0000000001331124

AUTHOR

Giuseppe Compagno

Self-dressing in classical and quantum electrodynamics

A short review is presented of the theory of dressed states in nonrelativistic QED, encompassing fully and partially dressed states in atomic physics. This leads to the concept of the reconstruction of the cloud of virtual photons and of self-dressing. Finally some recent results on the classical counterpart of self-dressing are discussed and a comparison is made with the QED case. Attention is drawn to open problems and future lines of research are briefly outlined.

research product

Obituary in memory of Prof. Franco Persico

research product

Remote entanglement distribution in a quantum network via multinode indistinguishability of photons

Quantum networking relies on entanglement distribution between distant nodes, typically realized by swapping procedures. However, entanglement swapping is a demanding task in practice, mainly because of limited effectiveness of entangled photon sources and Bell-state measurements necessary to realize the process. Here we experimentally activate a remote distribution of two-photon polarization entanglement superseding the need for initial entangled pairs and traditional Bell-state measurements. This alternative procedure is accomplished thanks to the controlled spatial indistinguishability of four independent photons in three separated nodes of the network, which enables us to perform locali…

research product

Proof-of-Principle Direct Measurement of Particle Statistical Phase

The symmetrization postulate in quantum mechanics is formally reflected in the appearance of an exchange phase governing the symmetry of identical-particle global states under particle swapping. Many indirect measurements of this fundamental phase have been reported thus far, but a direct observation has been achieved only recently for photons. Here, we propose a general scheme capable of directly measuring the exchange phase of any type of particle (bosons, fermions, or anyons), exploiting the operational framework of spatially localized operations and classical communication. We experimentally implement it on an all-optical platform, providing a proof of principle for different simulated …

research product

Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity

We introduce the $N$-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-$Q$ cavity. We finally discuss the implementation of the proposed schemes.

research product

Dynamics of Non Classically Reproducible Entanglement

We investigate when the quantum correlations of a bipartite system, under the influence of environments with memory, are not reproducible with certainty by a classical local hidden variable model. To this purpose, we compare the dynamics of a Bell inequality with that of entanglement, as measured by concurrence. We find time regions when Bell inequality is not violated even in correspondence to high values of concurrence (up to $\approx 0.8$). We also suggest that these results may be observed by adopting a modification of a recent experimental optical setup. These findings indicate that even highly entangled systems cannot be exploited with certainty in contexts where the non classical rep…

research product

Loss of coherence and dressing in QED

The dynamics of a free charged particle, initially described by a coherent wave packet, interacting with an environment, i.e. the electromagnetic field characterized by a temperature $T$, is studied. Using the dipole approximation the exact expressions for the evolution of the reduced density matrix both in momentum and configuration space and the vacuum and the thermal contribution to decoherence, are obtained. The time behaviour of the coherence lengths in the two representations are given. Through the analysis of the dynamic of the field structure associated to the particle the vacuum contribution is shown to be linked to the birth of correlations between the single momentum components o…

research product

Generation of Entangled Two-Photon Binomial States in Two Spatially Separate Cavities

We propose a conditional scheme to generate entangled two-photon generalized binomial states inside two separate single-mode high-Q cavities. This scheme requires that the two cavities are initially prepared in entangled one-photon generalized binomial states and exploits the passage of two appropriately prepared two-level atoms one in each cavity. The measurement of the ground state of both atoms is finally required when they exit the cavities. We also give a brief evaluation of the experimental feasibility of the scheme.

research product

Dynamics and extraction of quantum discord in a multipartite open system

We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.

research product

Indistinguishability as a quantum information resource by localized measurements

Quantum networks are typically made of identical subsystems. Exploiting indistinguishability as a direct quantum resource would thus be highly desirable. We show this is achievable by spatially localized measurements, enabling teleportation and entanglement swapping protocols.

research product

Correspondence between generalized binomial field states and coherent atomic states

We show that the N-photon generalized binomial states of electromagnetic field may be put in a bijective mapping with the coherent atomic states of N two-level atoms. We exploit this correspondence to simply obtain both known and new properties of the N-photon generalized binomial states. In particular, an over-complete basis of these binomial states and an orthonormal basis are obtained. Finally, the squeezing properties of generalized binomial state are analyzed.

