0000000000248206
AUTHOR
Thorsten Hoffmann
Estimating the contribution of organic acids to northern hemispheric continental organic aerosol
Using chemical ionization mass spectrometry to detect particle-phase acids (acid-CIMS) and aerosol mass spectrometry (AMS) measurements from Colorado, USA, and two studies in Hyytiala, Finland, we quantify the fraction of organic aerosol (OA) mass that is composed of molecules with acid functional groups (facid). Molecules containing one or more carboxylic acid functionality contributed approximately 29% (45-51%) of the OA mass in Colorado (Finland). Organic acid mass concentration correlates well with AMS m/z 44 (primarily CO2+), a commonly used marker for highly oxidized aerosol. Using the average empirical relationship between AMS m/z 44 and organic acids in these three studies, together…
Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates†
During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed.
Application of time-of-flight aerosol mass spectrometry for the online measurement of gaseous molecular iodine.
Here we present a new application of a time-of-flight aerosol mass spectrometer (TOF-AMS) for the measurement of atmospheric trace gases in real-time. Usually, TOF-AMS instruments are not sensitive to gas-phase species due to the aerodynamic particle focusing inlet system which reduces the gas phase species by a factor of about 10(7) relative to the particle phase. This efficient removal of the gas phase and the resulting high relative enrichment of particles is one reason for the very high sensitivity of TOF-AMS instruments for particle phase compounds (detection limits in the sub-μg/m(3)-range for online measurements with 1 min integration time), which allows application of the instrument…
HONO Emissions from Soil Bacteria as a Major Source of Atmospheric Reactive Nitrogen
From Soil to Sky Trace gases emitted either through the activity of microbial communities or from abiotic reactions in the soil influence atmospheric chemistry. In laboratory column experiments using several soil types, Oswald et al. (p. 1233 ) showed that soils from arid regions and farmlands can produce substantial quantities of nitric oxide (NO) and nitrous acid (HONO). Ammonia-oxidizing bacteria are the primary source of HONO at comparable levels to NO, thus serving as an important source of reactive nitrogen to the atmosphere.
Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecular iodine and the activated iodine compounds iodine monochloride and hypoiodous acid in the marine atmosphere.
This study concerns the development of a coupled diffusion denuder system capable of separating and quantifying gaseous molecular iodine (I(2)) and two other highly reactive iodine species, ICl and HOI, which are collectively named activated iodine compounds (AIC). Both I(2) and AIC are key species in the atmospheric chemistry of iodine. 1,3,5-Trimethoxybenzene (1,3,5-TMB)- and alpha-cyclodextrin/(129)I(-) (alpha-CD/(129)I(-))-coated denuders proved to be suitable for the collection of gaseous AIC and I(2), respectively. The experimental collection efficiencies for AIC (tested as ICl) and I(2) agreed well with the theoretical values for gas flow rates in the range between 300 and 1800 mL mi…
Characterization of oligomeric compounds in secondary organic aerosol using liquid chromatography coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry
The components of secondary organic aerosols (SOAs) generated from the gas-phase ozonolysis of two C(10)H(16)-terpenes (alpha-pinene; sabinene) and a cyclic C(6)H(10) alkene (cyclohexene) were characterized by the use of a Fourier transform ion cyclotron mass spectrometer equipped with an electrospray ionization source operated in the negative ion mode. Reversed-phase high-performance liquid chromatography was used to achieve chromatographic separation of highly oxidized organic compounds. In addition to the well-known group of low molecular weight oxidation products (monomers; e.g. dicarboxylic acids), higher molecular weight compounds (dimers) were also detected and their exact elemental …
Iodine containing species in the remote marine boundary layer: A link to oceanic phytoplankton
[1] Iodine containing species have been measured in the particle phase (PM2.5) and the gas phase during a ship campaign between January and February 2007 in the South Atlantic marine boundary layer (MBL). Methyl iodide (CH3I) in the gas phase and soluble iodine species, i.e. iodide, iodate and an unidentified organic iodine species (UOI), in PM2.5 were measured. Temporal variations of gaseous and particulate iodine species were investigated. The exposure of the sampled air masses to phytoplankton along the back-trajectories was studied using a lagrangian transport model and satellite observations of oceanic chlorophyll-a concentration. Significant correlations were found between the concent…
Urban organic aerosol composition in Eastern China differs from North to South: Molecular insight from a liquid chromatography-Orbitrap mass spectrometry study
Particulate air pollution in China is influencing human health, ecosystem and climate. However, the chemical composition of particulate aerosol, especially of the organic fraction, is still not well understood. In this study, particulate aerosol samples with a diameter ≤ 2.5 μm (PM2.5) were collected in January 2014 in three cities located in Northeast, East and Southeast China, i.e., Changchun, Shanghai and Guangzhou, respectively. Organic aerosol (OA) in the PM2.5 samples was analyzed by ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry in both negative mode (ESI−) and positive mode electrospray ioni…
Direct measurement of NO3 reactivity in a boreal forest
Iodine speciation in marine aerosols along a 30,000 km round-trip cruise path from Shanghai, China to Prydz Bay, Antarctica
[1] Total suspended particle (TSP) samples were collected onboard a round-trip cruise from Shanghai, China to Prydz Bay, Antarctica from November 2005 to March 2006. Water soluble iodine species were measured using ion chromatography coupled to Inductively Coupled Plasma-Mass Spectrometry (IC-ICP-MS). The results reveal that soluble organic iodine (SOI) is the most abundant fraction, accounting for approximately 70 % of total soluble iodine (TSI) on average. One unidentified organic iodine (UOI) signal was present in almost all of the samples and was responsible for up to 38.3% of TSI. The abundance of inorganic iodine species, iodate and iodide, was less than 30% of TSI. Iodide was signifi…
PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment
Polycyclic aromatic compounds (PACs) in air particulate matter contribute considerably to the health risk of air pollution. The objectives of this study were to assess the occurrence and variation in concentrations and sources of PM2.5 bound PACs [Oxygenated PAHs (OPAHs) nitro PAHs and parent PAHs] sampled from the atmosphere of a typical Chinese megacity (Xi'an) to study the influence of meteorological conditions on PACs and to estimate the lifetime excess cancer risk to the residents of Xi'an (from inhalation of PM2.5 bound PACs). To achieve these objectives we sampled 24 h PM2.5 aerosols (once in every 6days from 5 July 2008 to 8 August 2009) from the atmosphere of Xi'an and measured the…
In situ measurements of molecular iodine in the marine boundary layer: the link to macroalgae and the implications for O<sub>3</sub>, IO, OIO and NO<sub>x</sub>
Abstract. Discrete in situ atmospheric measurements of molecular iodine (I2) were carried out at Mace Head and Mweenish Bay on the west coast of Ireland using diffusion denuders in combination with a gas chromatography-mass spectrometry (GC-MS) method. I2, IO and OIO were also measured by long-path differential optical absorption spectroscopy (LP-DOAS). The simultaneous denuder and LP-DOAS I2 measurements were well correlated (R2=0.80) but the denuder method recorded much higher concentrations. This can be attributed to the fact that the in situ measurements were made near to macroalgal sources of I2 in the intertidal zone, whereas the LP-DOAS technique provides distance-averaged mixing rat…
Halogen activation in the plume of Masaya volcano: field observations and box model investigations
Volcanic emissions are a source of halogens in the atmosphere. Rapid reactions convert the initially emitted hydrogen halides (HCl, HBr, and HI) into reactive species such as BrO, Br2, BrCl, ClO, OClO, and IO. The activation reaction mechanisms in the plume consume ozone (O3), which is entrained by ambient air that is mixed into the plume. In this study, we present observations of the oxidation of bromine, chlorine, and iodine during the first 11 min following emission, examining the plume from Santiago crater of the Masaya volcano in Nicaragua. Two field campaigns were conducted: one in July 2016 and one in September 2016. The sum of the reactive species of each halogen was determined by g…
Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water
Here we present a sensitive method to analyze lignin oxidation products (LOPs) in speleothems and cave drip water to provide a new tool for paleo-vegetation reconstruction. Speleothems are valuable climate archives. However, compared to other terrestrial climate archives, such as lake sediments, speleothems contain very little organic matter. Therefore, very few studies on organic biomarkers in speleothems are available. Our new sensitive method allows us to use LOPs as vegetation biomarkers in speleothems. Our method consists of acid digestion of the speleothem sample followed by solid-phase extraction (SPE) of the organic matter. The extracted polymeric lignin is degraded in a microwave-a…
A new interface to couple thin-layer chromatography with laser desorption/atmospheric pressure chemical ionization mass spectrometry for plate scanning.
