0000000000013041

AUTHOR

Said Agouram

The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene

Cerium oxides have been prepared by nanocasting of a mesoporous siliceous KIT-6. Through this synthesis method a partially ordered mesoporous structure, as demonstrated by several characterization techniques (N2 adsorption, XRD and HRTEM) has been obtained. Accordingly, very high surface areas have been achieved (up to 163 m2/g), despite using high calcination temperatures (550 °C). We have demonstrated that the aging temperature of the siliceous template is of outstanding importance, as this parameter is directly responsible for both the pore size and the surface area of the catalysts. In addition, whilst a low preparation temperature (40 °C) makes the further removal of the silica templat…

research product

Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method

9 figures, 3 tables.-- Supplemantary information available

research product

Preferred Growth Direction by PbS Nanoplatelets Preserves Perovskite Infrared Light Harvesting for Stable, Reproducible, and Efficient Solar Cells

Formamidinium-based perovskite solar cells (PSCs) present the maximum theoretical efficiency of the lead perovskite family. However, formamidinium perovskite exhibits significant degradation in air. The surface chemistry of PbS has been used to improve the formamidinium black phase stability. Here, the use of PbS nanoplatelets with (100) preferential crystal orientation is reported, to potentiate the repercussion on the crystal growth of perovskite grains and to improve the stability of the material and consequently of the solar cells. As a result, a vertical growth of perovskite grains, a stable current density of 23 mA cm(-2), and a stable incident photon to current efficiency in the infr…

research product

Crystal growth of ZnO micro and nanostructures by PVT on c-sapphire and amorphous quartz substrates

Abstract ZnO micro and nanostructures in the form of tripods, grains, arrows and wires have been grown at temperatures as low as 500–300  ∘ C by a vapour transport method without catalysis and using a well selected value of the carrier gas flow. A transition state between grains and nanowires is reported being characterized by arrow-like structures which are constituted by a pyramidal head and a tail that is growing from the basal plane of the head. In order to understand the effect of growth conditions on the morphology of micro and nanostructures, an analysis of temperature and species concentration conditions has been carried out. In addition two different kinds of substrates have been u…

research product

Prussian blue@MoS2 layer composites as highly efficient cathodes for sodium- and potassium-ion batteries

Prussian blue (PB) represents a simple, economical, and eco‐friendly system as cathode material for sodium‐ion batteries (SIBs). However, structural problems usually worsen its experimental performance thus motivating the search for alternative synthetic strategies and the formation of composites that compensate these deficiencies. Herein, a straightforward approach for the preparation of PB/MoS2‐based nanocomposites is presented. MoS2 provides a 2D active support for the homogeneous nucleation of porous PB nanocrystals, which feature superior surface areas than those obtained by other methodologies, giving rise to a compact PB shell covering the full flake. The nanocomposite exhibits an ex…

research product

Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs)

12 Figures, 2 Tables.-- Datos suplementarios disponibles en línea en la página web del editor.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

research product

Au-ZnO Nanocomposite Films for Plasmonic Photocatalysis

Nanocomposites based on plasmonic nanoparticles and metal-oxide semiconductors are emerging as promising materials for conversion of solar energy into chemical energy. In this work, a Au–ZnO nanocomposite film with notably enhanced photocatalytic activity is successfully prepared by a single-step process. Both ZnO and Au nanoparticles are synthesized in situ during baking of the film spin-coated from a solution of Zn(CH3COO)2 and HAuCl4. Furthermore, it is shown that this precursor solution can be formulated as a nanoink for the generation of micropatterns by microplotter printing, opening the way for the miniaturization of devices with enhanced properties for photocatalysis, optoelectronic…

research product

Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route

Ordered Co3O4 with high surface area (until 173 m2/g) has been successfully obtained through a nanocasting route using mesoporous KIT-6 silica as a hard template and tested in the deep oxidation of a series of representative volatile organic compounds (VOCs): propane as a model of short chain alkane and toluene as a model of monoaromatic hydrocarbon. It has been demonstrated that the catalytic activity for VOC deep oxidation is very elevated and its catalytic stability at moderate temperatures very good. However, the role of the ordered structure in the catalytic performance does not seem to be beneficial. The enhanced catalytic activity has been explained in terms of both the high surface …

research product

Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion

Gold supported on nickel cerium oxide catalysts (Ni–Ce–O) have been studied for the total oxidation of propane, as a model for hydrocarbon volatile organic compound emission control. High surface area Ni–Ce–O catalysts were synthesized using a very simple evaporation method, where cerium and nickel salts were evaporated in the presence of a mixture of methanol and oxalic acid. Gold catalysts were prepared following a deposition–precipitation method. A very efficient catalyst for the oxidation of propane, in terms of both activity and selectivity, was obtained. This high activity has been related to the high surface area of the catalyst (and therefore to the presence of more active sites ava…

research product

VIS-UV ZnCdO/ZnO multiple quantum well nanowires and the quantification of Cd diffusion.