research product

Unified view of correlations using the square-norm distance

The distance between a quantum state and its closest state not having a certain property has been used to quantify the amount of correlations corresponding to that property. This approach allows a unified view of the various kinds of correlations present in a quantum system. In particular, using relative entropy as a distance measure, total correlations can be meaningfully separated into a quantum part and a classical part thanks to an additive relation involving only the distances between states. Here we investigate a unified view of correlations using as a distance measure the square norm, which has already been used to define the so-called geometric quantum discord. We thus also consider…

research product

Spin-echo entanglement protection from random telegraph noise

We analyze local spin-echo procedures to protect entanglement between two non-interacting qubits, each subject to pure-dephasing random telegraph noise. For superconducting qubits this simple model captures characteristic features of the effect of bistable impurities coupled to the device. An analytic expression for the entanglement dynamics is reported. Peculiar features related to the non-Gaussian nature of the noise already observed in the single qubit dynamics also occur in the entanglement dynamics for proper values of the ratio $g=v/\gamma$, between the qubit-impurity coupling strength and the switching rate of the random telegraph process, and of the separation between the pulses $\D…

research product

Distillation of entanglement between distant systems by repeated measurements on an entanglement mediator

A recently proposed purification method, in which the Zeno-like measurements of a subsystem can bring about a distillation of another subsystem in interaction with the former, is utilized to yield entangled states between distant systems. It is shown that the measurements of a two-level system locally interacting with other two spatially separated not coupled subsystems, can distill entangled states from the latter irrespectively of the initial states of the two subsystems.

research product

Activating remote entanglement in a quantum network by local counting of identical particles

Quantum information and communication processing within quantum networks usually employs identical particles. Despite this, the physical role of quantum statistical nature of particles in large-scale networks remains elusive. Here, we show that just the indistinguishability of fermions makes it possible a new mechanism of entanglement transfer in many-node quantum networks. This process activates remote entanglement among distant sites, which do not share a common past, by only locally counting identical particles and classical communication. These results constitute the key achievement of the present technique and open the way to a more stable multistage transfer of nonlocal quantum correl…

research product

The Power of dressed atoms

research product

Canonical transformation for single-atom resonance fluorescence: The strong-driving-field limit

research product

Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling

In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…

research product

Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons.

Quantitative control of spatial indistinguishability of identical subsystems as a direct quantum resource at distant sites has not yet been experimentally proven. We design a setup capable of tuning remote spatial indistinguishability of two independent photons by individually adjusting their spatial distribution in two distant regions, leading to polarization entanglement from uncorrelated photons. This is achieved by spatially localized operations and classical communication on photons that meet only at the detectors. The amount of entanglement depends uniquely on the degree of spatial indistinguishability, quantified by an entropic measure I , which enables teleportation with fidelities …

research product

An optimized Bell test in a dynamical system

The best realization of a Bell test depends on parameters linked to experimental settings. We report, for a class of two-qubit states, some optimized parameters that are useful to perform an optimized Bell test in a dynamical context. The time evolution of these optimized parameters, that present finite jumps, is investigated for two qubits in separated cavities.

research product

Distortion of the virtual photon cloud due to a static electric field

The structure of the virtual transverse-photon cloud surrounding a ground-state hydrogen atom is considered in the presence of a uniform static electric field, which is capable of polarizing the atom. It is shown that this virtual cloud is distorted with respect to the spherically symmetric shape which is obtained when no static electric field is present. The distortion is carried by new components of the cloud, arising from the contributions of magnetic-dipole and electric-quadrupole virtual photons. These new contributions are shown to possess an overall cylindrical symmetry around the direction of the static field, and to be present also at large distances from the atom. The possibility …

research product

Revival of quantum correlations without system-environment back-action

Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and rev…

research product

Entangling two spatially separate cavities

A scheme for the transfer of entanglement among systems via successive coupling with an intermediate system is described. This method is applied to a simple experimental realizable situation for entangling two spatially separated cavities. In this scheme entanglement, initially stored in two modes of the first cavity, is transferred by an atom interacting successively with the cavities, into entanglement between two non resonant modes of the different cavities.

research product

Non-markovian effects on the dynamics of entanglement.

