causes general suppression of natural killer cell cytotoxicity by specific interaction w…
Dense Bodies of a gH/gL/UL128/UL130/UL131 Pentamer-Repaired Towne Strain of Human Cytomegalovirus Induce an Enhanced Neutralizing Antibody Response
The development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody …
Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication.
The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from…
Covid-19 in Deutschland – Erklärung, Prognose und Einfluss gesundheitspolitischer Maßnahmen
Zusammenfassung Die Autoren erklären den bisherigen Verlauf von Covid-19 in Deutschland durch Regressionsanalysen und epidemiologische Modelle. Sie beschreiben und quantifizieren den Effekt der gesundheitspolitischen Maßnahmen (GPM), die bis zum 19. April in Kraft waren. Sie berechnen den erwarteten Verlauf der Covid-19-Epidemie in Deutschland, wenn es diese Maßnahmen nicht gegeben hätte, und zeigen, dass die GPM einen erheblichen Beitrag zur Reduktion der Infektionszahlen geleistet haben. Die seit 20. April gelockerten GPM sind zwischen den Bundesländern relativ heterogen, was ein Glücksfall für die Wissenschaft ist. Mittels einer Analyse dieser Heterogenität kann aufgedeckt werden, welche…
Strong and sustained effector function of memory- versus naïve-derived T cells upon T-cell receptor RNA transfer: Implications for cellular therapy
Current protocols used to select CMV-specific T cells for adoptive immunotherapy focus on virus-specific memory T cells from seropositive donors. However, this strategy is not feasible in patients undergoing allogeneic haematopoietic stem-cell transplantation (HSCT) from CMV-seronegative donors. Here, we redirected T cells of CMV-seronegative donors with a human genetically engineered TCR recognizing an HLA-A*0201-binding peptide epitope of CMVpp65. To facilitate clinical translation of this approach, we used a non-viral expression system based on in vitro transcribed RNA and electroporation. Although memory and naive-derived T-cell subsets were both efficiently transfected by TCR-RNA, memo…
CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity.
Abstract Immunoevasive proteins (“evasins”) of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In con…
Optimized recombinant dense bodies of human cytomegalovirus efficiently prime virus specific lymphocytes and neutralizing antibodies without the addition of adjuvant.
Control of human cytomegalovirus (HCMV) infection correlates with the reconstitution of antiviral T lymphocytes in haematopoietic stem cell transplant recipients. A vaccine to foster this reconstitution and to ameliorate the severe consequences of HCMV reactivation is yet unavailable. This work focused on providing a rationale for the amendment of the yields and the antigenic composition of a vaccine, based on subviral dense bodies (DB) of HCMV. Modified DB were generated that contained the HLA-A2 presented IE1 model peptide TMYGGISLL, integrated at different positions in the major DB protein pp65. Insertion at position W175 of pp65 allowed efficient formation of recDB in the cytoplasm of i…
Therapeutic Potential of Gammadelta T-Cells in Controlling CMV After Allogeneic Stem Cell Transplantation
Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release.
Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery int…
The immunodominant CD8 T cell response to the human cytomegalovirus tegument phosphoprotein pp65(495-503) epitope critically depends on CD4 T cell help in vaccinated HLA-A*0201 transgenic mice.