An interface to allow on-line qualitative and quantitative full-plate detection and analysis of compounds separated by thin-layer chromatography (TLC) is presented. A continuous wave diode laser is employed as a desorption source. Atmospheric pressure chemical ionization mass spectrometry ionizes and subsequently identifies the desorbed sample molecules. Besides direct laser desorption on untreated TLC plates, graphite particles were used as a matrix to couple in the laser power and improve the efficiency of desorption.
Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany
The molecular composition of PM2.5 (particulate matter with an aerodynamic diameter2.5 microm) aerosol samples collected during a very warm and dry 2003 summer period at a mixed forest site in Jülich, Germany, was determined by gas chromatography/mass spectrometry in an effort to evaluate photooxidation products of biogenic volatile organic compounds (BVOCs) and other markers for aerosol source characterization. Six major classes of compounds represented by twenty-four individual organic species were identified and measured, comprising tracers for biomass combustion, short-chain acids, fatty acids, sugars/sugar alcohols, and tracers for the photooxidation of isoprene and alpha-/beta-pinene.…
Iodine speciation in rain, snow and aerosols
Iodine oxides, such as iodate, should be the only thermodynamically stable sink species for iodine in the troposphere. However, field observations have increasingly found very little iodate and significant amounts of iodide and soluble organically bound iodine (SOI) in precipitation and aerosols. The aim of this study was to investigate iodine speciation, including the organic fraction, in rain, snow, and aerosols in an attempt to further clarify aqueous phase iodine chemistry. Diurnal aerosol samples were taken with a 5 stage cascade impactor and a virtual impactor (PM<sub>2.5</sub>) from the Mace Head research station, Ireland, during summer 2006. Rain was collected from Austr…
Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions
Abstract. Gaseous formaldehyde (HCHO) is an important precursor of OH radicals and a key intermediate molecule in the oxidation of atmospheric volatile organic compounds (VOCs). Budget analyses reveal large discrepancies between modeled and observed HCHO concentrations in the atmosphere. Here, we investigate the interactions of gaseous HCHO with soil surfaces through coated-wall flow tube experiments applying atmospherically relevant HCHO concentrations of ~ 10 to 40 ppbv. For the determination of uptake coefficients (γ), we provide a Matlab code to account for the diffusion correction under laminar flow conditions. Under dry conditions (relative humidity = 0 %), an initial γ of (1.1 ± 0.05…
Measurement report: PM&lt;sub&gt;2.5&lt;/sub&gt;-bound nitrated aromatic compounds in Xi'an, Northwest China – seasonal variations and contributions to optical properties of brown carbon
Abstract. Nitrated aromatic compounds (NACs) are a group of key chromophores for brown carbon (light-absorbing organic carbon, i.e., BrC) aerosol, which affects radiative forcing. The chemical composition and sources of NACs and their contributions to BrC absorption, however, are still not well understood. In this study, PM 2.5 -bound NACs in Xi'an, Northwest China, were investigated for 112 daily PM 2.5 filter samples from 2015 to 2016. Both the total concentrations and contributions from individual species of NACs show distinct seasonal variations. The seasonally averaged concentrations of NACs are 2.1 (spring), 1.1 (summer), 12.9 (fall), and 56 ng m −3 (winter). Thereinto, 4-nitrophenol …
Volatility of secondary organic aerosol during OH radical induced ageing
The aim of this study was to investigate oxidation of SOA formed from ozonolysis of <i>&alpha;</i>-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA) set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of Karlsruhe Institute of Technology (KIT) in Karlsruhe and at the SAPHIR chamber of Forchungzentrum Jülich (FZJ) in Jülich. A fresh SOA was produced from ozonolysis of <i>&alpha;</i>-pinene or limonene and then aged by enhanced OH exposure. As an OH radical source in…
Supplementary material to &quot;Measurement report: PM&lt;sub&gt;2.5&lt;/sub&gt;-bound nitrated aromatic compounds in Xi'an, Northwest China: Seasonal variations and contributions to optical properties of brown carbon&quot;
Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China
Humic-like substances (HULIS) are ubiquitous in the atmospheric environment, which affects both human health and climate. We present here the mass concentration and optical characteristics of HULIS isolated from aerosol samples collected in Xi'an, China. Both mass concentration and absorption coefficient (Abs365) of HULIS show clear seasonal differences, with the highest average in winter (3.91 μgC m-3 and 4.78 M m-1, respectively) and the lowest in summer (0.65 μgC m-3 and 0.55 M m-1, respectively). The sources of HULIS_C and light absorption of HULIS were analyzed by positive matrix factorization (PMF) and four major sources were resolved, including secondary formation, biomass burning, c…
Modelling molecular iodine emissions in a coastal marine environment: The link to new particle formation
International audience; A model of iodine chemistry in the marine boundary layer (MBL) has been used to investigate the impact of daytime coastal emissions of molecular iodine (I2). The model contains a full treatment of gas-phase iodine chemistry, combined with a description of the nucleation and growth, by condensation and coagulation, of iodine oxide nano-particles. In-situ measurements of coastal emissions of I2 made by the broadband cavity ring-down spectroscopy (BBCRDS) and inductively coupled plasma-mass spectrometry (ICP/MS) techniques are presented and compared to long path differential optical absorption spectroscopy (DOAS) observations of I2 at Mace Head, Ireland. Simultaneous me…
Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects.