A procedure that allows to obtain the dynamics of $N$ independent bodies each locally interacting with its own reservoir is presented. It relies on the knowledge of single body dynamics and it is valid for any form of environment noise. It is then applied to the study of non-Markovian dynamics of two independent qubits, each locally interacting with a zero temperature reservoir. It is shown that, although no interaction is present or mediated between the qubits, there is a revival of their entanglement, after a finite period of time of its complete disappearance.

research product

Robust entanglement preparation against noise by controlling spatial indistinguishability

Initialization of composite quantum systems into highly entangled states is usually a must to allow their use for quantum technologies. However, the presence of unavoidable noise in the preparation stage makes the system state mixed, thus limiting the possibility of achieving this goal. Here we address this problem in the context of identical particle systems. We define the entanglement of formation for an arbitrary state of two identical qubits within the operational framework of spatially localized operations and classical communication (sLOCC). We then introduce an entropic measure of spatial indistinguishability under sLOCC as an information resource. We show that spatial indistinguisha…

research product

Edwin Power and the birth of dressed atoms

This paper reviews the main results of a twenty year-long international collaborative effort led by the late E.A. Power on the physics of atoms dressed by the vacuum electromagnetic field. The presentation uses the historical, rather than the logical, order of development. This permits one to shed light on the influence of Power's personality and human qualities on the birth and evolution of the notion of the dressed atom, which is central to modern non-relativistic QED.

research product

Self-dressing and radiation reaction in classical electrodynamics

A canonical approach to self-dressing in classical electrodynamics is presented. A slowly moving, rigid charge distribution is assumed to be completely deprived of the transverse electric E⊥ at an initial time t1' and the development of this component of the field is studied for t > t1' by solving the coupled charge-field Hamilton equations of motion. The theory is specialized to charge distributions of spherical symmetry, and in particular the point-charge, the spherical shell of charge and the spherical volume of charge are considered. As for the dynamics of the charge, the radiation-reaction force during self-dressing is obtained and it is shown to be substantially different at short tim…

research product

Universality of Schmidt decomposition and particle identity

Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, it is held not to exist for identical particles, an open problem forbidding its application to analyze such many-body quantum systems. Here we prove, using a newly developed approach, that the Schmidt decomposition exists for identical particles and is thus universal. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in sep…

research product

Comparison of non-Markovianity criteria in a qubit system under random external fields

We give the map representing the evolution of a qubit under the action of non-dissipative random external fields. From this map we construct the corresponding master equation that in turn allows us to phenomenologically introduce population damping of the qubit system. We then compare, in this system, the time-regions when non-Markovianity is present on the basis of different criteria both for the non-dissipative and dissipative case. We show that the adopted criteria agree both in the non-dissipative case and in the presence of population damping.

research product

Two-qubit quantum correlations versus single-qubit population

It is considered a system made by two noninteracting qubits, initially entangled, embedded in zero-temperature bosonic independent environments. It is shown that different forms of quantum correlations for two qubits can be expressed in terms of excited state population of each single qubit. These relations are explicitly given for both entanglement and Bell function. This permits to evidence regions where there is entanglement without violation of a Bell inequality, then showing that entanglement does not necessarily witness the presence of quantum correlations nonreproducible by a classical local model, as identified by Bell inequality violations. We finally report the explicit time depen…

research product

Single-shot generation and detection of a two-photon generalized binomial state in a cavity

A "quasi-deterministic" scheme to generate a two-photon generalized binomial state in a single-mode high-Q cavity is proposed. We also suggest a single-shot scheme to measure the generated state based on a probe two-level atom that "reads" the cavity field. The possibility of implementing the schemes is discussed.

research product

Wave Packet Decoherence in Momentum Space

We consider the development of decoherence between the momentum components of a wave packet of a non relativistic charged particle interacting linearly with the electromagnetic field in equilibrium at temperature T. By adopting from the beginning the electric dipole approximation the Hamiltonian assumes a form analogous to the one used in the context of quantum computing for an ensemble of two level systems. We obtain the characteristic vacuum and thermal decoherence times and we show that decoherence between different momenta is due to the onset of a correlation between each momentum component and the associated transverse photons that are also responsible of mass renormalization.