International audience; We report on the growth and microstructure analysis of high Cd content ZnCdO/ZnO multiple quantum wells (MQW) within a nanowire. Heterostructures consisting of ten wells with widths from 0.7 to 10nm are demonstrated, and show photoluminescence emissions ranging from 3.03 to 1.97eV. The wells with thicknesses⩽2nm have high radiative efficiencies compared to the thickest ones, consistent with the presence of quantum confinement. However, a nanometric analysis of the Cd profile along the heterostructures shows the presence of Cd diffusion from the ZnCdO well to the ZnO barrier. This phenomenon modifies the band structure and the optical properties of the heterostructure, an…

research product

The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane

Mixed copper manganese oxide catalysts (Hopcalite) have been studied for the total oxidation of propane, as a model for hydrocarbon volatile organic compound emission control. Catalysts were prepared using coprecipitation with and without gold. Calcination temperature influenced the catalyst activity and those prepared at 300 °C were the most active. Characterization showed that the catalysts had a nanowire-type morphology, and for those containing gold it was present as metallic particles occluded within the nanowires. The incorporation of gold into the catalyst enhanced the activity for propane conversion, but the presence of gold did not noticeably enhance the light-off activity. Althou…

research product

The role of surface chemical states on the photocatalytic behavior of all-inorganic mixed halide perovskite nanocrystals

research product

Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene

Mesoporous CeO2 modified by the addition of copper has shown high efficiency for the total oxidation of naphthalene. High activity and 100% selectivity to carbon dioxide throughout the whole range of temperatures studied were achieved for copper loadings of 3.6% and lower. The catalytic behaviour has been related to the concentration of surface oxygen defects. A clear correlation between the concentration of surface oxygen defects (determined by XPS and DRIFTS) and the catalytic performance has been identified. Catalytic activity increased as copper was incorporated into the ceria up to 3.6%. In this range of copper content the copper was incorporated into the cubic fluorite lattice of CeO2…

research product

Laser ablation of a silicon target in chloroform: formation of multilayer graphite nanostructures

With the use of high-resolution transmission electron microscopy, selected area electron diffraction and x-ray photoelectron spectroscopy methods of analysis we show that the laser ablation of a Si target in chloroform (CHCl3) by nanosecond UV pulses (40 ns, 355 nm) results in the formation of about 50–80 nm core–shell nanoparticles with a polycrystalline core composed of small (5–10 nm) Si and SiC mono-crystallites, the core being coated by several layers of carbon with the structure of graphite (the shell). In addition, free carbon multilayer nanostructures (carbon nano-onions) are also found in the suspension. On the basis of a comparison with similar laser ablation experiments implement…

research product

Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane

[EN] A Nb-containing siliceous porous clay heterostructure (PCH) with Nb contents from 0 to 30 wt %) was prepared from a bentonite and used as support in the preparation of supported NiO catalysts with NiO loading from 15 to 80 wt %. Supports and NiO-containing catalysts were characterised by several physicochemical techniques and tested in the oxidative dehydrogenation (ODH) of ethane. The characterisation studies on Nb-containing supports showed the presence of well-anchored Nb(5+)species without the formation of Nb(2)O(5)crystals. High dispersion of nickel oxide with low crystallinity was observed for the Nb-containing PCH supports. In addition, when NiO is supported on these Nb-containi…

research product

Structural characterization of one-dimensional ZnO-based nanostructures grown by MOCVD

Various one-dimensional (1D) ZnO-based nanostructures, including ZnO nano-wires (NWs) grown using vapour-liquid-solid (VLS) process, ZnO/ZnSe core/shell, nitrogen-doped ZnO and ZnMgO NWs were grown by metalorganic chemical vapour deposition (MOCVD). Transmission electron microscopy (TEM) analysis is presented. For all the samples, a high crystalline quality is observed. Some features are emphasized such as the gold contamination of ZnO wires grown under the metal droplets in the VLS process. It is concluded that MOCVD is a suitable technique for the realization of original ZnO nanodevices.

