0000000000617435

AUTHOR

Alain Dereux

Surface-plasmon hopping along coupled coplanar cavities

International audience; We report on surface-plasmon propagation along coupled coplanar cavities periodically distributed in an otherwise unperturbed plasmonic crystal. We show that the dispersion of particular Bloch modes can exhibit multiple energy gaps that can be adjusted by choosing the cavity size. For resonant sizes, the composite crystals composed of juxtaposed cavities can support plasmon modes at frequencies within the gap of the unperturbed grating. In this case, we demonstrate that the surface-plasmon propagation relies on a hopping mechanism.

research product

Characterization of thermo-optical 2×2 switch configurations made of Dielectric Loaded Surface Plasmon Polariton Waveguides for telecom routing architecture

We report on the characterization of thermo-optic switch structures based on Dielectric Loaded Surface Plasmon Polariton Waveguide for high data bit rate transfer. Performances are extracted by Leakage Radiation Microscopy and compared to numerical results.

research product

Generalized bloch equations for optical interactions in confined geometries

By combining the field-susceptibility technique with the optical Bloch equations, a general formalism is developed for the investigation of molecular photophysical phenomena triggered by nanometer scale optical fields in the presence of complex environments. This formalism illustrate the influence of the illumination regime on the fluorescence signal emitted by a single molecule in a complex environment. In the saturated case, this signal is proportional to the optical local density of states, while it is proportional to the near-field intensity in the non-saturated case. (C) 2005 Elsevier B.V. All rights reserved.

research product

DEVELOPMENT AND NEAR-FIELD CHARACTERIZATION OF SURFACE PLASMON WAVEGUIDES

research product

10 Gb/s transmission and thermo-optic resonance tuning in silicon-plasmonic waveguide platform

The first system-level experimental results of hybrid Si-DLSPP structures incorporated into a SOI chip are reported. We demonstrate over 7nm thermo-optical tuning of a Si-Plasmonic racetrack-resonator and verify error-free 10Gb/s transmission through 60um Si-Plasmonic waveguide.

research product

Supercontinuum generation in titanium dioxide waveguides

International audience; Optical supercontinua are a fundamental topic that has stimulated a tremendous practical interest since the early works of Alfano et al. in the 70’s in bulk components. Photonic crystal fibers have then brought some remarkable potentialities in tailoring the dispersive properties of a waveguide while maintaining a high level of confinement over significant propagation distances. The next breakthrough is to further reduce the footprint of the nonlinear component and to achieve the generation of optical supercontinuum on a photonic chip. To reach this aim, several platforms have been successfully investigated such as silicon, silicon germanium, silicon nitride, chalcog…

research product

Active Plasmonics in True Data Traffic Applications: Thermo-Optic On/Off Gating Using a Silicon-Plasmonic Asymmetric MachZehnder Interferometer

We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s response time and 10.8-mW power consumption. We present the first system-level demonstration of an active plasmonic device in 10-Gb/s data traffic conditions. An asymmetric silicon-plasmonic Mach-Zehnder interferometer with dielectric-loaded plasmonic waveguides serving as the electrically controlled arms, operates as thermo-optic ON/OFF gating element with 2.8-mu s respon…

research product

Relationship between scanning near-field optical images and local density of photonic states

From numerical calculations based on Green's dyadic formalism, we show that a scanning near-field optical microscope (SNOM) working with a point-like illuminating probe delivers images that contain features directly related to the local density of photonic states (LDOS). More precisely, an unambiguous identification of the partial LDOSs (x, y or z polarized) can be made in the SNOM images when the solid angle of detection reaches 2π sr.

research product

Sorting of Enhanced Reference Raman Spectra of a Single Amino Acid Molecule

In this contribution, we report the identification of the principal reference Raman spectra of a single cystein molecule. To that purpose, we design an active Surface Enhanced Raman Spectroscopy (SERS) template based on surfactant-less Chebyshev nanoparticles operating in a microfluidic platform. A principal component analysis is obtained from fluctuating spectra to sort the reference spectra of cystein. The assignment of Raman bands brings new insight into the conformation of an amino acid adsorbed onto gold nanoparticle.

research product

Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide.