research product

Bell's inequality violation for entangled generalized Bernoulli states in two spatially separate cavities

We consider the entanglement of orthogonal generalized Bernoulli states in two separate single-mode high-$Q$ cavities. The expectation values and the correlations of the electric field in the cavities are obtained. We then define, in each cavity, a dichotomic operator expressible in terms of the field states which can be, in principle, experimentally measured by a probe atom that ``reads'' the field. Using the quantum correlations of couples of these operators, we construct a Bell's inequality which is shown to be violated for a wide range of the degree of entanglement and which can be tested in a simple way. Thus the cavity fields directly show quantum non-local properties. A scheme is als…

research product

Cloud of virtual photons in the ground state of the hydrogen atom.

A spinless, nonrelativistic hydrogen atom coupled to an electromagnetic field is considered. The interaction is taken in the minimal-coupling form, and the ground state of the coupled system is obtained by straightforward perturbation theory. The form of the cloud of virtual photons surrounding the atom is studied through the quantum-mechanical average on this state of an appropriately defined coarse-grained energy-density (CGED) operator W(r\ensuremath{\rightarrow}). The properties of W(r\ensuremath{\rightarrow}) are studied in order to show that this operator can give a reliable description of the shape of the virtual photon cloud. The quantum-mechanical average of W(r\ensuremath{\rightar…

research product

Causality and Localization Operators

The evolution of the expectation values of one and two points scalar field operators and of positive localization operators, generated by an istantaneous point source is non local. Non locality is attributed either to zero point vacuum fluctuations, or to non local operations or to the microcausality principle being no satisfied.

research product

$N$ identical particles and one particle to entangle them all

In quantum information W states are a central class of multipartite entangled states because of their robustness against noise and use in many quantum processes. Their generation however remains a demanding task whose difficulty increases with the number of particles. We report a simple scalable conceptual scheme where a single particle in an ancilla mode works as entanglement catalyst of W state for other $N$ separated identical particles. A crucial novel aspect of the scheme, which exploits basically spatial indistinguishability, is its universality, being applicable without essential changes to both bosons and fermions. Our proposal represents a new paradigm within experimental preparati…

research product

Connection among entanglement, mixedness, and nonlocality in a dynamical context

We investigate the dynamical relations among entanglement, mixedness and nonlocality, quantifed by concurrence C, purity P and maximum of Bell function B, respectively, in a system of two qubits in a common structured reservoir. To this aim we introduce the C-P-B parameter space and analyze the time evolution of the point representative of the system state in such a space. The dynamical interplay among entanglement, mixedness and nonlocality strongly depends on the initial state of the system. For a two-excitation Bell state the representative point draws a multi-branch curve in the C-P-B space and we show that a closed relation among these quantifers does not hold. By extending the known r…

research product

Spatial decoherence in QED

We consider the dynamics of a charged free particle, initially described by a coherent wave packet, interacting with an electromagnetic field characterized by the temperature T, considered as the environment. We have used dipole approximation neglecting the potential vector quadratic term in the minimal coupling Hamiltonian. This leads to the loss of coherence in the momentum representation, described by the decay of the off diagonal elements of the particle reduced density matrix, while the populations remain constant. Here we extend the analysis to the coordinate representation. We compute the particle reduced density matrix in this basis, analyzing in particular the mixing of various ef…

research product

Quantum Computation with Generalized Binomial States in Cavity Quantum Electrodynamics

We study universal quantum computation in the cavity quantum electrodynamics (CQED) framework exploiting two orthonormal two-photon generalized binomial states as qubit and dispersive interactions of Rydberg atoms with high-$Q$ cavities. We show that an arbitrary qubit state may be generated and that controlled-NOT and 1-qubit rotation gates can be realized via standard atom-cavity interactions.

research product

Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise

We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.