Dicarbonyls are known to be important precursors of so-called atmospheric brown carbon, significantly affecting aerosol optical properties and radiative forcing. In this systematic study we report the formation of light-absorbing nitrogen containing compounds from simple 1,2-, 1,3-, 1,4-, and 1,5-dicarbonyl + amine reactions. A combination of spectrophotometric and mass spectrometric techniques was used to characterize reaction products in solutions mimicking atmospheric particulates. Experiments with individual dicarbonyls and dicarbonyl mixtures in ammonium sulfate and glycine solutions demonstrate that nitrogen heterocycles are common structural motifs of brown carbon chromophores formed…
The role of VOC oxidation products in continental new particle formation
Abstract. Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March–April, 2003, in Hyytiälä, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono- and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all particles larger than 50 nm in diameter contained similar organic substances that…
Fuel For Lamps: Organic Residues Preserved in Iron Age Lamps Excavated at the Site of Sahab in Jordan
Five Iron Age ceramic lamps from a tomb at the site of Sahab in the south-eastern part of central Jordan were analysed using gas chromatography – mass spectrometry (GC–MS). The results of this study provide data on the type of fuel used in three of these lamps. The study proposes that animal fat, possibly of ruminant origin, was used in three Early Iron Age II lamps. The material used in the other two Iron Age I lamps could not be determined due to the absence of diagnostic biomarkers. The data obtained from the lamps can be put in conjunction with the archaeological evidence on the availability of domestic animals and, most probably, use of their products at the site of Sahab during the Ir…
Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography–mass spectrometry and ion chromatography approaches
Abstract. In recent years low molecular weight alkylamines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkylamines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography–mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkylamines in aerosol particles. Alkylamines were converted to carbamates through derivatization with isobutyl chlorof…
Short‐term e‐cigarette vapor exposure causes vascular oxidative stress and dysfunction ‐ evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX‐2)
Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grassland soils
Increasing plant species richness stimulates microbial activity in soil, which might favor biodegradation of polycyclic aromatic compounds (PACs). To explore the relationship between plant community composition and PACs in grassland soils (Fluvisols exposed to an urban atmosphere), we determined the concentrations of 29 polycyclic aromatic hydrocarbons (PAHs) and 15 oxygenated PAHs (OPAHs) in topsoils of 80 plots of a grassland biodiversity experiment. The plots included different levels of plant species richness (1, 2, 4, 8, 16, 60 species) and 1–4 plant functional groups (grasses, small herbs, tall herbs, and legumes) in a randomized block design. The concentrations (ng g−1) of ∑29PAHs an…
Supplementary material to &quot;Measurement report: Large contribution of biomass burning and aqueous-phase processes to the wintertime secondary organic aerosol formation in Xi’an, Northwest China&quot;
Marine aerosols and iodine emissions (Reply)
O'Dowd et al. reply - McFiggans raises some interesting, but partly speculative, issues about the possibility of additional condensable-iodine-vapour (CIV) precursors being involved in marine aerosol formation from biogenic iodine emissions, and about the relative roles of iodine oxide and sulphuric acid in the marine new-particle formation process.
Identification and characterization of aging products in the glyoxal/ammonium sulfate system – implications for light-absorbing material in atmospheric aerosols
Abstract. In this study we report the identification of bicyclic imidazoles in aqueous aerosol mimics using HPLC-ESI-MS/MS. 2,2´-Biimidazole was identified to be a major contributor to the 280 nm absorbance band observed in mixtures of glyoxal and ammonium sulfate, despite the fact that its production rate is two orders of magnitude lower than the previously reported production rates of imidazole or imidazole-2-carboxaldehyde. The molar absorptivity of 2,2´-biimidazole was determined to be (36 690&amp;pm;998) M−1 cm−1. This demonstrates the necessity of molecular product identification at trace levels to enable a better understanding of relevant absorbing species. Additionally the forma…
Gel Electrophoresis Coupled to Inductively Coupled Plasma−Mass Spectrometry Using Species-Specific Isotope Dilution for Iodide and Iodate Determination in Aerosols
In this paper, we present an online coupling of gel electrophoresis (GE) and inductively coupled plasma-mass spectrometry (ICP-MS) for the determination of iodine species (iodide and iodate) in liquid (seawater) and aerosol samples. For the first time, this approach is applied to the analysis of small molecules, and initial systematic investigations revealed that the migration behavior as well as the detection sensitivity strongly depends on the matrix (e.g., high concentrations of chloride). These effects could consequently affect the accuracy of analytical results, so that they need to be considered for the analysis of real samples. The technique used for quantification is species-specifi…
Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS
Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. […
Chemie von Aerosolen
Atmospharische Aerosolpartikel sind keine chemisch inerten Teilchen, deren Bildungsmechanismen, Verweildauer oder Funktion in der Atmosphare lediglich von mechanischen oder physikalischen Prozessen abhangen. Sowohl bei der Bildung von Aerosolpartikeln als auch im Verlauf ihres Verbleibs in der Atmosphare spielen chemische Reaktionen eine wesentliche Rolle. Chemische Reaktionen laufen an der Oberflache und im Inneren von Aerosolpartikeln ab und konnen sowohl die atmospharische Gasphasenchemie beeinflussen, z.B. indem sie sowohl als Reaktionsmedium fur ansonsten langsam verlaufende Gasphasenreaktionen dienen, als auch die Eigenschaften der Partikel, beispielsweise ihre Funktion als Kondensati…
Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules
Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formatio…
Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds
Films of biogenic compounds exposed to the atmosphere are ubiquitously found on the surfaces of cloud droplets, aerosol particles, buildings, plants, soils and the ocean. These air/water interfaces host countless amphiphilic compounds concentrated there with respect to in bulk water, leading to a unique chemical environment. Here, photochemical processes at the air/water interface of biofilm-containing solutions were studied, demonstrating abiotic VOC production from authentic biogenic surfactants under ambient conditions. Using a combination of online-APCI-HRMS and PTR-ToF-MS, unsaturated and functionalized VOCs were identified and quantified, giving emission fluxes comparable to previous …
Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using Ultrahigh Resolution Mass Spectrometry.
Organosulfates (OSs) have been observed as substantial constituents of atmospheric organic aerosol (OA) in a wide range of environments; however, the chemical composition, sources, and formation mechanism of OSs are still not well understood. In this study, we first created an "OS precursor map" based on the elemental composition of previous OS chamber experiments. Then, according to this "OS precursor map", we estimated the possible sources and molecular structures of OSs in atmospheric PM2.5 (particles with aerodynamic diameter ≤ 2.5 μm) samples, which were collected in urban areas of Beijing (China) and Mainz (Germany) and analyzed by ultrahigh-performance liquid chromatography (UHPLC) c…
The seaweeds &lt;i&gt;Fucus vesiculosus&lt;/i&gt; and &lt;i&gt;Ascophyllum nodosum&lt;/i&gt; are significant contributors to coastal iodine emissions
Abstract. Based on the results of a pilot study in 2007, which found high mixing ratios of molecular iodine (I2) above the intertidal macroalgae (seaweed) beds at Mweenish Bay (Ireland), we extended the study to nine different locations in the vicinity of Mace Head Atmospheric Research Station on the west coast of Ireland during a field campaign in 2009. The mean values of I2 mixing ratio found above the macroalgae beds at nine different locations ranged from 104 to 393 ppt, implying a high source strength of I2. Such mixing ratios are sufficient to result in photochemically driven coastal new-particle formation events. Mixing ratios above the Ascophyllum nodosum and Fucus vesiculosus beds …
Advances in Bromine Speciation in Volcanic Plumes
Volcanoes are a significant halogen source to the atmosphere. After water, carbon dioxide and sulfur compounds, halogens are often the most abundant gases in volcanic plumes. In the past, less attention was given to the heavy halogens bromine and iodine. However, the discovery of bromine monoxide (BrO) in volcanic plumes led to new interest especially in volcanic bromine chemistry and its impact on atmospheric processes. The BrO detection came along with advances in volcanic remote sensing techniques, in particular, robust DOAS applications and the possibility of continuous measurements by automated instruments located at safe distances from the volcano. As one of the consequences, the volc…
Development of a Method for Anodic Degradation of Lignin for the Analysis of Paleo‐Vegetation Proxies in Speleothems
General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales
In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…
Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition.