International audience; Using a single-mode dielectric-loaded surface plasmon polariton waveguide doped with quantum dots, we were able to slightly increase the propagation length of the mode by stimulated emission of plasmon. We analyse the amplification phenomenon in the visible range by combining leakage radiation microscopy and surface plasmon coupled emission techniques.

research product

Surface plasmon near-field imaging of very thin microstructured polymer layers.

We report on the near-field imaging of microstructured polymer layers deposited on an homogeneous metal thin film on which a surface plasmon mode is excited. The microstructures in the polymer layers are designed by electron beam lithography, and the near-field imaging is performed with a photon scanning tunneling microscope (PSTM). We show that, despite their very small height, the microstructures can be conveniently imaged with a PSTM thanks to the field enhancement at the surface of the metal thin film supporting the surface plasmon. The influence of the illumination conditions on the contrast of the PSTM images is discussed. In particular, we show that both the field enhancement and the…

research product

Power monitoring in dielectric-loaded surface plasmon-polariton waveguides

We report on propagating mode power monitoring in dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) by measuring the resistance of gold stripes supporting the DLSPPW mode propagation. Inevitable absorption of the DLSPPW mode in metal causes an increase in the stripe temperature and, thereby, in its resistance whose variations are monitored with an external Wheatstone bridge being accurately balanced in the absence of radiation in a waveguide. The investigated waveguide configuration consists of a 1-µm-thick and 10-µm-wide polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-µm-wide gold stripe, all supported by a magnesium fluoride substrate. Usi…

research product

Optical addressing at the subwavelength scale

The Green dyadic formalism is applied to the study of the optical properties of dielectric subwavelength structures integrated in coplanar geometry. We first consider homogeneous wires with high refractive index featuring subwavelength cross sections. We show that such wires may have guiding properties and that they may be coupled with a local illumination produced by a focused Gaussian beam totally reflected at the substrate interface. When excited by the focused beam, these subwavelength optical waveguides (SOW's) provide a confined source of light that could be used to excite a single nanoscopic object. Well designed heteregeneous wires resulting from the alignment of dielectric particle…

research product

Plasmonics co-integrated with silicon nitride photonics for high-sensitivity interferometric biosensing

We demonstrate a photonic integrated Mach-Zehnder interferometric sensor, utilizing a plasmonic stripe waveguide in the sensing branch and a photonic variable optical attenuator and a phase shifter in the reference arm to optimize the interferometer operation. The plasmonic sensor is used to detect changes in the refractive index of the surrounding medium exploiting the accumulated phase change of the propagating Surface-Plasmon-Polariton (SPP) mode that is fully exposed in an aqueous buffer solution. The variable optical attenuation stage is incorporated in the reference Si3N4 branch, as the means to counter-balance the optical losses introduced by the plasmonic branch and optimize interfe…

research product

Localized surface plasmons on a torus in the nonretarded approximation

International audience; The dispersion relations and field patterns of the localized surface plasmons of a torus are derived analytically in toroidal coordinates in the nonretarded approximation. Numerical calculations are provided in order to identify the conditions under which a toroidal nanostructure supports a significant magnetic dipole moment at optical frequencies.

research product

Refractive micro-optical elements for surface plasmons: from classical to gradient index optics.

Controlling the propagation of surface plasmons along a metal-dielectric interface is a key feature for the development of surface plasmon based circuits. We have designed various two-dimensional refractive dielectric optical elements for surface plasmons (SP) and characterized their capacity to route SP, using near- or far-field techniques. We first present basic devices analogous to usual optical components and the associated challenges for SP optics. We then use a metamaterial approach to locally vary the refractive index and fabricate gradient index structures for SP circuitry.