research product

Localization in a QFT Model

Localization properties of a QFT model, consisting of a quantum scalar field interacting linearly with a classical localized source, are investigated using various approaches present in the literature. We evaluate, to any order of the field–matter coupling constant, the time evolution of average values of one-point localization observables and scalar product between the quantum field state of the evolving system and localized states. We show that the appearance of nonlocality can be connected to nonlocal properties of localized states used or to the fact that localization operators do not satisfy the microcausality principle and therefore does not imply the violation of causality.

research product

Dynamics of quantum correlations in two-qubit systems within non-Markovian environments

Knowledge of the dynamical behavior of correlations with no classical counterpart, like entanglement, nonlocal correlations and quantum discord, in open quantum systems is of primary interest because of the possibility to exploit these correlations for quantum information tasks. Here we review some of the most recent results on the dynamics of correlations in bipartite systems embedded in non-Markovian environments that, with their memory effects, influence in a relevant way the system dynamics and appear to be more fundamental than the Markovian ones for practical purposes. Firstly, we review the phenomenon of entanglement revivals in a two-qubit system for both independent environments an…

research product

Initial correlations effects on decoherence at zero temperature

We consider a free charged particle interacting with an electromagnetic bath at zero temperature. The dipole approximation is used to treat the bath wavelengths larger than the width of the particle wave packet. The effect of these wavelengths is described then by a linear Hamiltonian whose form is analogous to phenomenological Hamiltonians previously adopted to describe the free particle-bath interaction. We study how the time dependence of decoherence evolution is related with initial particle-bath correlations. We show that decoherence is related to the time dependent dressing of the particle. Moreover because decoherence induced by the T=0 bath is very rapid, we make some considerations…

research product

Structure of the electromagnetic field around the free electron in nonrelativistic QED.

We study, within the framework of nonrelativistic QED, the structure of the electromagnetic field in the neighborhood of a free spinless electron dressed by the interaction with the vacuum field. We introduce a suitable formalism that correlates electron position and field operators. The quantum average value obtained by applying correlated field operator to the dressed state gives the average value of the corresponding field quantity as a function of distance from the electron. The results obtained separately for the electric- and magnetic-field energy density around the particle display contributions that have quantum origin and that cancel in summing of the two, yielding the total energy…

research product

Entanglement dynamics in superconducting qubits affected by local bistable impurities

We study the entanglement dynamics for two independent superconducting qubits each affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing. The relevant parameter is the ratio $g$ between qubit-RTN coupling strength and RTN switching rate, that captures the physics of the crossover between Markovian and non-Markovian features of the dynamics. For identical qubit-RTN subsystems, a threshold value $g_\mathrm{th}$ of the crossover parameter separates exponential decay and onset of revivals; different qualitative behaviors also show up by changing the initial conditions of the RTN. We moreover show that, for different qubit-RTN subsystems, when both qubits are …

research product

Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint

Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For the latter, a unique contribution exists linked to indistinguishability that cannot occur for nonidentical particles. Here, we experimentally demonstrate this additional contribution to quantum coherence with an optical setup, showing that its amount directly depends on the degree of indistinguishability, and exploiting it in a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating fermionic particles with p…

research product

Efficient generation of N-photon binomial states and their use in quantum gates in cavity QED

A high-fidelity scheme to generate N-photon generalized binomial states (NGBSs) in a single-mode high-Q cavity is proposed. A method to construct superpositions of exact orthogonal NGBSs is also provided. It is then shown that these states, for any value of N, may be used for a realization of a controlled-NOT gate, based on the dispersive interaction between the cavity field and a control two-level atom. The possible implementation of the schemes is finally discussed.

research product

Robust entanglement preparation through spatial indistinguishability quantified by entropic measure

Initialization of composite quantum systems into highly entangled states is important to enable their use for quantum technologies. However, unavoidable noise in the preparation stage makes the system state mixed, hindering the achievement of this goal. We address this problem in the context of identical particle systems adopting the operational framework of spatially localized operations and classical communication (sLOCC). After a brief description of the formalism, we define the entanglement of formation for an arbitrary state (pure or mixed) of two identical qubits, valid for both bosons and fermions. We then introduce an entropic measure of spatial indistinguishability as an informatio…

research product

Extraction of a squeezed state in a field mode via repeated measurements on an auxiliary quantum particle