Aerosol hygroscopic properties were linked to its chemical composition by using complementary online mass spectrometric techniques in a comprehensive chemical characterization study at a rural mountaintop station in central Germany in August 2012. In particular, atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) provided measurements of organic acids, organosulfates, and nitrooxy-organosulfates in the particle phase at 1 min time resolution. Offline analysis of filter samples enabled us to determine the molecular composition of signals appearing in the online (-)APCI-MS spectra. Aerosol mass spectrometry (AMS) provided quantitative measurements of total submicrometer or…
UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing)
Abstract Fine urban aerosol particles with aerodynamic equivalent dimeter ≤2.5 μm (PM2.5) were collected in Mainz (a city within the Rhine-Main area, the third largest metropolitan region in Germany) and Beijing (Chinese megacity). A solvent mixture of acetonitrile-water was used to extract the organic aerosol fraction (OA) from the particle samples. The extracts were analyzed by an ultrahigh resolution mass spectrometer (UHRMS) Orbitrap coupled with ultra-high-performance liquid chromatography (UHPLC) both in the negative and positive ion mode. The number of compounds observed in Beijing is a factor of 2–10 higher compared to Mainz. The clear differences on chemical composition of OA in th…
In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry
The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland, is presented. The focus lies on online measurements of organic acids, which were achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by aerosol mass spectrometry (AMS) measurements and Fourier transform infrared spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas-phase measurements solely and measuring the sum of gas and particle phase. The AMS measurements of C, H and O elemental composition s…
Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F–BEACh 2014 field study
Abstract. The chemical composition of organic aerosols was analyzed using complementary mass spectrometric techniques during a field study in Central Europe in July 2014 (Fichtelgebirge – Biogenic Emission and Aerosol Chemistry, F–BEACh 2014). Aerosols were analyzed in real-time by Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPA–MS), Aerosol Mass Spectrometry (AMS), and Chemical Ionization Atmospheric-Pressure interface Time-of-Flight Mass Spectrometry (CI–APiToF–MS). In addition, offline detection of acidic organic compounds was conducted by non-target screening of filter samples using High Resolution Mass Spectrometry (HRMS) in combination with Ultra-High Pressu…
Analysis of Organic Aerosols Using a Micro-Orifice Volatilization Impactor Coupled to an Atmospheric-Pressure Chemical Ionization Mass Spectrometer
We present the development and characterization of a combination of a micro-orifice volatilization impactor (MOVI) and an ion trap mass spectrometer (IT/MS) with an atmospheric-pressure chemical ionization (APCI) source. The MOVI is a multi-jet impactor with 100 nozzles, allowing the collection of aerosol particles by inertial impaction on a deposition plate. The pressure drop behind the nozzles is approximately 5%, resulting in a pressure of 96 kPa on the collection surface for ambient pressures of 101.3 kPa. The cut-point diameter (diameter of 50% collection efficiency) is at 0.13 μm for a sampling flow rate of 10 L min–1. After the collection step, aerosol particles are evaporated by he…
Characterization of the light absorbing properties, chromophores composition and sources of brown carbon aerosol in Xi'an, Northwest China
Abstract. The impact of brown carbon aerosol (BrC) on the Earth's radiative forcing balance has been widely recognized but remains uncertain, mainly because the relationships among BrC sources, chromophores, and optical properties of aerosol are poorly understood. In this work, the light absorption properties and chromophore composition of BrC were investigated for samples collected in Xi'an, Northwest China from 2015 to 2016. Both absorption Ångström exponent and mass absorption efficiency show distinct seasonal differences, which could be attributed to the differences in sources and chromophore composition of BrC. Three groups of light-absorbing organics were found to be important BrC ch…
Charged Tags for the Identification of Oxidative Drug Metabolites Based on Electrochemistry and Mass Spectrometry
Abstract Most of the active pharmaceutical ingredients like Metoprolol are oxidatively metabolized by liver enzymes, such as Cytochrome P450 monooxygenases into oxygenates and therefore hydrophilic products. It is of utmost importance to identify the metabolites and to gain knowledge on their toxic impacts. By using electrochemistry, it is possible to mimic enzymatic transformations and to identify metabolic hot spots. By introducing charged‐tags into the intermediate, it is possible to detect and isolate metabolic products. The identification and synthesis of initially oxidized metabolites are important to understand possible toxic activities. The gained knowledge about the metabolism will…
The molecular identification of organic compounds in the atmosphere: state of the art and challenges.
SSCI-VIDE+ATARI:CARE+BNO:BDA; International audience
Supplementary material to &quot;Halogen activation in the plume of Masaya volcano: field observations and box model investigations&quot;
Coastal New Particle Formation: A Review of the Current State-Of-The-Art
Environmental Context.Atmospheric aerosols play an important role in determining the earth’s radiative budget, climate change and air quality levels. Much effort has been spent on quantifying the impact of aerosols on climate change; however, the largest gap in our knowledge relates to quantifying natural aerosol systems and the new particle formation process associated with these systems. The marine aerosol system is of particular interest due to the 70% ocean coverage of the earth’s surface. Coastal new particle formation events are though to be more frequent and of stronger intensity compared with open ocean events and thus have been studied in detail to identify possible processes lead…
Molecular composition and chemotaxonomic aspects of Eocene amber from the Ameki Formation, Nigeria
The molecular composition of fossil resin from the Eocene Ameki Formation, southern Nigeria has been analyzed by infrared spectroscopy, pyrolysis–gas chromatography–mass spectrometry and thermochemolysis gas chromatography–mass spectrometry to determine the structural class and botanical source of the resin. The pyrolysis products were dominated by bicyclic products derived from regular labdatriene structure and lacked succinic acid indicating Class Ib type amber. The biomarker compositions in the pyrolysates are dominated by sesquiterpenoids of the cadinane and bisabolane classes that are common constituents of higher plants and labdane type diterpenoids. The exclusive presence of labdane …
Towards comprehensive non-target screening using heart-cut two-dimensional liquid chromatography for the analysis of organic atmospheric tracers in ice cores
Abstract Non-target screening of secondary organic aerosol compounds in ice cores is used to reconstruct atmospheric conditions and sources and is a valuable tool to elucidate the chemical profiles of samples with the aim to obtain as much information as possible from one mass spectrometric measurement. The coupling of mass spectrometry to chromatography limits the results of a non-target screening to signals of compounds within a certain polarity range based on the utilized stationary phases of the columns. Comprehensive two-dimensional liquid chromatography (LCxLC) introduces a second column of different functionality to enable the analysis of a broader range of analytes. Conventional LCx…
Thermodynamic properties and cloud droplet activation of a series of oxo-acids
Abstract. We have investigated the thermodynamic properties of four aliphatic oxo-dicarboyxlic acids identified or thought to be present in atmospheric particulate matter: oxosuccinic acid, 2-oxoglutaric acid, 3-oxoglutaric acid, and 4-oxopimelic acid. The compounds were characterized in terms of their cloud condensation nuclei (CCN) activity, vapor pressure, density, and tendency to decarboxylate in aqueous solution. We deployed a variety of experimental techniques and instruments: a CCN counter, a Tandem Differential Mobililty Analyzer (TDMA) coupled with a laminar flow-tube, and liquid chromatography/mass spectrometry (LC/MS). The presence of the oxo functional group in the α-position ca…
Metaproteomic analysis of atmospheric aerosol samples.
