0000000000347750

AUTHOR

Viviana Costa

Nanogel-antimiR-31 conjugates affect colon cancer cells behaviour

Soft and flexible nanogels, produced by electron beam (e-beam) irradiation of poly(N-vinyl pyrrolidone) and acrylic acid, were evaluated as delivery devices of the inhibitor of miR-31, a small RNA molecule with an important role in colorectal cancer (CRC) progression. The nanogel carriers developed possess both carboxyl and primary amino groups; the former were activated to react with the primary amino group present in the purposely-functionalised AntimiR-31. Very high conjugation reaction yields were attained, as well as a remarkable colloidal and storage stability of the conjugates. The ability of these nanoconstructs to be internalized by cells and the specific interaction of conjugated …

research product

Osteogenic commitment and differentiation of human mesenchymal stem cells by low‐intensity pulsed ultrasound stimulation

Low-intensity pulsed ultrasound (LIPUS) as an adjuvant therapy in in vitro and in vivo bone engineering has proven to be extremely useful. The present study aimed at investigating the effect of 30 mW/cm(2) LIPUS stimulation on commercially available human mesenchymal stem cells (hMSCs) cultured in basal or osteogenic medium at different experimental time points (7d, 14d, 21d). The hypothesis was that LIPUS would improve the osteogenic differentiation of hMSC and guarantying the maintenance of osteogenic committed fraction, as demonstrated by cell vitality and proteomic analysis. LIPUS stimulation (a) regulated the balance between osteoblast commitment and differentiation by specific network…

research product

How miR-31-5p and miR-33a-5p Regulates SP1/CX43 Expression in Osteoarthritis Disease: Preliminary Insights

Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted

research product

Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis

Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression

research product

Additional file 1: of CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA

(a) Characterization of isolated exosomes. Left panel: DSL for exosomes released by SKHep Middle panel: Western blot forTsg101 and HSC70 in SkHep cells and their relative exosomes. Right panel: Confocal microscopy analysis on HUVECs treated for 1, 3 and 6 hours with 5 mg/ml of SKHep-derived exosomes. HUVECs were stained with phalloidin Alexa Fluor (green), nuclear counterstaining was performed using DAPI (blue), exosomes were labelled with PKH26 (red). (b) Target analysis. Real time-PCR analysis on HUVECs treated for 18 h with 5 mg/ml of SkHep-derived exosomes. Normalized for b-actin the DDct were indicated as fold of induction respect to control (untreated cells). *p<0.05. (c) Tubulogen…

research product

Relevance of 3d culture systems to study osteosarcoma environment

Abstract Osteosarcoma (OS) is the most common primary malignant tumor of bone, which preferentially develops lung metastasis. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for patients with metastatic or recurrent OS remains dramatically poor. Novel therapies are therefore required to slow progression and eradicate the disease. Furthermore, to better understand the cellular and molecular mechanisms responsible for OS onset and progression, the development of novel predictive culture systems resembling the native three-dimensional (3D) tumor microenvironment are mandatory. ‘Tumor engineering’ approaches radically changed t…

research product

Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment.

Osteosarcoma (OS) is a rare primary malignant bone tumour arising from primitive bone-forming mesenchymal cells, with high incidence in children and young adults, accounting for approximately 60% of all malignant bone tumours. Currently, long-term disease-free survival can be achieved by surgical treatment plus chemotherapy in approximately 60% of patients with localized extremity disease, and in 20-30% of patients with metastatic lung or bone disease. Diagnosis of primary lesions and recurrences is achieved by using radiological investigations and standard tissue biopsy, the latter being costly, painful and hardly repeatable for patients. Therefore, despite some recent advances, novel biom…

research product

Long Non Coding RNA H19: A New Player in Hypoxia-Induced Multiple Myeloma Cell Dissemination