The dynamics of a system, consisting of a particle initially in a Gaussian state interacting with a field mode, under the action of repeated measurements performed on the particle, is examined. It is shown that regardless of its initial state the field is distilled into a squeezed state. The dependence on the physical parameters of the dynamics is investigated.

research product

Distillation by repeated measurements: Continuous spectrum case

Repeated measurements on a part of a bipartite system strongly affect the other part not measured, whose dynamics is regulated by an effective contracted evolution operator. When the spectrum of this operator is discrete, the latter system is driven into a pure state irrespective of the initial state, provided the spectrum satisfies certain conditions. We here show that even in the case of continuous spectrum an effective distillation can occur under rather general conditions. We confirm it by applying our formalism to a simple model.

research product

Dealing with indistinguishable particles and their entanglement

Here we discuss a particle-based approach to deal with systems of many identical quantum objects (particles) which never employs labels to mark them. We show that it avoids both methodological problems and drawbacks in the study of quantum correlations associated to the standard quantum mechanical treatment of identical particles. The core of this approach is represented by the multiparticle probability amplitude whose structure in terms of single-particle amplitudes we here derive by first principles. To characterise entanglement among the identical particles, this new method utilises the same notions, such as partial trace, adopted for nonidentical ones. We highlight the connection betwee…

research product

Nonlocal properties of entangled two-photon generalized binomial states in two separate cavities

We consider entangled two-photon generalized binomial states of the electromagnetic field in two separate cavities. The nonlocal properties of this entangled field state are analyzed by studying the electric field correlations between the two cavities. A Bell's inequality violation is obtained using an appropriate dichotomic cavity operator, that is in principle measurable.

research product

Generation schemes of entangled one and two-photon binomial states in two separate cavities

research product

Dynamics of geometric and entropic quantifiers of correlations in open quantum systems

We extend the Hilbert-Schmidt (square norm) distance, previously used to define the geometric quantum discord, to define also geometric quantifiers of total and classical correlations. We then compare the dynamics of geometric and entropic quantifiers of the different kinds of correlations in a non-Markovian open two-qubit system under local dephasing. We find that qualitative differences occur only for quantum discords. This is taken to imply that geometric and entropic discords are not, in general, equivalent in describing the dynamics of quantum correlations. We then show that also geometric and entropic quantifiers of total correlations present qualitative disagreements in the state spa…

research product

Nonlocal quantum-field correlations and detection processes in quantum-field theory

Quantum detection processes in quantum field theory (QFT) must play a key role in the description of quantum-field correlations, such as the appearance of entanglement, and of causal effects. We consider the detection in the case of a simple QFT model with a suitable interaction to exact treatment, consisting of a quantum scalar field coupled linearly to a classical scalar source. We then evaluate the response function to the field quanta of two-level pointlike quantum model detectors, and analyze the effects of the approximation adopted in standard detection theory. We show that the use of the RWA, which characterizes the Glauber detection model, leads in the detector response to nonlocal …

research product

Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing.

Typical elements of quantum networks are made by identical systems, which are the basic particles constituting a resource for quantum information processing. Whether the indistinguishability due to particle identity is an exploitable quantum resource remains an open issue. Here we study independently prepared identical particles showing that, when they spatially overlap, an operational entanglement exists which can be made manifest by means of separated localized measurements. We prove this entanglement is physical in that it can be directly exploited to activate quantum information protocols, such as teleportation. These results establish that particle indistinguishability is a utilizable …

research product

Non-locality and causal evolution in QFT

Non locality appearing in QFT during the free evolution of localized field states and in the Feynman propagator function is analyzed. It is shown to be connected to the initial non local properties present at the level of quantum states and then it does not imply a violation of Einstein's causality. Then it is investigated a simple QFT system with interaction, consisting of a classical source coupled linearly to a quantum scalar field, that is exactly solved. The expression for the time evolution of the state describing the system is given. The expectation value of any arbitrary ``good'' local observable, expressed as a function of the field operator and its space and time derivatives, is o…