Abstract Immunodominance hierarchies operating in immune responses to viral Ags limit the diversity of the elicited CD8 T cell responses. We evaluated in I-Ab+/A2-HHD-II and HLA-DR1+/A2-DR1 mice the HLA-A*0201–restricted, multispecific CD8 T cell responses to the human CMV tegument phosphoprotein pp65 (pp65) Ag. Vaccination of mice with pp65-encoding DNA elicited high IFN-γ+ CD8 T cell frequencies to the pp65495–503/(e6) epitope and low responses to the pp65320–328/(e3) and pp65522–530/(e8) epitopes. Abrogation of the e6-specific immunity efficiently enhanced e3- and e8-specific T cell responses by a pp65Δ501–503 DNA vaccine. The immunodominant e6-specific (but not the e3- and e8-specific) …
Production Strategies for Pentamer-Positive Subviral Dense Bodies as a Safe Human Cytomegalovirus Vaccine
Infections with the human cytomegalovirus (HCMV) are associated with severe clinical manifestations in children following prenatal transmission and after viral reactivation in immunosuppressed individuals. The development of an HCMV vaccine has long been requested but there is still no licensed product available. Subviral dense bodies (DB) are immunogenic in pre-clinical models and are thus a promising HCMV vaccine candidate. Recently, we established a virus based on the laboratory strain Towne that synthesizes large numbers of DB containing the pentameric protein complex gH/gL/UL128-131 (Towne-UL130repΔGFP). The work presented here focuses on providing strategies for the production of a sa…
SARS-CoV-2 genome surveillance in Mainz, Germany, reveals convergent origin of the N501Y spike mutation in a hospital setting
AbstractWhile establishing a regional SARS-Cov-2 variant surveillance by genome sequencing, we have identified three infected individuals in a clinical setting (two long-term hospitalized patients and a nurse) that shared the spike N501Y mutation within a genotype background distinct from the current viral variants of concern. We suggest that the adaptive N501Y mutation, known to increase SARS-CoV-2 transmissibility, arose by convergent evolution around December in Mainz, Germany. Hospitalized patients with a compromised immune system may be a potential source of novel viral variants, which calls for monitoring viral evolution by genome sequencing in clinical settings.
Exogenous introduction of an immunodominant peptide from the non-structural IE1 protein of human cytomegalovirus into the MHC class I presentation pathway by recombinant dense bodies
Exogenous introduction of particle-associated proteins of human cytomegalovirus (HCMV) into the major histocompatibility complex (MHC) class I presentation pathway by subviral dense bodies (DB) is an effective way to sensitize cells against CD8 T-cell (CTL) recognition and killing. Consequently, these particles have been proposed as a platform for vaccine development. We have developed a strategy to refine the antigenic composition of DB. For proof of principle, an HCMV recombinant (RV-VM3) was generated that encoded the immunodominant CTL determinant IE1TMY from the IE1 protein in fusion with the major constituent of DB, the tegument protein pp65. To generate RV-VM3, a bacterial artificial…
Should Contact Bans Have Been Lifted More in Germany?
Abstract Many countries consider the lifting of restrictions of social contacts (RSC). We quantify the effects of RSC for Germany. We initially employ a purely statistical approach to predicting prevalence of Covid-19 if RSC had been upheld after 20 April. We employ these findings and feed them into our theoretical model. We find that the peak of the number of sick individuals would have been reached already end of April. The number of sick individuals would have fallen below 1000 at the beginning of July. If restrictions had been lifted completely on April 20, the number of sick should have risen quickly again from around 27 April. A balance between economic and individual costs of RSC and…
Containment of a Large SARS-CoV-2 Outbreak Among Healthcare Workers in a Pediatric Intensive Care Unit.
Objective Healthcare workers (HCWs) are particularly exposed SARS-CoV-2 because they are critical in preventing viral transmission and treating COVID-19 patients. Within HCWs, personnel of intensive care units (ICUs) are at the forefront of treating patients with a severe course of COVID-19 infection and therefore represent an extremely vulnerable group. Thus, our objective is to contribute to establish means of infection control protecting HCWs in the frontline of the current pandemic. Design An outbreak of SARS-CoV-2 was detected and contained in a pediatric ICU (PICU). The first positive case was identified with a point-of-care diagnostic system on site. Real-time PCR-based testing syste…
Modification of the major tegument protein pp65 of human cytomegalovirus inhibits virus growth and leads to the enhancement of a protein complex with pUL69 and pUL97 in infected cells
The tegument protein pp65 of human cytomegalovirus (HCMV) is abundant in lytically infected human foreskin fibroblasts (HFF), as well as in virions and subviral dense bodies (DB). Despite this, we showed previously that pp65 is dispensable for growth in HFF. In the process of refining a DB-based vaccine candidate, different HCMV mutants were generated, expressing a dominant HLA-A2-presented peptide of the IE1 protein fused to pp65. One of the mutant viruses (RV-VM1) surprisingly showed marked impairment in virus release from HFF. We hypothesized that analysis of the phenotypic alterations of RV-VM1 would provide insight into the functions of pp65, poorly defined thus far. RV-VM1 infection r…
Therapeutic Vaccination of Hematopoietic Cell Transplantation Recipients Improves Protective CD8 T-Cell Immunotherapy of Cytomegalovirus Infection
Reactivation of latent cytomegalovirus (CMV) endangers the therapeutic success of hematopoietic cell transplantation (HCT) in tumor patients due to cytopathogenic virus spread that leads to organ manifestations of CMV disease, to interstitial pneumonia in particular. In cases of virus variants that are refractory to standard antiviral pharmacotherapy, immunotherapy by adoptive cell transfer (ACT) of virus-specific CD8+ T cells is the last resort to bridge the “protection gap” between hematoablative conditioning for HCT and endogenous reconstitution of antiviral immunity. We have used the well-established mouse model of CD8+ T-cell immunotherapy by ACT in a setting of experimental HCT and mu…
Age- and Sex-Graded Data Evaluation of Vaccination Reactions after Initial Injection of the BNT162b2 mRNA Vaccine in a Local Vaccination Center in Germany.