Metaproteomic analysis of air particulate matter provides information about the abundance and properties of bioaerosols in the atmosphere and their influence on climate and public health. We developed and applied efficient methods for the extraction and analysis of proteins from glass fiber filter samples of total, coarse, and fine particulate matter. Size exclusion chromatography was applied to remove matrix components, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied for protein fractionation according to molecular size, followed by in-gel digestion and LC-MS/MS analysis of peptides using a hybrid Quadrupole-Orbitrap MS. Maxquant software and the Swiss-…
Multicopter measurements of volcanic gas emissions at Masaya (Nicaragua), Turrialba (Costa Rica) and Stromboli (Italy) volcanoes: Applications for volcano monitoring and insights into halogen speciation
Abstract. Volcanoes are a natural source of several reactive gases (e.g. sulfur and halogen containing species), as well as non-reactive gases (e.g. carbon dioxide). Besides that, halogen chemistry in volcanic plumes might have important impacts on atmospheric chemistry, carbon to sulfur ratios and sulfur dioxide fluxes are important established parameters to gain information on subsurface processes. In this study we demonstrate the successful deployment of a multirotor UAV (quadcopter) system with custom-made lightweight payloads on board for the compositional analysis and gas flux estimation of volcanic plumes. The various applications and their potential with such new measurement strateg…
Lignin oxidation products in soil, dripwater and speleothems from four different sites in New Zealand
Lignin oxidation products (LOPs) are widely used as vegetation proxies in climate archives, such as sediment and peat cores. The total LOP concentration, Σ8, provides information on the abundance of vegetation, while the ratios C/V and S/V of the different LOP groups also provide information on the type of vegetation. Recently, LOP analysis has been successfully applied to speleothem archives. However, there are many open questions concerning the transport and microbial degradation of LOPs on their way from the soil into the cave system. These processes could potentially alter the original source-dependent LOP signals, in particular the C/V and S/V ratios, and thus complicate their interpre…
Direct measurement of NO<sub>3</sub> reactivity in a boreal forest
Abstract. We present the first direct measurements of NO3 reactivity (or inverse lifetime, s−1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s−1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s−1 compared to a daytime value of 0.04 s−1. The highest nighttime NO3-reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature…
Direct measurement of NO&lt;sub&gt;3&lt;/sub&gt; radical reactivity in a boreal forest
Abstract. We present the first direct measurements of NO3 reactivity (or inverse lifetime, s−1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s−1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s−1 compared to a daytime value of 0.04 s−1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature…
Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties.
The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013-2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-ins…
A denuder-impinger system with in situ derivatization followed by gas chromatography-mass spectrometry for the determination of gaseous iodine-containing halogen species.
Reactive iodine species have been suggested to play an important role in the atmosphere (e.g. tropospheric ozone depletion, coastal new particle formation). However, there still exist major uncertainties about their atmospheric chemistry, mostly due to the lack of analytical approaches for the accurate speciation of certain key compounds. In this study, 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated denuder proved to be suitable for the differentiation between gaseous interhalogens (iodine monochloride (ICl), iodine monobromide (IBr)) and molecular iodine (I2) based on a selective collection/derivatization method. The results of the denuder sampling were compared with the results of impinger sa…
New tracer compounds for secondary organic aerosol formation from β-caryophyllene oxidation
Abstract Five products from β-caryophyllene oxidation (β-caryophyllonic acid (I), 3,3-dimethyl-2-(3-oxobutyl)cyclobutanecarboxylic acid (βCA198) (II), β-nocaryophyllonic acid (III), β-caryophyllinic acid (IV), and 2-(2-carboxyethyl)-3,3-dimethylcyclobutanecarboxylic acid (βCA200) (V)) were synthesized and their structures confirmed by nuclear magnetic resonance spectroscopy. Reaction chamber experiments with β-caryophyllene at two different ozone mixing ratios were performed and the carboxylic acid oxidation products in the particle phase were characterized by APCI–MS and HPLC–ESI–MS. All five synthesized acids were found as β-caryophyllene oxidation products in the reaction chamber aerosol…
Terpenoid composition and origin of amber from the Cape York Peninsula, Australia
The terpenoid composition of fossil resin from the Cape York Peninsula, Australia has been analysed by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to determine its origin. The pyrolysis products were dominated by cadalene-based C15 bicyclic sesquiterpenoids including some C30–C31 bicadinanes and bicadinenes typical of Class II resin derived from angiosperm plants of Dipterocarpaceae. This observation contrasts with the Araucariaceae (Agathis sp.) source previously suggested for the resin based on Fourier transform infrared (FTIR) analyses. Dipterocarpaceae are not known in Australian vegetation but grow abundantly in Southeast Asia including New Guinea, indicating that the geo…
High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions
International audience; The composition of organic aerosol has a pivotal influence on aerosol properties such as toxicity and cloud droplet formation capability, which could affect both climate and air quality. However, a comprehensive and fundamental understanding of the chemical and physical processes that occur in nanometer-sized atmospheric particles remains a challenge that severely limits the quantification and predictive capabilities of aerosol formation pathways. Here, we investigated the effects of a fundamental and hitherto unconsidered physical property of nanoparticles-the Laplace pressure. By studying the reaction of glyoxal with ammonium sulfate, both ubiquitous and important …
Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging
Abstract. This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a very low volatile α-pine…
Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiälä, Finland, during HUMPPA-COPEC 2010
Abstract. Submicron aerosol particles were collected during July and August 2010 in Hyytiälä, Finland, to determine the composition and sources of aerosol at that boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFGs). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at Hyytiälä were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, …
The formation, properties and impact of secondary organic aerosol: Current and emerging issues
Hallquist, M. Wenger, J. C. Baltensperger, U. Rudich, Y. Simpson, D. Claeys, M. Dommen, J. Donahue, N. M. George, C. Goldstein, A. H. Hamilton, J. F. Herrmann, H. Hoffmann, T. Iinuma, Y. Jang, M. Jenkin, M. E. Jimenez, J. L. Kiendler-Scharr, A. Maenhaut, W. McFiggans, G. Mentel, Th. F. Monod, A. Prevot, A. S. H. Seinfeld, J. H. Surratt, J. D. Szmigielski, R. Wildt, J.; Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated wit…
Ultrahigh-Resolution Mass Spectrometry in Real Time: Atmospheric Pressure Chemical Ionization Orbitrap Mass Spectrometry of Atmospheric Organic Aerosol
The accurate and precise mass spectrometric measurement of organic compounds in atmospheric aerosol particles is a challenging task that requires analytical developments and adaptations of existing techniques for the atmospheric application. Here we describe the development and characterization of an atmospheric pressure chemical ionization Orbitrap mass spectrometer (APCI-Orbitrap-MS) for the measurement of organic aerosol in real time. APCI is a well-known ionization technique, featuring minimal fragmentation and matrix dependencies, and allows rapid alternation between the positive and negative ionization mode. As a proof of principle, we report ambient organic aerosol composition in rea…
Measurement report of the change of PM2.5 composition during the COVID-19 lockdown in urban Xi'an: Enhanced secondary formation and oxidation
Enhanced secondary aerosol formation was observed during the COVID-19 lockdown in Xi'an, especially for polluted episodes. More oxidized‑oxygenated organic aerosol (MO-OOA) and sulfate showed the dominant enhancements, especially in large particle-mode. Meanwhile, relative humidity (RH) showed a positive promotion on the formation of sulfate and MO-OOA during the lockdown, but had no obvious correlation with less oxidized‑oxygenated organic aerosol (LO-OOA) or nitrate. Organosulfurs (OS) displayed a higher contribution (~58%) than inorganic sulfate to total sulfate enhancement in the polluted episode during the lockdown. Although the total nitrate (TN) decreased during the lockdown ascribin…
Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air
Volatile organic compounds (VOCs) play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs under ambient air conditions of an urban background site in Beijing. Sterilized soil was investigated to address physicochemical processes and heterogeneous/multiphase reactions independently from biological activity. Most VOCs revealed net depositio…
First measurements of reactive α-dicarbonyl concentrations on PM2.5 aerosol over the Boreal forest in Finland during HUMPPA-COPEC 2010 – source apportionment and links to aerosol aging
The first dataset for summertime boreal forest concentrations of two atmospherically relevant α-dicarbonyl compounds, glyoxal (Gly) and methylglyoxal (Mgly) on PM2.5 aerosol was obtained during the HUMPPA-COPEC-2010 field measurement intensive in Hyytiälä, Finland. Anthropogenic influences over the course of the campaign were identified using trace gas signatures and aerosol particle chemical composition analysis. The data evaluation allowed the identification of different events such as urban pollution plumes, biomass burning and sawmill emissions as sources of high Gly and Mgly concentrations. Mean aerosol concentrations during periods of biogenic influence were 0.81 ng m−3 for Gly and 0.…
Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described b…
Effective Henry's law partitioning and the salting constant of glyoxal in aerosols containing sulfate.