research product

Electrodynamics in complex systems

This paper discusses recent theoretical efforts to develop a general and flexible method for the calculation of the field distributions around and inside complex optical systems involving both dielectric and metallic materials. Starting from the usual light-matter coupling Hamiltonian, we derive a self-consistent equation for the optical field in arbitrary optical systems composed of N different subdomains. We show that an appropriate solving procedure based on the real-space discretization of each subdomain raises the present approach to the rank of an accurate predictive numerical scheme. In order to illustrate its applicability, we use this formalism to address challenging problems relat…

research product

Modelling Optical Resonators Probed by Subwavelength Sized Optical Detectors

The possibility of mapping the optical field structure inside a Fabry-Perot resonator by using a pointed optical fiber was recently reported [1]. In this contribution, we propose a simulation of such near-field optical experiments by using a two-dimensional self-consistent model. The method based on the discretization of four different domains, i.e. the two mirrors, the glass sample and the tip, allows us a meaningful description of the evolution of the full field pattern when approaching the optical detector. In particular, this computerized work supply a direct illustration of the optical energy tranfer occurring when the tip enters the near-field zone. In this context, different tip desi…

research product

Differential method for modeling dielectric-loaded surface plasmon polariton waveguides

This paper demonstrates the efficiency of the differential method, a conventional grating theory, to investigate dielectric loaded surface plasmon polariton waveguides (DLSPPWs), known to be a potential solution for optical interconnects. The method is used to obtain the mode effective indices (both real and imaginary parts) and the mode profiles. The results obtained with the differential method are found to be in good agreement with those provided by the effective index method or finite elements. The versatility of the differential method is demonstrated by considering complex configurations such as trapezoidal waveguides or DLSPPWs lying on a finite width metal stripe.

research product

Photonic transfer through subwavelength optical waveguides

Optical tunneling effect through dielectric junctions with subwavelength transverse sizes has been demonstrated some years ago. In this letter, we demonstrate how similar effects can be exploited to perform photonic transfer through a subwavelength optical wave guide (SOW) by structuring its optical index along the direction of propagation. The optical transmittance of the SOW is computed self-consistently in direct space through the numerical solution of a Dyson equation. We apply this scheme to investigate the optical properties of different SOW architectures. Even under total internal reflection, in which the light is coupled to the SOW by an evanescent mode, an efficient optical transfe…

research product

Active plasmonics in WDM traffic switching applications

With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the …

research product

Submicrometer in-plane integrated surface plasmon cavities.

International audience; The optical properties of in-plane integrated surface plasmon polariton (SPP) cavities comprised of a thin film area sandwiched between two one-dimensional Bragg SPP mirrors are investigated numerically and experimentally. We discuss the resonance condition of these cavities, and we analyze in details the physical origin of the dispersion of this resonance. On the basis of numerical results, we show that in-plane SPP cavities can be used to achieve local SPP field enhancement and antireflecting SPP layers. The numerical results are compared to near-field optical images recorded by operating a photon scanning tunneling microscope. From the near-field images recorded o…

research product

0.48Tb/s (12x40Gb/s) WDM transmission and high-quality thermo-optic switching in dielectric loaded plasmonics

We demonstrate Wavelength Division Multiplexed (WDM)-enabled transmission of 480Gb/s aggregate data traffic (12x40Gb/s) as well as high-quality 1x2 thermo-optic tuning in Dielectric-Loaded Surface Plasmon Polariton Waveguides (DLSPPWs). The WDM transmission characteristics have been verified through BER measurements by exploiting the heterointegration of a 60 mu m-long straight DLSPPW on a Silicon-on-Insulator waveguide platform, showing error-free performance for six out of the twelve channels. High-quality thermo-optic tuning has been achieved by utilizing Cycloaliphatic-Acrylate-Polymer as an efficient thermo-optic polymer loading employed in a dual-resonator DLSPPW switching structure, …

research product

Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si$_{3}$N$_{4}$ for Biosensing Applications