A high vaccination rate of older and particularly chronically ill people against coronavirus disease-2019 (COVID-19) is likely one of the most important factors in containing the pandemic. When Germany’s vaccination campaign started on December 2020, vaccination prioritization was initially carried out starting with older population groups. Side effect rates in 1065 individuals who had received the first dose of the messenger ribonucleic acid (mRNA) vaccine BNT162b2 Tozinameran from BioNTech/Pfizer three weeks earlier were examined retrospectively. An age- and gender-graded data analysis showed clear age and gender differences with regard to vaccine-related adverse effects. In 77% of all in…
Suppression of CD8+ T cell recognition in the immediate-early phase of human cytomegalovirus infection.
Human cytomegalovirus (HCMV) interferes with MHC class I-restricted antigen presentation and thereby reduces recognition by CD8+ T-cells. This interference is mediated primarily by endoplasmic reticulum-resident glycoproteins that are encoded in the US2–11 region of the viral genome. Such a suppression of recognition would be of particular importance immediately after infection, because several immunodominant viral antigens are already present in the cell in this phase. However, which of the evasion proteins gpUS2–11 interfere(s) with antigen presentation to CD8+ T-cells at this time of infection is not known. Here we address this question, using recombinant viruses (RV) that express only o…
Should contact bans be lifted in Germany? A quantitative prediction of its effects
Many countries consider the lifting of restrictions of social contacts (RSC). We quantify the effects of RSC for Germany. We initially employ a purely statistical approach to predicting prevalence of COVID19 if RSC were upheld after April 20. We employ these findings and feed them into our theoretical model. We find that the peak of the number of sick individuals would be reached already mid April. The number of sick individuals would fall below 1,000 at the beginning of July. When restrictions are lifted completely on April 20, the number of sick should rise quickly again from around April 27. A balance between economic and individual costs of RSC and public health objectives consists in l…
Cytomegalovirus and varicella–zoster virus vaccines in hematopoietic stem cell transplantation
Impairment of cellular immunity upon hematopoietic stem cell transplantation (HSCT) may lead to serious clinical manifestations induced by human cytomegalovirus (HCMV) and varicella-zoster virus (VZV) infections. Although the clinical presentations, preferential organ involvement and clinical courses are different, infections with both herpesviruses are similar with respect to many pathophysiological aspects and the therapeutic strategies that are employed to combat them. Antiviral drug prophylaxis and therapy are successfully used to limit the risk of reactivated HCMV and VZV infections, but are unable to absolutely prevent episodes of virus disease in long-term follow-up after HSCT. Contr…
Regulatory Interaction between the Cellular Restriction Factor IFI16 and Viral pp65 (pUL83) Modulates Viral Gene Expression and IFI16 Protein Stability.