The long non-coding RNA H19 (lncH19) is broadly transcribed in the first stage of development and silenced in most cells of an adult organism

research product

MiR-33a Controls hMSCS Osteoblast Commitment Modulating the Yap/Taz Expression Through EGFR Signaling Regulation

Mesenchymal stromal cells (hMSCs) display a pleiotropic function in bone regeneration. The signaling involved in osteoblast commitment is still not completely understood, and that determines the failure of current therapies being used. In our recent studies, we identified two miRNAs as regulators of hMSCs osteoblast differentiation driving hypoxia signaling and cytoskeletal reorganization. Other signalings involved in this process are epithelial to mesenchymal transition (EMT) and epidermal growth factor receptor (EGFR) signalings through the regulation of Yes-associated protein (YAP)/PDZ-binding motif (TAZ) expression. In the current study, we investigated the role of miR-33a family as a (…

research product

Evidence for a common progenitor of epithelial and mesenchymal components of the liver

Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. The liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the …

research product

MiR675-5p Acts on HIF-1α to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma

Hypoxia is a common feature in solid tumours. In glioma, it is considered the major driving force for tumour angiogenesis and correlates with enhanced resistance to conventional therapies, increased invasiveness and a poor prognosis for patients. Here we describe, for the first time, that miR675-5p, embedded in hypoxia-induced long non-coding RNA H19, plays a mandatory role in establishing a hypoxic response and in promoting hypoxia-mediated angiogenesis. We demonstrated, in vitro and in vivo, that miR675-5p over expression in normoxia is sufficient to induce a hypoxic moreover, miR675-5p depletion in low oxygen conditions, drastically abolishes hypoxic responses including angiogenesis. In …

research product

Effect of Low-Intensity Pulsed Ultrasound on Osteogenic Human Mesenchymal Stem Cells Commitment in a New Bone Scaffold

Purpose Bone tissue engineering is helpful in finding alternatives to overcome surgery limitations. Bone growth and repair are under the control of biochemical and mechanical signals; therefore, in recent years several approaches to improve bone regeneration have been evaluated. Osteo-inductive biomaterials, stem cells, specific growth factors and biophysical stimuli are among those. The aim of the present study was to evaluate if low-intensity pulsed ultrasound stimulation (LIPUS) treatment would improve the colonization of an MgHA/Coll hybrid composite scaffold by human mesenchymal stem cells (hMSCs) and their osteogenic differentiation. LIPUS stimulation was applied to hMSCs cultured on …

research product

Non-flavonoid polyphenols in osteoporosis: preclinical evidence

The development of progressive osteopenia and osteoporosis (OP) is due to the imbalance between bone resorption and bone formation, determining a lower bone resistance, major risks of fractures, with consequent pain and functional limitations. Flavonoids, a class of polyphenols, have been extensively studied for their therapeutic activities against bone resorption, but less attention has been given to a whole series of molecules belonging to the polyphenolic compounds. However, these classes have begun to be studied for the treatment of OP. In this systematic review, comprehensive information is provided on non-flavonoid polyphenolic compounds, and we highlight pathways implicated in the ac…

research product

The Binomial “Inflammation-Epigenetics” in Breast Cancer Progression and Bone Metastasis: IL-1β Actions Are Influenced by TET Inhibitor in MCF-7 Cell Line

The existence of a tight relationship between inflammation and epigenetics that in primary breast tumor cells can lead to tumor progression and the formation of bone metastases was investigated. It was highlighted how the induction of tumor progression and bone metastasis by Interleukin-1 beta, in a non-metastatic breast cancer cell line, MCF-7, was dependent on the de-methylating actions of ten-eleven translocation proteins (TETs). In fact, the inhibition of their activity by the Bobcat339 molecule, an inhibitor of TET enzymes, determined on the one hand, the modulation of the epithelial-mesenchymal transition process, and on the other hand, the reduction in the expression of markers of bo…

research product

Data on the effects of low iron diet on serum lipid profile in HCV transgenic mouse model