We present a technology platform supported by a new process design kit (PDK) that integrates two types of aluminum plasmonic waveguides with Si $_{3}$ N $_{4}$ photonics towards CMOS-compatible plasmo-photonic integrated circuits for sensing applications. More specifically, we demonstrate the fabrication of aluminum slot waveguide via e-beam lithography (EBL) on top of the Si $_{3}$ N $_{4}$ waveguide and an optimized fabrication process of aluminum plasmonic stripe waveguides within a CMOS foundry using EBL. Experimental measurements revealed a propagation length of 6.2 μm for the plasmonic slot waveguide in water at 1550 nm, reporting the first ever experimental demonstration of a plasmon…

research product

Demonstration of a Plasmonic MMI Switch in 10-Gb/s True Data Traffic Conditions

International audience; We report the first experimental performance evaluation of a 75-mu m-long plasmonic multimode interference switch that is hetero-integrated on a silicon-on-insulator platform, operating with 10-Gb/s data signals. The switch exhibits a 2.9-mu s response time and 44.5% modulation depth, while the extinction ratio between the ports alters from 5.4 to -1.5 dB for 35-mW electrical (switching) power. Error-free performance was achieved.

research product

Active components for integrated plasmonic circuits

International audience; We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.

research product

Analysis of the angular acceptance of surface plasmon Bragg mirrors

International audience; We analyze an important aspect of the behavior of surface plasmon polariton (SPP) Bragg mirrors: the dependence of the angular acceptance for reflection on the incidence angle. By means of leakage radiation microscopy, both in direct and Fourier space, we observe that the angular acceptance diminishes for increasing incidence angles. This effect, which can considerably affect the design of devices based on these elements, is shown to be the consequence of the decrease of the bandgap width with increasing incidence angle. (c) 2007 Optical Society of America.

research product

Thermo-optic control of dielectric-loaded plasmonic waveguide components

International audience; We report preliminary results on the development of compact (length 20%) is demonstrated with MZI-and WRR-based components, and efficient (similar to 30%) rerouting is achieved with DC switches. (C) 2010 Optical Society of America

research product

The Single Molecule Probe: Nanoscale Vectorial Mapping of Photonic Mode Density in a Metal Nanocavity

International audience; We use superresolution single-molecule polarization and lifetime imaging to probe the local density of states (LDOS) in a metal nanocavity. Determination of the orientation of the molecular transition dipole allows us to retrieve the different LDOS behavior for parallel and perpendicular orientations with respect to the metal interfaces. For the perpendicular orientation, a strong lifetime reduction is observed for distances up to 150 nm from the cavity edge due to coupling to surface plasmon polariton modes in the metal. Contrarily, for the parallel orientation we observe lifetime variations resulting from coupling to characteristic λ/2 cavity modes. Our results are…

research product

Optimization of surface plasmons launching from subwavelength hole arrays: modelling and experiments

International audience; The launching of surface plasmons by micro-gratings of subwavelength apertures milled in a thick metal film is important for the development of surface plasmon based circuits. By comparing the near-field optical images of such surface plasmon sources with the results of a Huygens-Fresnel principle based scattering model, we show that the properties of the locally launched SP beams such as divergence or uniformity can be tuned by adjusting the shape of the micro-gratings. This allows us to propose an optimized source array well adapted for providing a narrow, collimated and uniform beam. (c) 2007 Optical Society of America.

research product

Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization

International audience; The excitation and propagation of strongly confined surface plasmon-polariton (SPP) waveguide modes, supported by 500-nm-wide and 550-nm-high dielectric ridges fabricated on smooth gold films, are investigated at telecommunication wavelengths using a scanning near-field optical microscope. Different tapering structures for coupling of SPPs, excited at bare gold surfaces, into dielectric-loaded SPP waveguide (DLSPPW) modes are considered. The DLSPPW mode confinement and propagation loss are characterized. The DLSPPW mode propagation along an S bend having the smallest curvature radius of 2.48 mu m is shown, demonstrating the potential of DLSPPW technology for the real…

research product

Kerr and Faraday Rotations of Magneto-Optical Multilayers under the Condition of Total Internal Reflection

research product

Determinant role of the edges in defining surface plasmon propagation in stripe waveguides and tapered concentrators