ABSTRACT A key player in the intrinsic resistance against human cytomegalovirus (HCMV) is the interferon-γ-inducible protein 16 (IFI16), which behaves as a viral DNA sensor in the first hours postinfection and as a repressor of viral gene transcription in the later stages. Previous studies on HCMV replication demonstrated that IFI16 binds to the viral protein kinase pUL97, undergoes phosphorylation, and relocalizes to the cytoplasm of infected cells. In this study, we demonstrate that the tegument protein pp65 (pUL83) recruits IFI16 to the promoter of the UL54 gene and downregulates viral replication, as shown by use of the HCMV mutant v65Stop, which lacks pp65 expression. Interestingly, at…
Cell types infected in human cytomegalovirus placentitis identified by immunohistochemical double staining
Chronic villitis is almost always present in intrauterine infection with human cytomegalovirus (HCMV). The inflammatory response to this virus has been described in detail. However, little is known about the types of placental cells that may be infected by HCMV and six cases of HCMV placentitis were thus investigated to identify the vulnerable cell types. Immunohistochemical double staining analyses were performed using antibodies to HCMV immediate early antigens and to specific cellular marker proteins. Fixed connective tissue cells could be demonstrated to be the predominantly infected cell type in each placental tissue. Endothelial cells and macrophages were also found to be infected in …
An antigen fragment encompassing the AD2 domains of glycoprotein B from two different strains is sufficient for differentiation of primary vs. recurrent human cytomegalovirus infection by ELISA
Primary human cytomegalovirus (HCMV) infection during pregnancy is a frequent cause of fatal damage in populations with low prevalence of HCMV. Differentiation of primary vs. recurrent HCMV infection is an important issue in prenatal counseling. Antibodies specific for viral glycoproteins become detectable only with considerable delay with relation to HCMV infection or IgG seroconversion. Thus, lack of glycoprotein specific (gp-specific) antibodies can serve as a convenient indicator to identify those pregnant women that bear an elevated risk for HCMV transplacental transmission and fetal sequelae. In the opposite case, presence of gp-specific antibodies virtually excludes HCMV primary infe…
Inhibition of CD1 antigen presentation by human cytomegalovirus.
ABSTRACTThe betaherpesvirus human cytomegalovirus (HCMV) encodes several molecules that block antigen presentation by the major histocompatibility complex (MHC) proteins. Humans also possess one other family of antigen-presenting molecules, the CD1 family; however, the effect of HCMV on CD1 expression is unknown. The majority of CD1 molecules are classified on the basis of homology as group 1 CD1 and are present almost exclusively on professional antigen-presenting cells such as dendritic cells, which are a major target for HCMV infection and latency. We have determined that HCMV encodes multiple blocking strategies targeting group 1 CD1 molecules. CD1 transcription is strongly inhibited by…
Proteomic Analyses of Human Cytomegalovirus Strain AD169 Derivatives Reveal Highly Conserved Patterns of Viral and Cellular Proteins in Infected Fibroblasts
Human cytomegalovirus (HCMV) particle morphogenesis in infected cells is an orchestrated process that eventually results in the release of enveloped virions. Proteomic analysis has been employed to reveal the complexity in the protein composition of these extracellular particles. Only limited information is however available regarding the proteome of infected cells preceding the release of HCMV virions. We used quantitative mass spectrometry to address the pattern of viral and cellular proteins in cells, infected with derivatives of the AD169 laboratory strain. Our analyses revealed a remarkable conservation in the patterns of viral and of abundant cellular proteins in cells, infected for 2…
The Tegument Protein pp65 of Human Cytomegalovirus Acts as an Optional Scaffold Protein That Optimizes Protein Uploading into Viral Particles
ABSTRACT The mechanisms that lead to the tegumentation of herpesviral particles are only poorly defined. The phosphoprotein 65 (pp65) is the most abundant constituent of the virion tegument of human cytomegalovirus (HCMV). It is, however, nonessential for virion formation. This seeming discrepancy has not met with a satisfactory explanation regarding the role of pp65 in HCMV particle morphogenesis. Here, we addressed the question of how the overall tegument composition of the HCMV virion depended on pp65 and how the lack of pp65 influenced the packaging of particular tegument proteins. To investigate this, we analyzed the proteomes of pp65-positive (pp65pos) and pp65-negative (pp65neg) viri…
The Complex Regulatory Role of Cytomegalovirus Nuclear Egress Protein pUL50 in the Production of Infectious Virus
The regulation of the nucleocytoplasmic release of herpesviral capsids is defined by the process of nuclear egress. Due to their large size, nuclear capsids are unable to traverse via nuclear pores, so that herpesviruses evolved to develop a vesicular transport pathway mediating their transition through both leaflets of the nuclear membrane. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. Hereby, pUL50 serves as a multi-interacting determinant that recru…
Processing and MHC class I presentation of human cytomegalovirus pp65-derived peptides persist despite gpUS2–11-mediated immune evasion
Immune control of human cytomegalovirus (HCMV) infection can be mediated by CD8+cytolytic T lymphocytes (CTL). Adoptive transfer of antiviral CTL confers protection against HCMV reactivation and disease. The tegument protein pp65 and the immediate-early 1 protein (IE1) are recognized to be major CTL targets, even though during productive infection the viral immunoevasion proteins gpUS2–11 act to suppress major histocompatibility complex (MHC) class I-restricted antigen presentation. Thus it was not clear how infected cells could be labelled with antigenic peptides in the face of immunoevasion. We show here that the immunodominant peptide pp65NLVwas presented by MHC class I in cells infected…
Polyethylenimine is a strong inhibitor of human papillomavirus and cytomegalovirus infection.