Here, we presented new original data on the effects of iron depletion on the circulating lipid profile in B6HCV mice, a murine model of HCV-related dyslipidemia. Male adult B6HCV mice were subjected to non-invasive iron depletion by low iron diet. Serum iron concentration was assessed for evaluating the effects of the dietary iron depletion. Concentrations of circulating triglycerides, total cholesterol, Low Density Lipoproteins (LDLs), High Density Lipoproteins (HDLs) were analyzed and reported by using stacked line charts. The present data indicated that low serum iron concentration is associated to i) lower serum triglycerides concentrations and ii) increased circulating LDLs. The presen…

research product

MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells

// Viviana Costa 1, * , Alessia Lo Dico 2, * , Aroldo Rizzo 3 , Francesca Rajata 3 , Marco Tripodi 4, 5 , Riccardo Alessandro 6, 7, * , Alice Conigliaro 4, * 1 Innovative Technological Platforms for Tissue Engineering, Theranostic and Oncology, Rizzoli Orthopedic Institute, Palermo, Italy 2 Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milano, Italy 3 Unita Operativa di Anatomia Patologica, Azienda Ospedaliera Ospedali Riuniti “Villa Sofia-Cervello”, Palermo, Italy 4 Dipartimento di Biotecnologie Cellulari ed Ematologia, Sapienza University of Rome, Rome, Italy 5 National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy 6 Dipartimen…

research product

CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA

Background CD90+ liver cancer cells have been described as cancer stem-cell-like (CSC), displaying aggressive and metastatic phenotype. Using two different in vitro models, already described as CD90+ liver cancer stem cells, our aim was to study their interaction with endothelial cells mediated by the release of exosomes. Methods Exosomes were isolated and characterized from both liver CD90+ cells and hepatoma cell lines. Endothelial cells were treated with exosomes, as well as transfected with a plasmid containing the full length sequence of the long non-coding RNA (lncRNA) H19. Molecular and functional analyses were done to characterize the endothelial phenotype after treatments. Results …

research product

Osteosarcoma cell-derived exosomes affect tumor microenvironment by specific packaging of microRNAs

Abstract Bone microenvironment provides growth and survival signals essential for osteosarcoma (OS) initiation and progression. OS cells regulate communications inside tumor microenvironment through different ways and, among all, tumor-derived exosomes support cancer progression and metastasis. To define the contribution of OS-derived exosomes inside the microenvironment, we investigated the effects induced in bone remodeling mechanism and tumor angiogenesis. We demonstrated that exosomes promoted osteoclasts differentiation and bone resorption activity. Furthermore, exosomes potentiated tube formation of endothelial cells and increased angiogenic markers expression. We therefore investigat…

research product

Flavonoids in Bone Erosive Diseases: Perspectives in Osteoporosis Treatment

Imbalance of bone homeostasis, with excessive bone resorption compared with bone formation, leads to the development of progressive osteopenia leading to lower bone resistance to load, with consequent pain and functional limitations. Phytochemicals with therapeutic and preventive effects against bone resorption have recently received increasing attention since they are potentially more suitable for long-term use than traditional therapeutic chemical compounds. In this systematic review of the literature of the past 5 years, comprehensive information is provided on flavonoids with potential antiresorption and pro-osteogenic effects. It aims to highlight the molecular mechanisms of these mole…

research product

Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis.

MicroRNA (miRNA) has shown to enhance or inhibit cell proliferation, differentiation and activity of different cell types in bone tissue. The discovery of miRNA actions and their targets has helped to identify them as novel regulations actors in bone. Various studies have shown that miRNA deregulation mediates the progression of bone-related pathologies, such as osteoporosis. The present review intends to give an exhaustive overview of miRNAs with experimentally validated targets involved in bone homeostasis and highlight their possible role in osteoporosis development. Moreover, the review analyzes miRNAs identified in clinical trials and involved in osteoporosis.

research product

Terpenoid treatment in osteoporosis: this is where we have come in research.