The reversible partitioning of glyoxal was studied in simulation chamber experiments for the first time by time-resolved measurements of gas-phase and particle-phase concentrations in sulfate-containing aerosols. Two complementary methods for the measurement of glyoxal particle-phase concentrations are compared: (1) an offline method utilizing filter sampling of chamber aerosols followed by HPLC-MS/MS analysis and (2) positive matrix factorization (PMF) analysis of aerosol mass spectrometer (AMS) data. Ammonium sulfate (AS) and internally mixed ammonium sulfate/fulvic acid (AS/FA) seed aerosols both show an exponential increase of effective Henry's law coefficients (KH,eff) with AS concentr…
Anodic Degradation of Lignin at Active Transition Metal-based Alloys and Performance-enhanced Anodes
Global impact of monocyclic aromatics on tropospheric composition
Abstract. Aromatic compounds are reactive species influencing ozone formation, OH concentrations and organic aerosol formation. An assessment of their impacts on the gas-phase composition at a global scale has been performed using a general circulation atmospheric-chemistry model. Globally, we found a small annual average net decrease (less than 3 %) in global OH, ozone, and NOx mixing ratios when aromatic compounds are included in the chemical mechanism. This inclusion of aromatics also results in CO mixing ratio increases, which cause a general decrease in OH concentrations. The largest changes are found in glyoxal and NO3, with increases in the atmospheric burden of 10 % and 6 %, respect…
Severe Pollution in China Amplified by Atmospheric Moisture
AbstractIn recent years, severe haze events often occurred in China, causing serious environmental problems. The mechanisms responsible for the haze formation, however, are still not well understood, hindering the forecast and mitigation of haze pollution. Our study of the 2012–13 winter haze events in Beijing shows that atmospheric water vapour plays a critical role in enhancing the heavy haze events. Under weak solar radiation and stagnant moist meteorological conditions in winter, air pollutants and water vapour accumulate in a shallow planetary boundary layer (PBL). A positive feedback cycle is triggered resulting in the formation of heavy haze: (1) the dispersal of water vapour is cons…
&lt;i&gt;Fucus&lt;/i&gt; and &lt;i&gt;Ascophyllum&lt;/i&gt; seaweeds are significant contributors to coastal iodine emissions
Abstract. Based on the results of a pilot study in 2007, which found high mixing ratios of molecular iodine (I2) above the intertidal macroalgae (seaweed) beds at Mweenish Bay (Ireland), we extended the study to nine different locations in the vicinity of Mace Head Atmospheric Research Station on the west coast of Ireland during a field campaign in 2009. I2 mixing ratios from 104 to 393 ppt were found above the macroalgae beds, implying a high source strength of I2. Such mixing ratios are sufficient to result in photochemically-driven coastal new-particle formation events. Mixing ratios above the Ascophyllum nodosum and Fucus vesiculosus beds increased with exposure time – after 6 h exposur…
Atmospheric analytical chemistry.
Identification of organic hydroperoxides and hydroperoxy acids in secondary organic aerosol formed during the ozonolysis of different monoterpenes and sesquiterpenes by on-line analysis using atmospheric pressure chemical ionization ion trap mass spectrometry.
On-line ion trap mass spectrometry (ITMS) enables the real-time characterization of reaction products of secondary organic aerosol (SOA). The analysis was conducted by directly introducing the aerosol particles into the ion source. Positive-ion chemical ionization at atmospheric pressure (APCI(+)) ITMS was used for the characterization of constituents of biogenic SOA produced in reaction-chamber experiments. APCI in the positive-ion mode usually enables the detection of [M+H](+) ions of the individual SOA components. In this paper the identification of organic peroxides from biogenic volatile organic compounds (VOCs) by on-line APCI-ITMS is presented. Organic peroxides containing a hydroper…
Emission of iodine-containing volatiles by selected microalgae species
In this study we present the results of an emission study of different phytoplankton samples in aqueous media treated with elevated ozone levels. Halocarbon measurements show that the samples tested released bromoform and different iodocarbons, including iodomethane, iodochloromethane and diiodomethane. Iodide and iodate levels in the liquid phase were representative of concentrations of surface water in a natural environment. Measurement of volatile iodine (I2) emissions from two diatom samples (Mediopyxis helysia and Porosira glacialis) and the background sample (F/2 medium from filtered natural seawater) showed that the quantity of evolved I2 depends on the ozone concentration in the air…
Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2)
Abstract Aims Electronic (e)-cigarettes have been marketed as a ‘healthy’ alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. Methods and results Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined b…
Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties.
Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) w…
Terpenoid composition and chemotaxonomic aspects of Miocene amber from the Koroglu Mountains, Turkey
Abstract A recently discovered fossil resin from Koroglu Mountain in Turkey has been analyzed by gas chromatography–mass spectrometry and pyrolysis gas chromatography–mass spectrometry to determine its structural class and botanical origin. The sesqui- and diterpenoids contained in the amber extract were used as chemosystematic markers when compared with terpenoids in extant conifers. The pyrolysis products were dominated by labdanoid derived bicyclic products together with succinic acid indicating Class Ia type amber. The biomarker compositions of the resin comprise mainly sesqui- and diterpenoids, and lack triterpenoids. This distribution suggests a gymnosperm, and more specifically a con…
Real-Time Analysis of Ambient Organic Aerosols Using Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPA-MS).