International audience; In this paper, we experimentally show the effect of waveguide discontinuity on the propagation of the surface plasmon in metal stripes and tapered terminations. Dual-plane leakage microscopy and near-field microscopy were performed on Au stripes with varied widths to imag29e the surface plasmon intensity distribution in real and reciprocal spaces. We unambiguously demonstrate that edge diffraction is the limiting process determining the cutoff conditions of the surface plasmon mode. Finally, we determine the optimal tapered geometry leading to the highest transmission.

research product

Design, near-field characterization, and modeling of 45 circle surface-plasmon Bragg mirrors

The development of surface plasmon polariton (SPP) optical elements is mandatory in order to achieve surface plasmon based photonics. A current approach to reach this goal is to take advantage of the interaction of SPP with defects and design elements obtained by the micro- or nano-structuration of the metal film. In this work, we have performed a detailed study of the performance and behavior of SPP-Bragg mirrors, designed for 45\ifmmode^\circ\else\textdegree\fi{} incidence, based on this approach. Mirrors consisting of gratings of both metal ridges on the metal surface and grooves engraved in the metal, fabricated by means of electron beam lithography and focused ion beam, have been consi…

research product

Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide

International audience; We develop a theoretical model to compute the local density of states in a confined plasmonic waveguide. Based on this model, we derive a simple formula with a clear physical interpretation for the lifetime modification of emitters embedded in the waveguide. The gain distribution within the active medium is then computed following the formalism developed in a recent work [Phys. Rev. B 78, 161401 (2008)], by taking rigorously into account the pump irradiance and emitters lifetime modifications in the system. We finally apply this formalism to describe gain–assisted propagation in a dielectric–loaded surface plasmon polariton waveguide.

research product

Measuring the differential scattering cross-section of gold nanoparticles - art. no. 70321E

International audience; In this paper we present an experimental apparatus capable of measuring the differential scattering cross sections of individual nanoparticles and arrangement of nanoparticles. We show that the mapping a partial differential scattering cross section, qualitative information about the electromagnetic local density of states dominated by evanescent modes scattered by the structure can be obtained.

research product

Plasmon polaritons of metallic nanowires for controlling submicron propagation of light

Laboratoire de Physique, Optique Submicronique, Universite´de Bourgogne, BP 47870, F-21078 Dijon, France~Received 29 April 1999!We use the Green dyadic technique to study the propagation of a local excitation along metallic nanowiresof a subwavelength cross section. The metallic nanowires are elongated parallelepipeds deposited on a trans-parent substrate. A tightly focused plane wave illuminates one end of the nanowires. The localized surface-plasmon resonances of the nanowires propagate the local excitations over distances larger than the incidentwavelength. The properties of the electromagnetic eigenmodes of the nanowires are analyzed in terms of thelocal density of states. @S0163-1829~9…

research product

Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles

We report on the experimental observation of near-field optical effects close to Au nanoparticles using a photon scanning tunneling microscope (PSTM). Constant height operation of the PSTM allowed an unprecedented direct comparison with theoretical computations of the distribution of the optical near-field intensity. An unexpected squeezing of the optical near field due to plasmon coupling was observed above a chain of Au nanoparticles.

research product

Efficient unidirectional nanoslit couplers for surface plasmons

5 pages, 4 figures.

research product

Addressing and imaging high optical index dielectric ridges in the optical near field

Experimental observation of light coupling between ${\mathrm{TiO}}_{2}$ integrated waveguides of subwavelength cross section and pure three-dimensional evanescent light fields is reported. This near-field optical phenomenon is produced by controlling the location of the focusing of a laser beam totally reflected at the surface of the sample. The phenomenon is observed in direct space with a photon scanning tunneling microscope. Dielectric ridges several tens of micrometers long have been efficiently excited with this technique. Upon excitation, the extremities of the linear dielectric wires display intense light spots localized both inside and around the ridge. For ridge lengths up to $30\e…

research product

Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides.