Lower bone resistance to load is due to the imbalance of bone homeostasis, where excessive bone resorption, compared with bone formation, determines a progressive osteopenia, leading to a high risk of fractures and consequent pain and functional limitations. Terpenoids, with their activities against bone resorption, have recently received increased attention from researchers. They are potentially more suitable for long-term use compared with traditional therapeutics. In this review of the literature of the past 5 years, we provide comprehensive information on terpenoids, with their anti-osteoporotic effects, highlighting molecular mechanisms that are often in epigenetic key and a possible p…

research product

Gene therapy for chondral and osteochondral regeneration: is the future now?

Gene therapy might represent a promising strategy for chondral and osteochondral defects repair by balancing the management of temporary joint mechanical incompetence with altered metabolic and inflammatory homeostasis. This review analysed preclinical and clinical studies on gene therapy for the repair of articular cartilage defects performed over the last 10 years, focussing on expression vectors (non-viral and viral), type of genes delivered and gene therapy procedures (direct or indirect). Plasmids (non-viral expression vectors) and adenovirus (viral vectors) were the most employed vectors in preclinical studies. Genes delivered encoded mainly for growth factors, followed by transcripti…

research product

Focused Ultrasound Effects on Osteosarcoma Cell Lines

MRI guided Focused Ultrasound (MRgFUS) has shown to be effective therapeutic modality for non-invasive clinical interventions in ablating of uterine fibroids, in bone metastasis palliative treatments, and in breast, liver, and prostate cancer ablation. MRgFUS combines high intensity focused ultrasound (HIFU) with MRI images for treatment planning and real time thermometry monitoring, thus enabling non-invasive ablation of tumor tissue. Although in the literature there are several studies on the Ultrasound (US) effects on cell in culture, there is no systematic evidence of the biological effect of Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS) treatment on osteosarcoma cells, …

research product

Potential Anti-Metastatic Role of the Novel miR-CT3 in Tumor Angiogenesis and Osteosarcoma Invasion

Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our …

research product

miR-31-5p Is a LIPUS-Mechanosensitive MicroRNA that Targets HIF-1α Signaling and Cytoskeletal Proteins

The roles of low-intensity pulsed ultrasound (LIPUS) and microRNAs (miRNAs) on hMSCs commitments have already been investigated

research product

Engineered exosomes: A new promise for the management of musculoskeletal diseases.

Abstract Background Exosomes are nanovesicles actively secreted by potentially all cell types, including tumour cells, with the primary role of extracellular systemic communication mediators, both at autocrine and paracrine levels, at short and long distances. Recently, different studies have used exosomes as a delivery system for a plethora of different molecules, such as drugs, microRNAs and proteins. This has been made possible thanks to the simplicity in exosomes engineering, their great stability and versatility for applications in oncology as well as in regenerative medicine. Scope of review The aim of this review is to provide information on the state-of-the-art and possible applicat…

research product

Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair.

Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano- hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differen- tiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic…

research product

Hypoxia-inducible factor 1Α may regulate the commitment of mesenchymal stromal cells toward angio-osteogenesis by mirna-675-5P

Abstract Background aims During bone formation, angiogenesis and osteogenesis are regulated by hypoxia, which is able to induce blood vessel formation, as well as recruit and differentiate human mesenchymal stromal cells (hMSCs). The molecular mechanisms involved in HIF-1α response and hMSC differentiation during bone formation are still unclear. This study aimed to investigate the synergistic role of hypoxia and hypoxia-mimetic microRNA miR-675-5p in angiogenesis response and osteo-chondroblast commitment of hMSCs. Methods By using a suitable in vitro cell model of hMSCs (maintained in hypoxia or normoxia), the role of HIF-1α and miR-675-5p in angiogenesis and osteogenesis coupling was inv…

research product