ABSTRACT Polyethylenimines are cationic polymers with potential as delivery vectors in gene therapy and with proven antimicrobial activity. However, the antiviral activity of polyethylenimines has not been addressed in detail thus far. We have studied the inhibitory effects of a linear 25-kDa polyethylenimine on infections with human papillomaviruses and human cytomegaloviruses. Preincubation of cells with polyethylenimine blocked primary attachment of both viruses to cells, resulting in a significant reduction of infection. In addition, the dissemination of human cytomegalovirus in culture cells was efficiently reduced by recurrent administration of polyethylenimine. Polyethylenimine conce…
Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice
Reactivation of human cytomegalovirus (HCMV) can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the conte…
Recovery of Varicella-Zoster Virus–Specific T Cell Immunity after T Cell–Depleted Allogeneic Transplantation Requires Symptomatic Virus Reactivation
Abstract Reactivated varicella-zoster virus (VZV) infection causes herpes zoster and commonly occurs after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Because VZV-specific T cell immunity is essential to prevent virus reactivation, we developed an interferon-γ enzyme-linked immunosorbent spot (ELISPOT) assay for the sensitive detection of VZV-reactive T cells at the single-cell level ex vivo. We used this assay to monitor the frequency of VZV-reactive T cells in 17 seropositive patients during the first year after T cell–depleted allo-HSCT. The patients did not receive anti-herpesvirus prophylaxis after stem cell engraftment. Independent of the magnitude of transferred d…
Dynamic regulatory interaction between cytomegalovirus major tegument protein pp65 and protein kinase pUL97 in intracellular compartments, dense bodies and virions
Human cytomegalovirus (HCMV) is a ubiquitous pathogen of considerable clinical importance. Understanding the processes that are important for viral replication is essential for the development of therapeutic strategies against HCMV infection. The HCMV-encoded protein kinase pUL97 is an important multifunctional regulator of viral replication. Several viral and cellular proteins are phosphorylated by pUL97. The phosphoprotein pp65 is one important substrate of pUL97. It is the most abundant tegument protein of HCMV virions, mediating the upload of other virion constituents and contributing to particle integrity. Further to that, it interferes with host innate immune defences, thereby enablin…
Development of novel vaccine strategies against human cytomegalovirus infection based on subviral particles.
Abstract Background: Pre- and perinatal human cytomegalovirus (HCMV) infection remains one of the major causes of mental defects and sensineural hearing loss in children. In addition, it is a prominent infectious complication in immunosuppressed individuals such as AIDS patients or transplant recipients. Therefore, the development of an HCMV vaccine has been given top priority by health care institutions. Study design: Defective subviral particles of HCMV, termed Dense Bodies (DB) contain the dominant target antigens for humoral and cellular immune responses elicited during natural infection. These enveloped particles are released from infected culture cells and can be purified by gradient …
Cyclins B1, T1, and H differ in their molecular mode of interaction with cytomegalovirus protein kinase pUL97
Human cytomegalovirus (HCMV) is a common β-herpesvirus causing life-long latent infections. HCMV replication interferes with cell cycle regulation in host cells because the HCMV-encoded cyclin-dependent kinase (CDK) ortholog pUL97 extensively phosphorylates the checkpoint regulator retinoblastoma protein. pUL97 also interacts with cyclins B1, T1, and H, and recent findings have strongly suggested that these interactions influence pUL97 substrate recognition. Interestingly, here we detected profound mechanistic differences among these pUL97-cyclin interactions. Our study revealed the following. (i) pUL97 interacts with cyclins B1 and H in a manner dependent on pUL97 activity and HCMV-specifi…
Human cytomegalovirus pp71 stimulates major histocompatibility complex class i presentation of IE1-derived peptides at immediate early times of infection.