research product

Ceramic/metal nanocomposites by lyophilization: Spark plasma sintering and hardness

The present study is focused on the procedure of spray-drying and lyophilization techniques for the preparation of ceramic/metal nanocomposites. The results of the study at all stages are compared with those corresponding to powders conventionally dried by heating in furnace. Starting from aqueous solutions of metal salts and ceramic powders, the procedure follows with spray-drying, lyophilization, calcination of the resulting powders and subsequent Spark Plasma Sintering (SPS). X-ray diffraction analysis of the powders at different stages of the processing routes was used for phase indexing; further characterization was performed by Transmission Electron Microscopy and Energy Dispersive X-…

research product

Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen

AuPd nanoparticles (<3 nm) have been encapsulated on the pores of a nanostructured CMK-3 carbon prepared by a nanocasting procedure. This material has been shown to be an excellent catalyst for the direct synthesis of hydrogen peroxide from molecular hydrogen and oxygen.

research product

Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles

To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material. This makes it possible to prepare homogeneous thin films of these nanoparticles by spin-coating on a quartz substrate. Both the colloidal solution and the thin film emit l…

research product

Total oxidation of naphthalene using bulk manganese oxide catalysts

Several Mn2O3 catalysts have been synthesized using different preparation methods and tested for the total oxidation of naphthalene, a model polycyclic aromatic compound. The catalysts have been characterized by several physico-chemical techniques such as XRD, TPR, XPS, EDX and TEM. The surface area of the catalyst seems to be of paramount importance, since the mass normalized activity of catalysts increases as the surface area of the Mn2O3 catalysts increases. Consequently, a high surface area ordered mesoporous Mn2O3 catalyst, obtained through a nanocasting route using mesoporous KIT-6 silica as a hard template, was the most efficient catalyst for the deep oxidation of naphthalene. In add…

research product

High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants

The doping of mesoporous ceria with copper significantly enhances activity for naphthalene total oxidation, the enhanced performance is controlled by the increased concentration of surface oxygen defects.

research product

The effects of thermal treatment on structural, morphological and optical properties of electrochemically deposited Bi2S3 thin films

Abstract Thin films of bismuth sulfide (Bi 2 S 3 ) have been electrochemically deposited on indium–doped tin oxide substrates from aqueous solutions of Bi(NO 3 ) 3 , ethylene diamine tetraacetic acid (EDTA) and Na 2 S 2 O 3 . The structural properties of the films were characterized using X–ray diffraction and high–resolution transmission electron microscopy analyses. The film crystallizes in an orthorhombic structure of Bi 2 S 3 along with metallic bismuth. Thermal annealing of the prepared film in sulfur atmosphere improves its crystallinity and cohesion. The band gap values of the deposited film before and after annealing at 400 °C were found to be 1.28 and 1.33 eV, respectively.

research product

Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: Influence of the support

13 figures, 3 tables.-- Supplementary information available.-- © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

research product

Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.

Thiol-passivated gold nanoparticles (AuNPs) of a relatively small size, either decorated with chromophoric groups, such as a phthalimide (Au@PH) and benzophenone (Au@BP), or capped with octadecanethiol (Au@ODCN) have been synthesized and characterized by NMR and UV-vis spectroscopy as well as transmission electron microscopy (TEM). These NPs were irradiated in chloroform at different UV-wavelengths using either a nanosecond laser (266 and 355 nm, ca. 12 mJ/pulse, 10 ns pulse) or conventional lamps (300 nmλ400 nm and ca. 240 nmλ280 nm) and the new AuNPs were characterized by X-ray and UV-vis spectroscopy, as well as by TEM. Laser irradiation at 355 nm led to NP aggregation and precipitation,…

research product

The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation

12 figures, 2 tables

research product

Study of the Partial Substitution of Pb by Sn in Cs-Pb-Sn-Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties.