research product

Hierarchy and dynamics of trace distance correlations

We define and analyze measures of correlations for bipartite states based on trace distance. For Bell diagonal states of two qubits, in addition to the known expression for quantum correlations using this metric, we provide analytic expressions for the classical and total correlations. The ensuing hierarchy of correlations based on trace distance is compared to the ones based on relative entropy and Hilbert-Schmidt norm. Although some common features can be found, the trace distance measure is shown to differentiate from the others in that the closest uncorrelated state to a given bipartite quantum state is not given by the product of the marginals, and further, the total correlations are s…

research product

Effects of Indistinguishability in a System of Three Identical Qubits

Quantum correlations of identical particles are important for quantum-enhanced technologies. The recently introduced non-standard approach to treat identical particles [G. Compagno et al., Phil. Trans. R. Soc. A 376, 20170317 (2018)] is here exploited to show the effect of particle indistinguishability on the characterization of entanglement of three identical qubits. We show that, by spatially localized measurements in separated regions, three independently-prepared separated qubits in a pure elementary state behave as distinguishable ones, as expected. On the other hand, delocalized measurements make it emerge a measurement-induced entanglement. We then find that three independently-prepa…

research product

Dynamics of correlations due to a phase noisy laser

We analyze the dynamics of various kinds of correlations present between two initially entangled independent qubits, each one subject to a local phase noisy laser. We give explicit expressions of the relevant quantifiers of correlations for the general case of single-qubit unital evolution, which includes the case of a phase noisy laser. Although the light field is treated as classical, we find that this model can describe revivals of quantum correlations. Two different dynamical regimes of decay of correlations occur, a Markovian one (exponential decay) and a non-Markovian one (oscillatory decay with revivals) depending on the values of system parameters. In particular, in the non-Markovia…

research product

Entanglement dynamics of two independent cavity-embedded quantum dots

We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally …

research product

Quantum entanglement of identical particles by standard information-theoretic notions

Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. We introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory …

research product

Two-qubit entanglement dynamics for two different non-Markovian environments

We study the time behavior of entanglement between two noninteracting qubits each immersed in its own environment for two different non-Markovian conditions: a high-$Q$ cavity slightly off-resonant with the qubit transition frequency and a nonperfect photonic band-gap, respectively. We find that revivals and retardation of entanglement loss may occur by adjusting the cavity-qubit detuning, in the first case, while partial entanglement trapping occurs in non-ideal photonic-band gap.

research product

Entanglement dynamics of two independent qubits in environments with and without memory

A procedure to obtain the dynamics of $N$ independent qudits ($d$-level systems) each interacting with its own reservoir, for any arbitrary initial state, is presented. This is then applied to study the dynamics of the entanglement of two qubits, initially in an extended Werner-like mixed state with each of them in a zero temperature non-Markovian environment. The dependence of the entanglement dynamics on the purity and degree of entanglement of the initial states and on the amount of non-Markovianity is also given. This extends the previous work about non-Markovian effects on the two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo \textit{et al.}, Phys. Rev. Lett. \te…

research product

Entanglement trapping in structured environments

The entanglement dynamics of two independent qubits each embedded in a structured environment under conditions of inhibition of spontaneous emission is analyzed, showing entanglement trapping. We demonstrate that entanglement trapping can be used efficiently to prevent entanglement sudden death. For the case of realistic photonic band-gap materials, we show that high values of entanglement trapping can be achieved. This result is of both fundamental and applicative interest since it provides a physical situation where the entanglement can be preserved and manipulated, e.g. by Stark-shifting the qubit transition frequency outside and inside the gap.

research product

Distributed correlations and information flows within a hybrid multipartite quantum-classical system

Understanding the non-Markovian mechanisms underlying the revivals of quantum entanglement in the presence of classical environments is central in the theory of quantum information. Tentative interpretations have been given by either the role of the environment as a control device or the concept of hidden entanglement. We address this issue from an information-theoretic point of view. To this aim, we consider a paradigmatic tripartite system, already realized in the laboratory, made of two independent qubits and a random classical field locally interacting with one qubit alone. We study the dynamical relationship between the two-qubit entanglement and the genuine tripartite correlations of …

research product

Indistinguishability-enabled coherence for quantum metrology

Quantum coherence plays a fundamental and operational role in different areas of physics. A resource theory has been developed to characterize the coherence of distinguishable particles systems. Here we show that indistinguishability of identical particles is a source of coherence, even when they are independently prepared. In particular, under spatially local operations, states that are incoherent for distinguishable particles, can be coherent for indistinguishable particles under the same procedure. We present a phase discrimination protocol, in which we demonstrate the operational advantage of using two indistinguishable particles rather than distinguishable ones. The coherence due to th…

research product

Reply to “Comment on ‘Limits of the measurability of the local quantum electromagnetic field amplitude’ ”

research product

Entanglement robustness via spatial deformation of identical particle wave functions