Organic compounds contribute to a major fraction of atmospheric aerosols and have significant impacts on climate and human health. However, because of their chemical complexity, their measurement remains a major challenge for analytical instrumentation. Here we present the development and characterization of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source is based on a helium glow discharge plasma, which generates excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and pro…
The maximum carbonyl ratio (MCR) as a new index for the structural classification of secondary organic aerosol components
RATIONALE Organic aerosols (OA) account for a large fraction of atmospheric fine particulate matter and thus are affecting climate and public health. Elucidation of the chemical composition of OA is the key for addressing the role of ambient fine particles at the atmosphere-biosphere interface and mass spectrometry is the main method to achieve this goal. METHODS High-resolution mass spectrometry (HRMS) is on its way to becoming one of the most prominent analytical techniques, also for the analysis of atmospheric aerosols. The combination of high mass resolution and accurate mass determination allows the elemental compositions of numerous compounds to be easily elucidated. Here a new parame…
Synthesis and characterisation of peroxypinic acids as proxies for highly oxygenated molecules (HOMs) in secondary organic aerosol
Abstract. Peroxy acids were recently found to be involved in new particle formation in the atmosphere and could also substantially contribute towards particle toxicity. However, a lack of suitable analytical methods for the detection and characterisation of peroxy acids in the particle phase is currently hindering the quantitative investigation of their contribution to these important atmospheric processes. Further development of appropriate techniques and relevant standards is therefore urgently needed. In this study, we synthesised three peroxypinic acids, developed a liquid chromatography separation method and characterised them with tandem mass spectrometry. The observed fragmentation p…
Direct measurement of NO3 radical reactivity in a boreal forest
We present the first direct measurements of NO3 reactivity (or inverse lifetime, s−1) in the Finnish boreal forest. The data were obtained during the IBAIRN campaign (Influence of Biosphere-Atmosphere Interactions on the Reactive Nitrogen budget) which took place in Hyytiälä, Finland during the summer/autumn transition in September 2016. The NO3 reactivity was generally very high with a maximum value of 0.94 s−1 and displayed a strong diel variation with a campaign-averaged nighttime mean value of 0.11 s−1 compared to a daytime value of 0.04 s−1. The highest nighttime NO3 reactivity was accompanied by major depletion of canopy level ozone and was associated with strong temperature inversion…
Bioaerosols in the Earth system: Climate, health, and ecosystem interactions
Abstract Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap i…
Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO
Abstract. Characterization of daytime sources of nitrous acid (HONO) is crucial to understand atmospheric oxidation and radical cycling in the planetary boundary layer. HONO and numerous other atmospheric trace constituents were measured on the Mediterranean island of Cyprus during the CYPHEX campaign (CYPHEX = CYprus PHotochemical EXperiment) in summer 2014. Average volume mixing ratios of HONO were 35 pptv (±25 pptv) with a HONO/NOx ratio of 0.33, which was considerably higher than reported for most other rural and urban regions. Diel profiles of HONO showed peak values in the late morning (60±28 pptv around 09:00 local time), and persistently high mixing ratios during daytime (45±18 pptv…
Aerosol Chemistry Resolved by Mass Spectrometry: Insights into Particle Growth after Ambient New Particle Formation
Atmospheric oxidation of volatile organic compounds (VOCs) yields a large number of different organic molecules which comprise a wide range of volatility. Depending on their volatility, they can be involved in new particle formation and particle growth, thus affecting the number concentration of cloud condensation nuclei in the atmosphere. Here, we identified oxidation products of VOCs in the particle phase during a field study at a rural mountaintop station in central Germany. We used atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) and aerosol mass spectrometry for time-resolved measurements of organic species and of the total organic aerosol (OA) mass in the size r…
High-Resolution Fluorescence Spectra of Airborne Biogenic Secondary Organic Aerosols: Comparisons to Primary Biological Aerosol Particles and Implications for Single-Particle Measurements.
Aqueous extracts of biogenic secondary organic aerosols (BSOAs) have been found to exhibit fluorescence that may interfere with the laser/light-induced fluorescence (LIF) detection of primary biological aerosol particles (PBAPs). In this study, we quantified the interference of BSOAs to PBAPs by directly measuring airborne BSOA particles, rather than aqueous extracts. BSOAs were generated by the reaction of d-limonene (LIM) or α-pinene (PIN) and ozone (O3) with or without ammonia in a chamber under controlled conditions. With an excitation wavelength of 355 nm, BSOAs exhibited peak emissions at 464–475 nm, while fungal spores exhibited peak emissions at 460–483 nm; the fluorescence intensit…
Iodine emissions from the sea ice of the Weddell Sea
Iodine compounds were measured above, below and within the sea ice of the Weddell Sea during a cruise in 2009, to make progress in elucidating the mechanism of local enhancement and volatilisation of iodine. I<sub>2</sub> mixing ratios of up to 12.4 pptv were measured 10 m above the sea ice, and up to 31 pptv was observed above surface snow on the nearby Brunt Ice Shelf – large amounts. Atmospheric IO of up to 7 pptv was measured from the ship, and the average sum of HOI and ICl was 1.9 pptv. These measurements confirm the Weddell Sea as an iodine hotspot. Average atmospheric concentrations of CH<sub>3</sub>I, C<sub>2</sub>H<sub>5</sub>I, CH&l…
Varying chiral ratio of Pinic acid enantiomers above the Amazon rainforest
Chiral chemodiversity plays a crucial role in biochemical processes such as insect and plant communication. However, the vast majority of organic aerosol studies do not distinguish between enantiomeric compounds in the particle phase. Here we report chirally specified measurements of secondary organic aerosol (SOA) at the Amazon Tall Tower Observatory (ATTO) at different altitudes during three measurement campaigns at different seasons. Analysis of filter samples by liquid chromatography coupled to mass spectrometry (LC-MS) has shown that the chiral ratio of pinic acid (C9H14O4) varies with increasing height above the canopy. A similar trend was recently observed for the gas-phase precursor…
Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing
Sulfate and nitrate from secondary reactions remain as the most abundant inorganic species in atmospheric particle matter (PM). Their formation is initiated by oxidation (either in gas phase or particle phase), followed by neutralization reaction primarily by NH3, or by other alkaline species such as alkaline metal ions if available. The different roles of NH3 and metal ions in neutralizing H2SO4 or HNO3, however, are seldom investigated. Here we conducted semi-continuous measurements of SO4 2−, NO3 −, NH4 +, and their gaseous precursors, as well as alkaline metal ions (Na+, K+, Ca2+, and Mg2+) in wintertime Beijing. Analysis of aerosol acidity (estimated from a thermodynamic model) indicat…
Reactive species formed upon interaction of water with fine particulate matter from remote forest and polluted urban air
Interaction of water with fine particulate matter leads to the formation of reactive species (RS) that may influence the aging, properties, and health effects of atmospheric aerosols. In this study, we explore the RS yields of fine PM from remote forest (Hyytiälä, Finland) and polluted urban air (Mainz, Germany and Beijing, China) and relate these yields to different chemical constituents and reaction mechanisms. Ultrahigh-resolution mass spectrometry was used to characterize organic aerosol composition, electron paramagnetic resonance (EPR) spectroscopy with a spin-trapping technique was used to determine the concentrations •OH, O2•−, and carbon- or oxygen-centered organic radicals, …
One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison
Abstract Organic aerosol (OA) is a major component of fine particulate matter (PM); however, only 10%–30% of OA have been identified as individual compounds, and some are used as markers to trace the sources and formation mechanisms of OA. The temporal and spatial coverage of these OA markers nonetheless remain inadequately characterized. This study presents a year-long measurement of 92 organic markers in PM2.5 samples collected at an urban site in Beijing from 2014 to 2015. Saccharides were the most abundant (340.1 ng m−3) species detected, followed by phthalic acids (283.4 ng m−3). In summer, high proportions (8%–24%) of phthalic acids, n-alkanes, fatty acids, and n-alcohols indicate dom…
Quantification of Coastal New Ultra-Fine Particles Formation from In situ and Chamber Measurements during the BIOFLUX Campaign
Environmental Context. Secondary processes leading to the production of ultra-fine particles by nucle- ation are still poorly understood. A fraction of new particles formed can grow into radiatively active sizes, where they can directly scatter incoming solar radiation and, if partly water soluble, contribute to the cloud condensation nuclei population. New particle formation events have been frequently observed at the Mace Head Atmospheric Research Station (western Ireland), under low tide and sunny conditions, leading to the hypothesis that new particles are formed from iodo-species emitted from macroalgae. Abstract. New particle formation processes were studied during the BIOFLUX campaig…
Determination of n-alkanes, PAHs and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches
Organic aerosol (OA) constitutes a large fraction of fine particulate matter (PM) in the urban air. However, the chemical nature and sources of OA are not well constrained. Quantitative analysis of OA is essential for understanding the sources and atmospheric evolution of fine PM, which requires accurate quantification of some organic compounds (e.g., markers). In this study, two analytical approaches, i.e., thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) and solvent extract (SE) GC-MS were evaluated for the determination of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and hopanes in ambient aerosol. For the SE approach, the recovery obtained is 89.3–101.5&…
Contrasting sources and processes of particulate species in haze days with low and high relative humidity in winter time Beijing
Abstract. Although there are many studies of particulate matter (PM) pollution in Beijing, the sources and processes of secondary PM species during haze periods remain unclear. Limited studies have investigated the PM formation in highly-polluted environments under low and high relative humidity (RH) conditions. Herein, we present a systematic comparison of species in submicron particles (PM1) in wintertime Beijing (29 December 2014 to 28 February 2015) for clean periods and pollution periods under low and high RH conditions. PM1 species were measured with an aerosol chemical species monitor (ACSM) and an aethalometer. Sources and processes for organic aerosol (OA) were resolved by positive…
Diurnal and seasonal variation of monoterpene and sesquiterpene emissions from Scots pine (Pinus sylvestris L.)