Halide perovskites are revolutionizing the photovoltaic and optoelectronic fields with outstanding performances obtained in a remarkably short time. However, two major challenges remain: the long-term stability and the Pb content, due to its toxicity. Despite the great effort carried out to substitute the Pb by a less hazardous element, lead-free perovskite still remains more unstable than lead-containing perovskites and presents lower performance as well. In this work, we demonstrate the colloidal preparation of Cs–Pb–Sn–Br nanoparticles (NPs) where Sn is incorporated up to 18.8%. Significantly, we have demonstrated that the partial substitution of Pb by Sn does not produce a deleterious e…

research product

One-step growth of isolated CdO nanoparticles on r-sapphire substrates by using the spray pyrolysis methodology

In spite of the remarkable properties of CdO, there are only a few reports on CdO nanostructures, especially on isolated NPs. In this paper, we analyze the growth of isolated CdO nanoparticles (NPs) on 0.5° miscut r-sapphire substrates by using the spray pyrolysis methodology in its classical configuration. A systematic study has been performed to optimize the growth parameters such as precursor concentration, growth time, spray rate and growth temperature to obtain CdO NPs (size: 6–10 nm to 35–100 nm depending on the growth conditions). The study shows the control over the size and density of the CdO nanoparticles that can be achieved by adjusting the growth parameters. The CdO nanoparticl…

research product

Au-PVA Nanocomposite Negative Resist for One-Step Three-Dimensional e-Beam Lithography

Au nanoparticles are synthesized in situ upon the electron beam exposure of a poly(vinyl alcohol) (PVA) thin film containing Au(III). The e-beam-irradiated areas are insoluble in water (negative-tone resist), and Au-PVA nanocomposite patterns with a variable profile along the structure can be thus generated (3D lithography) in a single step. A local characterization of the generated patterns is performed by high-resolution transmission electron microscopy and UV-vis localized surface plasmon resonance microspectroscopy. This characterization confirms the presence of crystalline nanoparticles and aggregates.

research product

Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route.

Gold deposited on a cobalt oxide with high surface area (138 m2 g−1), obtained through a nanocasting route using a siliceous KIT-6 mesoporous material as a hard template, has demonstrated high activity for the total oxidation of propane and toluene, and ambient temperature CO oxidation. The addition of gold promotes the activity when compared to a gold-free Co3O4 catalyst prepared using the same nanocasting technique. The enhanced catalytic activity when gold is present has been explained for the deep oxidation of propane and toluene in terms of the improved reducibility of cobalt oxide when gold is added, rather than to the intrinsic activity of metallic gold particles. The improved behavi…

research product

High Optical Performance of Cyan‐Emissive CsPbBr3 Perovskite Quantum Dots Embedded in Molecular Organogels

This is the pre-peer reviewed version of the following article: High Optical Performance of Cyan‐Emissive CsPbBr3 Perovskite Quantum Dots Embedded in Molecular Organogels, which has been published in final form at https://doi.org/10.1002/adom.202001786. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions." Perovskite quantum dots (PQDs) have fascinating optoelectronic properties, such as high photoluminescence quantum yield (PLQY) for a broad range of materials, and the possibility to obtain different bandgaps with the same material or halide combinations. Nevertheless, blue‐emissive materials generally present…

research product

Corundum type indium oxide nanostructures: ambient pressure synthesis from InOOH, and optical and photocatalytic properties

A simple, cost effective, surfactant free and scalable synthesis of rhombohedral In2O3 (rh-In2O3) nanostructures with controllable size and shape has been developed under ambient pressure by thermal dehydration of InOOH nanostructures. The InOOH nanostructures have been prepared by solvothermal reaction between indium nitrate hydrate with tetramethylammonium hydroxide (TMAH) in anhydrous methanol at 140 °C without any surfactant. The structure and morphology of the nanostructures have been characterized in detail by X-ray powder diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The studies reveal that highly crystalline nanostructures of In…

research product

Optical properties of ZnMgO films grown by spray pyrolysis and their application to UV photodetection

This work presents a comprehensive optical characterization of Zn1−xMgxO thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The lin…

research product

Study of the MOCVD growth of ZnO on GaAs substrates: Influence of the molar ratio of the precursors on structural and morphological properties

Abstract ZnO thin films were grown by metal-organic chemical vapour deposition (MOCVD) on GaAs(100) and GaAs(111)A substrates. The growth experiments were performed at temperatures ranging from 290 to 500 ∘C and atmospheric pressure. Diethylzinc (DEZn) and tertiary butanol (tBuOH) were used as Zn and O precursors, respectively. The crystallinity of the grown films was studied by X-Ray Diffraction (XRD) and the thickness and morphology were investigated by Scanning Electron Microscopy (SEM). The influence of substrate orientation and molar ratio of the precursors on the crystalline orientation and morphology of the ZnO grown films was analysed.

research product

Self-assembled metal-oxide nanoparticles on GaAs: infrared absorption enabled by localized surface plasmons