International audience; The design, fabrication, characterization, and modeling of basic building blocks of plasmonic circuitry based on dielectric- loaded surface polariton waveguides, such as bends, splitters, and Mach- Zehnder interferometers are presented. The plasmonic components are realized by depositing subwavelength dielectric ridges on a smooth gold film using mass-production- compatible UV-photolithography. The near-field characterization at telecommunication wavelengths shows the strong mode confinement and low radiation and bend losses. The performance of the devices is found in good agreement with results obtained by full vectorial three-dimensional finite element simulations.…

research product

Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides

Compact fiber-coupled dielectric-loaded plasmonic Mach-Zehnder interferometers operating at telecom wavelengths and controlled via the thermo-optic effect are reported. Two fabricated structures with Cytop substrate and a ridge made of PMMA or a cycloaliphatic acrylate polymer (CAP) were considered showing low switching power of 2.35 mW and switching time in the range of microseconds for a CAP ridge and milliseconds switching time for a PMMA ridge. Full output modulation is demonstrated for the structure with a CAP ridge and 40% modulation with a PMMA ridge. (C) 2012 Optical Society of America Compact fiber-coupled dielectric-loaded plasmonic Mach-Zehnder interferometers operating at teleco…

research product

Near-field observation of evanescent light wave coupling in subwavelength optical waveguides

International audience; We report the observation, in the range of visible frequencies, of the coupling of light into integrated waveguides of subwavelength cross-sections together with a subwavelength detection at the output, of such guides. Coupling in is produced by controlling the focusing of a laser beam totally reflected at the surface of the sample. Several tens of micrometres long dielectric ridges have been efficiently excited with this technique. The phenomenon is observed in direct space by a Photon Scanning Tunneling Microscope which also allows to test the principle of detection in a subwavelength volume.

research product

Detection of the optical magnetic field by circular symmetry plasmons

We report on the influence of coating a sharpened optical fiber tip with Au when observing nanofabricated dielectric structures with a Photon Scanning Tunneling Microscope (PSTM) in constant-height mode. For well-defined incident wavelengths and coating thicknesses, we found that such tips detect the distribution of the magnetic field associated with the optical wave in the near-field zone. A simple tip model indicates that this phenomenon is related to the excitation of circular symmetry plasmons in Au coated tips.

research product

Spatially resolved photonic transfer through mesoscopic heterowires

We report spatially resolved observations of light wave propagation along high refraction index dielectric heterowires lying on a transparent substrate. The heterowires are made of linear chains of closely packed mesoscopic particles. The optical excitation of these heterowires is performed through channel waveguides featuring submicrometer transverse cross sections. Both numerical simulations and near-field optical images, recorded with a photon scanning tunneling microscope, agree to show that, at visible frequencies, tuning the periodicity of the heterowires controls the propagation length within a range of several micrometers.

research product

SUBWAVELENGTH OPTICAL DEVICES FOR NANOMETER SCALE APPLICATIONS

Recent progress in near-field optics instrumentation led to a new class of subwavelength optical experiments in which it is intended to use either the optical tunnel effect (OTE) or the lower mode based transmission (LMBT) in order to control the optical transfer between several delocalized detection or injection centers. This paper presents a panel of new theoretical and experimental results computed or observed near various dielectric or metallic patterns, linear, curved, or dashed, integrated in coplanar geometry. In particular, we demonstrate, how an efficient control of light evanescent waves can allow structures of subwavelength cross sections to be addressed.

research product

Integrated plasmonic waveguides: A mode solver based on density of states formulation

International audience; We express the density of states (DOS) near guided resonances of plasmonic waveguides by using multiple-scattering theory. In direct analogy with the case of localized electronic defect states in condensed matter, we demonstrate that optical DOS variations follow a lorentzian profile near guided modes resonances. The lorentzian shape gives quantitative information on the guided modes (effective index, propagation length, and polarization state). We numerically investigate both leaky and bound (lossy) modes supported by dielectric-loaded surface-plasmon-polariton waveguides.

research product

Optical Near-Field Properties of Lithographically Designed Metallic Nanoparticles