ABSTRACT Suppression of major histocompatibility complex (MHC) class I-mediated presentation of human cytomegalovirus (HCMV) peptides is an important mechanism to avoid CD8 T lymphocyte recognition and killing of infected cells. Of particular interest is how MHC class I presentation of essential regulatory immediate early (IE) proteins of HCMV can be effectively compromised at times when known viral immunoevasins are not abundantly expressed. The tegument protein pp71 had been suggested to be involved in MHC class I downregulation. Intriguingly, this polypeptide is also critically engaged in the initial derepression of the major IE gene locus, leading to enhanced expression of IE proteins I…
Cytomegalovirus Interleukin-10 Expression in Infected Cells Does Not Impair MHC Class I Restricted Peptide Presentation on Bystanding Antigen-Presenting Cells
Human cytomegalovirus (HCMV) has evolved strategies to counteract its surveillance by the immune system. Mitigation of antiviral immune responses is considered critical for establishment of viral latency and for spread. Recently, a gene encoding an interleukin-10 homologue (cmvIL-10) has been discovered in the HCMV genome. Using recombinant cmvIL-10, several mostly immunosuppressive functions of the molecule have been described. However, the role of cmvIL-10 in the context of viral infection was not addressed. To be able to analyze this issue, we generated cmvIL- 10-negative viral mutants. Using these mutants, we tested whether the expression of cmvIL-10 by infected cells would render bysta…
Pathogenese und Diagnostik der Cytomegalovirus-Infektion
Subviral Dense Bodies of Human Cytomegalovirus Stimulate Maturation and Activation of Monocyte-Derived Immature Dendritic Cells
ABSTRACT Dendritic cells play a central role in the immune control of human cytomegalovirus (HCMV) infection. This work aimed at investigating the impact of noninfectious, subviral dense bodies of HCMV on the maturation and activation of dendritic cells (DC). Treatment of immature DC with dense bodies led to the maturation of these cells and significantly increased their capacity for cytokine release and antigen presentation. Dense body-activated DC may thereby contribute to the development of antiviral immunity.
Presentation of an Immunodominant Immediate-Early CD8+ T Cell Epitope Resists Human Cytomegalovirus Immunoevasion.
Control of human cytomegalovirus (HCMV) depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1), that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region …
Cross-Reactivity of Epstein-Barr Virus-Specific Immunoglobulin M Antibodies with Cytomegalovirus Antigens Containing Glycine Homopolymers
ABSTRACTTimely and reliable detection of acute primary human cytomegalovirus (HCMV) infection is important in prenatal screening programs and for differential diagnosis of infectious mononucleosis-like disease. Enzyme-linked immunosorbent assays (ELISAs) based on HCMV proteins enable the sensitive detection of immunoglobulin M (IgM) antibodies during primary infection. However, concerns have been raised about possible cross-reactivities of the HCMV antigens used for the design of such ELISAs with IgM antibodies induced by Epstein-Barr Virus (EBV). In this study we investigated whether IgM antibodies generated during acute EBV infection reacted with recombinant HCMV antigens. Serum samples f…
Projecting the spread of COVID-19 for Germany
We model the evolution of the number of individuals that are reported to be sick with COVID-19 in Germany. Our theoretical framework builds on a continuous time Markov chain with four states: healthy without infection, sick, healthy after recovery or after infection but without symptoms and dead. Our quantitative solution matches the number of sick individuals up to the most recent observation and ends with a share of sick individuals following from infection rates and sickness probabilities. We employ this framework to study inter alia the expected peak of the number of sick individuals in a scenario without public regulation of social contacts. We also study the effects of public regulati…
The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: implications for virus elimination during latency.