Abstract Metal-oxides hold promise as superior plasmonic materials in the mid-infrared compared to metals, although their integration over established material technologies still remains challenging. We demonstrate localized surface plasmons in self-assembled, hemispherical CdZnO metal-oxide nanoparticles on GaAs, as a route to enhance the absorption in mid-infrared photodetectors. In this system, two localized surface plasmon modes are identified at 5.3 and 2.7 μm, which yield an enhancement of the light intensity in the underlying GaAs. In the case of the long-wavelength mode the enhancement is as large as 100 near the interface, and persists at depths down to 50 nm. We show numerically t…

research product

Ceramic/metal nanocomposites by lyophilization: Processing and HRTEM study

5 páginas, 8 figuras, 1 tabla.-- El pdf del artículo es el manuscrito de autor.

research product

Synthesis and characterization of ZnO nano and micro structures grown by low temperature spray pyrolysis and vapor transport.

In this work we present a systematic study of ZnO micro and nanostructures grown by spray pyrolysis (SP) and by physical vapour transport (PVT) on glass and c-sapphire substrates at low temperatures. Optimised growth conditions have allowed to obtain homogeneous ZnO nanolayers composed of quasi-spherical nanoparticles in the range 2 to 8 nm by spray pyrolysis, while by PVT the selected growth conditions allow to produce a wide variety of morphologies (tripods, grains, arrows and wires) of nano and microsize dimension. Grazing incidence X-ray diffraction, field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HRTEM), selected area electron dif…

research product

Enabling long-term stable FAPb1-xSrxI3 quantum dots with high optical performance: the effect of Sr2+ doping

research product

Growth and characterization of self-assembled Cd1−xMgxO (0 ≤ x ≤ 1) nanoparticles on r-sapphire substrates

In this work, the growth of isolated Cd1−xMgxO nanoparticles on r-sapphire substrates is extended to the entire range of Mg content (0 ≤ x ≤ 1) using the spray pyrolysis method. The sizes of the Cd1−xMgxO nanoparticles were in the ranges 4–6 nm and 15–30 nm (with a nanoparticle density of 1010 cm−2). The composition of the nanoparticles was determined using transmission electron microscopy energy dispersive X-ray analysis (TEM-EDAX), while the compound formation was confirmed using X-ray photoelectron spectroscopy. A systematic decrease in the a lattice parameter of Cd1−xMgxO on increasing the Mg content substantiated the successful incorporation of Mg2+ ions into the cubic CdO lattice. Sin…

research product

Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method

Undoped and Eu3+-doped cubic yttria (Y2O3) nanophosphors of good crystallinity, with selective particle sizes ranging between 6 and 37 nm and showing narrow size distributions, have been synthesized by a complex-based precursor solution method. The systematic size tuning has been evidenced by transmission electron microscopy, X-ray diffraction, and Raman scattering measurements. Furthermore, size-modulated properties of Eu3+ ions have been correlated with the local structure of Eu3+ ion in different sized Y2O3:Eu3+ nanophosphors by means of steady-state and time-resolved site-selective laser spectroscopies. Time-resolved site-selective excitation measurements performed in the 7F0 ¿ 5D0 peak…

research product

Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics

The specific effects of spark plasma sintering (SPS) on the creep behavior, microstructure and mechanical properties of alumina monolithic ceramic were investigated. SPS introduces strains that concentrate at grain boundaries and inhibit crack growth, resulting in an improvement in the flexural strength and fracture toughness. However, creep blocks grain boundary movements and decreases the reliability of the material. These strains can be removed by a post-sintering thermal treatment, which plays an important role in the distribution of dislocations.

research product

Induced crystallographic changes in Cd1−xZnxO films grown on r-sapphire by AP-MOCVD: the effects of the Zn content when x ≤ 0.5

High-resolution X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques were used to investigate, as a function of the nominal Zn content in the range of 0–50%, the out-of-plane and in-plane crystallographic characteristics of Cd1−xZnxO films grown on r-plane sapphire substrates via atmospheric pressure metal–organic chemical vapor deposition. The study is conducted to search for knowledge relating to the structural details during the transition process from a rock-salt to a wurtzite structure as the Zn content increases in this CdO–ZnO system. It has been found that it is possible to obtain films exhibiting a single (001) cubic orientation with good …

research product

Self-assembled MgxZn1−xO quantum dots (0 ≤ x ≤ 1) on different substrates using spray pyrolysis methodology