Abstract Recent research pointed out the question of missing OH reactivity in a forest system and the question for unknown highly reactive biogenic emissions. In this study we show that coniferous forests are an important source of highly reactive hydrocarbons, the sesquiterpenes. We investigated the seasonality of terpene emissions from Scots pine to work out influences on atmospheric chemistry in different seasons for both mono- and sesquiterpenes. Especially sesquiterpenes (C15) change dramatically in their contribution to the terpene emissions of Scots pine. Fourteen sesquiterpenes and oxygenated compounds were found in the emissions. In spring, the pattern was most complex with all 14 …
Iodine Speciation in Marine Boundary Layer
Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions
Special issue Marine organic matter: from biological production in the ocean toorganic aerosol particles and marine clouds (ACP/OS inter-journalSI).-- 15 pages, 8 figures, 1 table, supplement https://doi.org/10.5194/acp-20-4193-2020
Reply to “Mirror Symmetry Breaking” of the Centrosymmetric CaCO3 Crystals with Amino Acids
Lignin oxidation products as a potential proxy for vegetation and environmental changes in speleothems and cave drip water – a first record from the Herbstlabyrinth, central Germany
Here, we present the first quantitative speleothem record of lignin oxidation products (LOPs), which has been determined in a Holocene stalagmite from the Herbstlabyrinth Cave in central Germany. In addition, we present LOP results from 16 months of drip water monitoring. Lignin is only produced by vascular plants and therefore has the potential to be an unambiguous vegetation proxy and to complement other vegetation and climate proxies in speleothems. We compare our results with stable isotope and trace element data from the same sample. In the stalagmite, LOP concentrations show a similar behavior to P, Ba and U concentrations, which have previously been interpreted as vegetation proxies.…
Suppression of new particle formation from monoterpene oxidation by NO&lt;sub&gt;x&lt;/sub&gt;
Abstract. The impact of nitrogen oxides (NOx = NO + NO2) on new particle formation (NPF) and on photochemical ozone production from real plant volatile organic compound (BVOC) emissions was studied in a laboratory setup. At high NOx conditions ([BVOC] / [NOx] < 7, [NOx] > 23 ppb) new particle formation was suppressed. Instead, photochemical ozone formation was observed resulting in higher hydroxyl radical (OH) and lower nitrogen monoxide (NO) concentrations. When [NO] was reduced back to levels below 1 ppb by OH reactions, NPF was observed. Adding high amounts of NOx caused NPF to be slowed by orders of magnitude compared to analogous experiments at low NOx conditions ([NOx] ~300 ppt)…
A detailed MSn study for the molecular identification of a dimer formed from oxidation of pinene
Abstract Dimeric products formed in the oxidation of α- and β-pinene have been frequently observed in laboratory and field studies of biogenic SOA formation. While their existence is undoubted, their exact chemical structures remain unclear. This study uses a combined two step approach aiming on the molecular identification of the most important of the various dimers that have been observed in biogenic secondary organic aerosol formation, a dimer with the molecular weight 358 g mol−1. The first step is the application of a functional group derivatization technique (esterification) to quantify the number of carboxylic acid groups in the target molecule. Based on the detailed interpretation o…
Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS&lt;sup&gt;n&lt;/sup&gt;) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study
Abstract. The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS) at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid) by using the miniature versatile aerosol concentration enrichment system (mVACES) upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic…
Diffusion technique for the generation of gaseous halogen standards
Abstract Halogens are known to play an important role in the tropospheric ozone-depletion chemistry and are of special interest because of their influence on the atmospheric oxidation capacity. In this paper, we investigate the application of a capillary diffusion technique for the generation of gaseous halogen standards like Br 2 , IBr, ICl and I 2 . The influence of capillary dimension (i.e. length and inner diameter), ambient pressure and headspace volume of the diffusion vessel on the test gas output has been evaluated. The experimental output rates are determined from the mass loss of the analyte vessel on a regular schedule and compared with their respective theoretical predictions. W…
Extensive Evaluation of a Diffusion Denuder Technique for the Quantification of Atmospheric Stable and Radioactive Molecular Iodine
In this paper we present the evaluation and optimization of a new approach for the quantification of gaseous molecular iodine (I(2)) for laboratory- and field-based studies and its novel application for the measurement of radioactive molecular iodine. alpha-Cyclodextrin (alpha-CD) in combination with (129)I(-) is shown to be an effective denuder coating for the sampling of gaseous I(2) by the formation of an inclusion complex. The entrapped (127)I(2) together with the (129)I(-) spike in the coating is then released and derivatized to 4-iodo-N,N-dimethylaniline (4-I-DMA) for gas chromatography-mass spectrometry (GC-MS) analysis. The (127)I(2) collected can be differentiated from the (129)I(-…
Observations of high concentrations of I2and IO in coastal air supporting iodine-oxide driven coastal new particle formation
[1] Theoretical studies have predicted that concentrations of gaseous I2 and IO of the order of 80–100 ppt and 40–50 ppt, respectively, are required in coastal air to account for photochemically-driven coastal new-particle formation events to occur. However, measurements reported to date (i.e., ∼20 ppt I2, ≤ 10 ppt IO) have not supported the required model predictions. Here, we present measurements of high concentrations of I2 and IO in N.E. Atlantic marine air on the west coast of Ireland. The maximum mixing ratios of daytime I2 and IO over the seaweed beds during low tide were 302 ppt and 35 ppt, respectively. The I2 distribution was rather inhomogeneous, even at the inter-tidal zone, but…
Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of pm&lt;sub&gt;2.5&lt;/sub&gt; from xi'an, northwestern china
Abstract. The sources, formation mechanism and amount of organosulfates (OS) in atmospheric aerosol are not yet well understood, partly due to the lack of authentic standards for quantification. In this study, we report an improved robust procedure for the synthesis of organosulfates with different functional groups. Nine authentic organosulfate standards were synthesized and four standards (benzyl sulfate, phenyl sulfate, glycolic acid sulfate, and hydroxyacetone sulfate) were used to quantify their ambient concentrations. The authentic standards and ambient aerosol samples were analyzed using an optimized ultra performance liquid chromatography–electrospray ionization-tandem mass spectrom…
Lignin oxidation products as a vegetation proxy in stalagmite and drip water samples from the Herbstlabyrinth, Germany
Here we present the first quantitative record of lignin oxidation products (LOPs) in a Holocene stalagmite from the Herbstlabyrinth Cave in central Germany, as well as LOP results from 16 months of drip water monitoring. Lignin is only produced by vascular plants and is therefore an unambiguous vegetation proxy, which can help to better interpret other vegetation and climate proxies in speleothems. We compared our results with stable isotope and trace element data from the same samples. The drip water monitoring reveals a seasonal pattern of LOPs in a fast drip site with low LOP concentrations in winter and higher LOP concentrations in summer, which is opposite to the behaviour of the drip …