ABSTRACTWe report on the experimental observation of localized surface plasmons sustained by small metallic particles using a photon scanning tunneling microscope (PSTM). The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. The constant height operation of the PSTM allowed a direct comparison with theoretical computations of the distribution of the optical near-field intensity. Plasmon coupling above a chain of Au particles and electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire are demonstrated. Our experimental results appear to be in good agreement with theoretical computations based on the Green's Dyadic Techniqu…

research product

Plasmonic-assisted Mach-Zehnder Interferometric photonic sensor using aluminum waveguides

We demonstrate a CMOS compatible interferometric plasmo-photonic sensor exploiting SisN4 photonic and aluminum (Al) plasmonic stripe waveguides. Experimental evaluation revealed bulk sensitivity of 4764 nm/RIU, holding promise for ultra-sensitive and low cost sensing devices.

research product

Fluorescence relaxation in the near-field of a mesoscopic metallic particle : distance dependence and role of plasmon modes

International audience; We analytically and numerically analyze the fluorescence decay rate of a quantum emitter placed in the vicinity of a spherical metallic particle of mesoscopic size (i.e with dimensions comparable to the emission wavelength). We discuss the efficiency of the radiative decay rate and non–radiative coupling to the particle as well as their distance dependence. The electromagnetic coupling mechanisms between the emitter and the particle are investigated by analyzing the role of the plasmon modes and their nature (dipole, multipole or interface mode). We demonstrate that near-field coupling can be expressed in a simple form verifying the optical theorem for each particle …

research product

Physical interaction between tip and molecules in scanning force microscopy imaging of adsorbed C 60 and fullerene tubules

International audience

research product

Selective Surface Modification of SiO2−TiO2 Supports with Phosphonic Acids

The selective surface modification by phosphonic acids of SiO2−TiO2 supports at the micrometer and molecular scale was investigated. Under aqueous conditions, phosphonic acids bind to TiO2 and not to SiO2 surfaces. A micropatterned support was prepared by electron beam microlithography and selectivity, of the surface modification was evidenced using scanning Auger electron spectroscopy (SAES). The second support was a mesoporous SiO2−TiO2 mixed oxide (10 mol % Ti) epoxidation catalyst prepared by sol−gel processing. Selectivity was deduced from the decrease of the catalytic activity upon modification and from chemical analysis; bonding modes to the surface were investigated using solid-stat…

research product

Super-Resolution Scanning Near-Field Optical Microscopy

Scanning near-field optical microscopy (SNOM) is a method to obtain information about the optical properties of a sample at a lateral resolution below the diffraction limit of far-field microscopy. In SNOM, a light source of a dimension which is small compared to the wavelength of light and which is held at a small distance from the sample is scanned across the surface of the sample. The modulation by the sample of the light emitted from the source is recorded as a signal. As a general rule one may say that the size of the source and the distance to the sample limit the resolution of SNOM. A radiating self-emitting point dipole may be regarded as an idealized SNOM source. With such a source…

research product

Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and Fourier plane leakage microscopy

International audience; Waveguiding of surface plasmon polaritons by dielectric-loaded metal structures is studied in detail by combining numerical simulations and leakage radiation microscopy. These types of waveguides are first numerically investigated using the effective index model and the differential method. We analyzed systematically the influence of the ridge width and thickness of the waveguide on the properties of the surface plasmon guided modes. In particular we investigated the confinement factor of the modes and their associated propagation lengths. These two parameters can be optimized by adjusting the thickness of the dielectric layer. Waveguides loaded with thick and thin d…

research product

Near-field optics theories

The development of near-field optics theory is reviewed. We first recall that near-field optics is not limited to near-field microscopy. Broadly speaking, it concerns phenomena involving evanescent electromagnetic waves. The importance of such waves was ignored for a long time in optical and surface physics until the emergence of scanning near-field optical microscopes. Taking evanescent waves into account prevents the use of any simple approximation in the set of Maxwell's equations. The various theoretical approaches of near-field optics are discussed from the point of view of their ability to assess evanescent electromagnetic waves. We discuss the main results of the application of the v…

research product

Simultaneous observation of light localization and confinement in near-field optics