By using the spray pyrolysis methodology in its classical configuration we have grown self-assembled MgxZn1−xO quantum dots (size [similar]4–6 nm) in the overall range of compositions 0 ≤ x ≤ 1 on c-sapphire, Si (100) and quartz substrates. Composition of the quantum dots was determined by means of transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy. Selected area electron diffraction reveals the growth of single phase hexagonal MgxZn1−xO quantum dots with composition 0 ≤ x ≤ 0.32 by using a nominal concentration of Mg in the range 0 to 45%. Onset of Mg concentration about 50% (nominal) forces the hexagonal lattice to undergo a p…

research product

Mixed oxide Ti Si O prepared by non-hydrolytic Xerogel method as a diluter of nickel oxide for the oxidative dehydrogenation of ethane

Abstract Mixed Ti Si O materials prepared by non-hydrolytic xerogel method have been employed as diluters for nickel oxide and used in the catalytic oxidative dehydrogenation of ethane. These catalysts have been characterized by several physicochemical techniques such as N2 adsorption, XRD, TPR, TEM, HR-TEM, and XPS. Supported nickel oxide catalysts have been reported to be efficient but only if the nature and the amount of support are controlled. In the present article it is shown that highly loaded (80 wt% NiO) nickel catalysts are more efficient when diluted on mixed Ti Si O materials with appropriate Ti/Si ratios than on pure TiO2 and SiO2 diluters. The catalytic results have been expla…

research product

The Luminescence of CH3NH3PbBr3Perovskite Nanoparticles Crests the Summit and Their Photostability under Wet Conditions is Enhanced

CH3 NH3 PbBr3 perovskite nanoparticles (PAD ) are prepared with a photoluminescence quantum yield of ≈100% in air atmosphere by using the quasi-spherical shaped 2-adamantylammonium bromide (ADBr) as the only capping ligand. The photostability under wet conditions of this kind of nanoparticles is enhanced by using cucurbit[7]uril-adamantylammonium (AD@CB) host-guest complexes as the capping ligand.

research product

Synthesis of cubic ZnS microspheres exhibiting broad visible emission for bioimaging applications

Biocompatible ZnS microspheres with an average diameter of 3.85 µm were grown by solvo-hydrothermal (S-H) method using water-acetonitrile-ethylenediamine (EDA) solution combination. ZnS microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform (FT)-Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR) techniques. The broad photoluminescence (PL) emissions from 380-580 nm that were seen from the ZnS microspheres attributed to the increase in carrier concentration, as understood from the observed intense Raman band at 257 cm(-1). Cytotoxicity and haemocompatibility…

research product

Structural and morphological characterization of the Cd-rich region in Cd1-xZnxO thin films grown by atmospheric pressure metal organic chemical vapour deposition

Abstract We have analysed the growth, morphological and structural characterization of Cd1-xZnxO thin films grown on r-sapphire substrates by atmospheric pressure metal organic chemical vapour deposition, mainly focusing on the Cd-rich rock-salt phase for its promising optical and technological applications. The evolution of the surface morphology and crystalline properties as a function of Zn content has been studied by means of high resolution x-ray diffraction and electron microscopy techniques. Monocrystalline (002) single-phase cubic films were obtained with Zn contents up to 10.4%, and with a low density of dislocations as a consequence of the optimized crystal growth process. Particu…

research product

Optical properties and microstructure of 2.02-3.30 eV ZnCdO nanowires: effect of thermal annealing

International audience; ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.

research product

Low temperature total oxidation of toluene by bimetallic Au–Ir catalysts

9 Figuras.- 3 Tablas.- Información suplementaria disponible en la página web del editor

research product

Engineering Sr-doping for enabling long-term stable FAPb1xSrxI3 quantum dots with 100% photoluminescence quantum yield

The Pb substitution in quantum dots (PQDs) with lesser toxic metals has been widely searched to be environmentally friendly, and be of comparable or improved performance compared to the lead-perovskite. However, the chemical nature of the lead substitute influences the incorporation mechanism into PQDs, which has not been explored in depth. In this work, we analyzed Sr-doping-induced changes in FAPbI3 perovskites by studying the optical, structural properties and chemical environment of FAPb1&minus;xSrxI3 PQDs. The substitution of Pb by 7 at% Sr allows us to achieve FAPb1&minus;xSrxI3 PQDs with 100% PLQY, high stability for 8 months under a relative humidity of 40&ndash;50%, and T80 = 6.5 m…

research product

Self-Assembled Zinc Oxide Quantum Dots Using Spray Pyrolysis Methodology

Self-assembled ZnO quantum dots (QDs) have been obtained on different substrates by using the atmospheric spray pyrolysis methodology under well-defined growth conditions. The evolution of size and...