AbstractThe capacity of human cytomegalovirus (HCMV) to establish and maintain a latent infection from which it can later reactivate ensures its widespread distribution in the population, but the mechanisms enabling maintenance of latency in the face of a robust immune system are poorly understood. We examined the role of the HCMV UL111A gene, which encodes homologs of the immunosuppressive cytokine interleukin-10 in the context of latent infection of myeloid progenitor cells. A UL111A deletion virus was able to establish, maintain, and reactivate from experimental latency in a manner comparable with parental virus, but major histocompatibility complex class II levels increased significantl…
Identification of Immunoreactive Viral Proteins
Several diagnostic tools are available for the identification of acute and latent viral infections. Although newly developed nucleic acid amplification methods, such as the polymerase chain reaction (PCR), have proved to be very useful diagnostic procedures, conventional methods, such as cell culture and serology, still play an important role in viral diagnostics. Despite the fact that modern serological assays, such as enzyme-linked immunosorbent assay (ELISA), are inexpensive and easy to perform, there is a strong demand to improve the performance of such systems. Most serological tests are based on poorly characterized antigens produced in infected culture cells. It has been shown, howev…
Identification of a Conserved HLA-A2-Restricted Decapeptide from the IE1 Protein (pUL123) of Human Cytomegalovirus
Abstract Control of human cytomegalovirus (HCMV) infection is predominantly mediated by cytolytic CD8 + T lymphocytes (CTL). Among the roughly 200 HCMV-encoded polypeptides, the tegument protein pp65 (ppUL83) and the nonstructural IE1 protein are considered to be dominant CTL targets. Yet the importance of CTL against IE1 for protective immunity against HCMV reactivation and disease has remained elusive. Analyses have been difficult, as all MHC class I presented peptides of IE1 defined so far are located in parts of the protein that are variable between viral strains. In this study a conserved decameric peptide from IE1 (P6, IE1 354–363 ) that bound to HLA-A2 was identified. Using peptide-p…
Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus.
Marked interstrain differences in the endothelial cell (EC) tropism of human cytomegalovirus (HCMV) isolates have been described. This study aimed to define the step during the replicative cycle of HCMV that determines this phenotype. The infection efficiency of various HCMV strains in EC versus fibroblasts was quantified by immunodetection of immediate early (IE), early and late viral antigens. Adsorption and penetration were analysed by radiolabelled virus binding assays and competitive HCMV-DNA-PCR. The translocation of penetrated viral DNA to the nucleus of infected cells was quantified by competitive HCMV-DNA-PCR in pure nuclear fractions. The intracytoplasmic translocation of capsids …
Immune evasion proteins gpUS2 and gpUS11 of human cytomegalovirus incompletely protect infected cells from CD8 T cell recognition
AbstractHuman cytomegalovirus (HCMV) encodes four glycoproteins, termed gpUS2, gpUS3, gpUS6 and gpUS11 that interfere with MHC class I biosynthesis and antigen presentation. Despite gpUS2–11 expression, however, HCMV infection is efficiently controlled by cytolytic CD8 T lymphocytes (CTL). To address the role of gpUS2 and gpUS11 in antigen presentation during viral infection, HCMV mutants were generated that expressed either gpUS2 or gpUS11 alone without coexpression of the three other proteins. Fibroblasts infected with these viruses showed reduced HLA-A2 and HLA-B7 surface expression. Surprisingly, however, CTL directed against the tegument protein pp65 and the regulatory IE1 protein stil…
Protein delivery by subviral particles of human cytomegalovirus
Direct protein delivery is an emerging technology in vaccine development and gene therapy. We could previously show that subviral dense bodies (DB) of human cytomegalovirus (HCMV), a beta-herpesvirus, transport viral proteins into target cells by membrane fusion. Thus these non-infectious particles provide a candidate delivery system for the prophylactic and therapeutic application of proteins. Here we provide proof of principle that DB can be modified genetically. A 55 kDa fusion protein consisting of the green fluorescent protein and the neomycin phosphotransferase could be packed in and delivered into cells by recombinant DB in a functional fashion. Furthermore, transfer of protein into …
Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release
Viral infections are often accompanied by the induction of autophagy as an intrinsic cellular defense mechanism. Herpesviruses have developed strategies to evade autophagic degradation and to manipulate autophagy of the host cells to their benefit. Here we addressed the role of macroautophagy/autophagy in human cytomegalovirus replication and for particle morphogenesis. We found that proteins of the autophagy machinery localize to cytoplasmic viral assembly compartments and enveloped virions in the cytoplasm. Surprisingly, the autophagy receptor SQSTM1/p62 was also found to colocalize with HCMV capsids in the nucleus of infected cells. This finding indicates that the autophagy machinery int…