We address the problem of entanglement protection against surrounding noise by a procedure suitably exploiting spatial indistinguishability of identical subsystems. To this purpose, we take two initially separated and entangled identical qubits interacting with two independent noisy environments. Three typical models of environments are considered: amplitude damping channel, phase damping channel and depolarizing channel. After the interaction, we deform the wave functions of the two qubits to make them spatially overlap before performing spatially localized operations and classical communication (sLOCC) and eventually computing the entanglement of the resulting state. This way, we show tha…

research product

Overview on the phenomenon of two-qubit entanglement revivals in classical environments

The occurrence of revivals of quantum entanglement between separated open quantum systems has been shown not only for dissipative non-Markovian quantum environments but also for classical environments in absence of back-action. While the phenomenon is well understood in the first case, the possibility to retrieve entanglement when the composite quantum system is subject to local classical noise has generated a debate regarding its interpretation. This dynamical property of open quantum systems assumes an important role in quantum information theory from both fundamental and practical perspectives. Hybrid quantum-classical systems are in fact promising candidates to investigate the interplay…

research product

Radiative emission due to atomic self-dressing in QED

We study the radiative emission due to the self-dressing of a two-level atom, initially in its bare ground state, interacting with the zero-point electromagnetic field. Evolution in time leads to the formation of a dressed ground state of lower energy. This energy difference between bare and dressed ground state is taken into account by the emission of real photons. In order to describe this aspect of the self-dressing process we study the transition probability amplitude from the initial bare state to an asymptotic state consisting of the atom in its dressed ground state plus some real photons. Adopting nonperturbative techniques based on the resolvent method we find that the bare-dressed …

research product

Long-Time Preservation of Nonlocal Entanglement

We investigate how nonlocal entanglement, as identified by violations of a Bell inequality, may be preserved during the evolution. Our system consists of two qubits each embedded in a zero-temperature bosonic reservoir evolving independently and initially in an entangled mixed state. We show that the violation of the Bell inequality can be related to the single-qubit population of excited state in such a way that, by appropriately choosing structured environments that give rise to sufficiently high values of population trapping, long-time preservation of nonlocal entanglement can be correspondingly achieved.

research product

Experimental recovery of quantum correlations in absence of system-environment back-action

Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative rele…

research product

Dynamics of spatially indistinguishable particles and quantum entanglement protection

We provide a general framework which allows one to obtain the dynamics of $N$ noninteracting spatially indistinguishable particles locally coupled to separated environments. The approach is universal, being valid for both bosons and fermions and for any type of system-environment interaction. It is then applied to study the dynamics of two identical qubits under paradigmatic Markovian noises, such as phase damping, depolarizing and amplitude damping. We find that spatial indistinguishability of identical qubits is a controllable intrinsic property of the system which protects quantum entanglement against detrimental noise.

research product

DECAY OF NONLOCALITY DUE TO ADIABATIC AND QUANTUM NOISE IN THE SOLID STATE

We study the decay of quantum nonlocality, identified by the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality, for two noninteracting Josephson qubits subject to independent baths with broadband spectra typical of solid state nanodevices. The bath noise can be separated in an adiabatic (low-frequency) and in a quantum (high-frequency) part. We point out the qualitative different effects on quantum nonlocal correlations induced by adiabatic and quantum noise. A quantitaive analysis is performed for typical noise figures in Josephson systems. Finally we compare, for this system, the dynamics of nonlocal correlations and of entanglement.

research product

Entanglement between a pair of two separate two level atoms induced by zero point field fluctuations

research product