research product

Enhanced H2O2 production over Au-rich bimetallic Au-Pd nanoparticles on ordered mesoporous carbons

1 figures, 3 tables.-- © 2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

research product

Assessment of the out-plane and in-plane ordering of high quality ZnO nanorods by X-ray multiple diffraction

Abstract ZnO nanorods grown on buffered and non buffered sapphire substrates have been investigated by X-ray multiple diffraction using Renninger scans of the ZnO(0001) and ZnO(0003) forbidden reflections. In this technique the diffracted X-ray beam is simultaneously diffracted by several sets of planes, providing information on the broadening in different directions, as well as from nanorods, and from the layer on which they grow. The intensities and angular widths of peaks obtained by azimuthal and omega scans have been analyzed, making a direct comparison with conventional measurements of the full width at half-maximum of symmetric and asymmetric reflections. The analysis leads to establ…

research product

Spray pyrolytic deposition of ZnO thin layers composed of low dimensional nanostructures

Abstract ZnO nanolayers composed of fine nanostructures have been successively grown by spray pyrolytic deposition at 300  ∘ C over amorphous glass substrates. As deposited samples were analysed by scanning electron microscopy (SEM), showing a granular morphology with grain size in the limit of the microscope resolution. CL measurement shows a broad near band edge (3.4 eV) emission of ZnO in the UV region and the defect level emissions in the green region of the spectrum. The use of intermittent spray pyrolytic deposition is shown as an alternative to increase the homogeneity of the samples when temperatures near to the precursor pyrolytic decomposition is selected, long depositions times a…

research product

Oxidative dehydrogenation of ethane: A study over the structure and robustness of Ni–W–O catalysts

[EN] The robustness of one selected Ni-W-O catalyst has been studied in the oxidative dehydrogenation of ethane. This catalyst initially deactivates for the first 10 h online decreasing 15% of its catalytic activity compared to its initial stable catalytic activity. However from 10 to 60 h online the catalytic activity keeps almost stable. On the other hand, it has been shown that the Ni-W-O catalyst cannot tolerate an oxygen-free atmosphere (C-2 and He) as nickel oxide is transformed into metallic nickel. Methane and hydrogen as well as abundant coke were formed on the surface of the catalyst in these O-free conditions. However a re-calcination in air leads to the removal of coke, the cata…

research product

Cobalt ferrite nanoparticles under high pressure

We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe2O4) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B0 = 204 GPa) is consid…

research product

"Partial oxidation of methane and methanol on FeOx-, MoOx- and FeMoOx -SiO2 catalysts prepared by sol-gel method: a comparative study"

[EN] FeOx-, MoOx and FeMoOx-SiO2 materials prepared by a sol-gel procedure have been evaluated as catalysts for the partial oxidation of methane and methanol. The effect of decreasing the pH of the synthesis gel on the chemical nature of FeOx and MoOx species has been investigated. Characterization results show that low pH improves the dispersion of metal oxide species present in SiO2 matrix. For FeOx/SiO2 materials, the presence of dispersed FeOx species (rather than bulk Fe2O3) improves the selectivity to formaldehyde in the partial oxidation of methane and methanol. For FeMoOx/SiOx catalysts, dispersed species favor the selectivity to formaldehyde only for methane oxidation. In contrast,…

research product

Tungsten-titanium mixed oxide bronzes: Synthesis, characterization and catalytic behavior in methanol transformation

[EN] Tungsten oxide bronze-based materials show extremely adaptive structural and compositional features that make them suitable for functional properties modulation. Herein we report the preparation of a series of Ti-containing tungsten oxide catalysts presenting a hexagonal tungsten bronze-type structure. The insertion of Ti4+ within the structure (likely in the octahedral framework of the hexagonal tungsten bronze) leads to an increase in the number of strong acid sites, and the disappearance of W5+ surface species found in the undoped tungsten oxide. With the aim of studying the acid-redox properties of the titled catalysts, the catalytic transformation of methanol has been carried out …

research product

Morphology and Band Structure of Orthorhombic PbS Nanoplatelets: An Indirect Band Gap Material

PbS quantum dots and nanoplatelets (NPLs) are of enormous interest in the development of optoelectronic devices. However, some important aspects of their nature remain unclear. Recent studies have revealed that colloidal PbS NPLs may depart from the rock-salt crystal structure of bulk and form an orthorhombic (Pnma) modification instead. To gain insight into the implications of such a change over the optoelectronic properties, we have synthesized orthorhombic PbS NPLs and determined the lattice parameters by means of selected area electron diffraction measurements. We have then calculated the associated band structure using density functional theory with Perdew–Burke–Ernzerhof functional fo…

research product

Controlling the Phase Segregation in Mixed Halide Perovskites through Nanocrystal Size

Mixed halide perovskites are one of the promising candidates in developing solar cells and light-emitting diodes (LEDs), among other applications, because of their tunable optical properties. Nonetheless, photoinduced phase segregation, by formation of segregated Br-rich and I-rich domains, limits the overall applicability. We tracked the phase segregation with increasing crystalline size of CsPbBr3–xIx and their photoluminescence under continuous-wave laser irradiation (405 nm, 10 mW cm–2) and observed the occurrence of the phase segregation from the threshold size of 46 ± 7 nm. These results have an outstanding agreement with the diffusion length (45.8 nm) calculated also experimentally f…

research product

Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane

[EN] Porous clay heterostructures (PCH) have shown to be highly efficient supports for nickel oxide in the oxidative dehydrogenation of ethane. Thus NiO supported on silica with a PCH structure shows productivity towards ethylene three times higher than if NiO is supported on a conventional silica. This enhanced productivity is due to the increase in the catalytic activity and especially to the drastic increase in the selectivity to ethylene. Additionally, PCH silica partially modified with titanium in the columns (PCH-Ti) have also been synthesized and used as supports for NiO. An enhanced activity and selectivity to ethylene was found over NiO supported over PCH-Ti compared to the corresp…

research product

Unravelling the Photocatalytic Behavior of All-Inorganic Mixed Halide Perovskites: The Role of Surface Chemical States

Within the most mesmerizing materials in the world of optoelectronics, mixed halide perovskites (MHPs) have been distinguished because of the tunability of their optoelectronic properties, balancing both the light-harvesting efficiency and the charge extraction into highly efficient solar devices. This feature has drawn the attention of analogous hot topics as photocatalysis for carrying out more efficiently the degradation of organic compounds. However, the photo-oxidation ability of perovskite depends not only on its excellent light-harvesting properties but also on the surface chemical environment provided during its synthesis. Accordingly, we studied the role of surface chemical states …

research product

Spark plasma sintering of zirconia/nano-nickel composites

Open Access

research product

ZnO films grown by MOCVD on GaAs substrates: Effects of a Zn buffer deposition on interface, structural and morphological properties

Abstract Integration of ZnO with the well-developed GaAs technology presents several aspects that need to be previously analyzed and considered. The large lattice mismatch between ZnO and GaAs and its different crystallographic structure lead to many structural defects. In addition, their potential chemical reactivity is another source of complexity and an academic challenge. Recently some interesting contributions on this subject have been carried out by Liu and co-workers. As an additional step to the knowledge of the ZnO/GaAs heterostructure, we have deepened on the study of the morphology and orientation of ZnO thin films grown by atmospheric pressure metal-organic chemical vapour depos…

research product

Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation

Differently prepared vanadium promoted Pt/alumina catalysts have been prepared, characterized and tested for propane total oxidation. V-promoted Pt/Al2O3 catalysts have shown remarkably higher catalytic activity than V-free Pt/Al2O3 catalyst. Among V-promoted Pt catalysts that prepared by coimpregnation gave the highest alkane conversions in the whole range of reaction temperatures studied. Factors such as Pt particle size or the oxidation state of platinum do not seem to be the responsible for the enhanced performance. Modification of the redox properties of the catalyst (i.e. high reducibility of vanadium species) likely provoked by the close contact between platinum particles and vanadiu…

research product

NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane

[EN] Catalysts consisting of NiO diluted in high surface area TiO2 can be as efficient in the oxidative dehydrogenation of ethane as the most selective NiO-promoted catalysts reported previously in the literature. By selecting the titania matrix and the NiO loading, yields to ethylene over 40% have been obtained. In the present article, three different titanium oxides (TiO2) have been employed as supports or diluters of nickel oxide and have been tested in the oxidative dehydrogenation of ethane to ethylene. All TiO2 used present anatase as the main crystalline phase and different surface areas of 11,55 and 85 m(2) g(-1). It has been observed that by selecting an appropriate nickel loading …

research product