We report on the observation, in direct space, of both light localization and confinement effects near lithographically designed structures. The sample is observed in the optical near-field zone with a Photon Scanning Tunneling Microscope (PSTM). Several patterns composed of a few periods of TiO2 dots, arranged as a hexagonal lattice, have been investigated. When the central dot of the pattern is removed, a phenomenon of light localization above the vacancy can be observed in the PSTM image. The occurrence of this phenomenon can be related to the variation of the electromagnetic local density of state.

research product

Momentum-space spectroscopy for advanced analysis of dielectric-loaded surface plasmon polariton coupled and bent waveguides

We perform advanced radiation leakage microscopy of routing dielectric-loaded plasmonic waveguiding structures. By direct plane imaging and momentum-space spectroscopy, we analyze the energy transfer between coupled waveguides as a function of gap distance and reveal the momentum distribution of curved geometries. Specifically, we observed a clear degeneracy lift of the effective indices for strongly interacting waveguides in agreement with coupled-mode theory. We use momentum-space representations to discuss the effect of curvature on dielectric-loaded waveguides. The experimental images are successfully reproduced by a numerical and an analytical model of the mode propagating in a curved …

research product

Fiber-coupled dielectric-loaded plasmonic waveguides.

Fiber in- and out-coupling of radiation guided by dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) is realized using intermediate tapered dielectric waveguides. The waveguide structures fabricated by large-scale UV-lithography consist of 1-microm-thick polymer ridges tapered from 10-microm-wide ridges deposited directly on a magnesium fluoride substrate to 1-microm-wide ridges placed on a 50-nm-thick and 100-microm-wide gold stripe. Using fiber-to-fiber transmission measurements at telecom wavelengths, the performance of straight and bent DLSPPWs is characterized demonstrating the overall insertion loss below 24 dB, half of which is attributed to the DLSPPW loss of propagati…

research product

Recess photomask contact lithography and the fabrication of coupled silicon photonic and plasmonic waveguide switches

Display Omitted A lithography technique capable of printing submicron-sized features inside deep cavities is presented.A so-called recess photomask adapted to the wafer's topography is employed.Based on a standard mask aligner, Recess Photomask Contact Lithography has moderate cost.Its efficiency for a photonic/plasmonic switch application was demonstrated experimentally.The technique is extensible to any design and to wafers with multiple level recesses. A novel lithographic method is presented, based on the use of a mask aligner in the contact mode with a modified photomask, the so-called recess photomask; its goal is the printing of submicron-sized patterns into deep cavities of a chip, …

research product

Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches

We report detailed experimental studies of compact fiber-coupled dielectric-loaded plasmonic waveguide components-Mach-Zehnder interferometers (MZIs) and directional couplers (DCs)-whose operation at telecom wavelengths is controlled via the thermo-optic effect by electrically heating the gold stripe of dielectric-loaded plasmonic waveguides. The effect of the gaps isolating the heated part of the waveguide from the rest of the structure was examined showing the presence of a Fabry-Perot cavity in this MZI arm. Wavelength-dependent modulation is demonstrated with MZI-based components, and wavelength dependent low power (similar to 0.92 mW) rerouting is achieved with DC switches. Furthermore…

research product

Dielectric versus topographic contrast in near-field microscopy

Using a fully vectorial three-dimensional numerical approach (generalized field propagator, based on Green's tensor technique), we investigate the near-field images produced by subwavelength objects buried in a dielectric surface. We study the influence of the object index, size, and depth on the near field. We emphasize the similarity between the near field spawned by an object buried in the surface (dielectric contrast) and that spawned by a protrusion on the surface (topographic contrast). We show that a buried object with a negative dielectric contrast (i.e., with a smaller index than its surrounding medium) produces a near-field image that is reversed from that of an object with a posi…

research product

Near-field observation of surface plasmon polariton propagation on thin metal stripes

International audience; We use a photon scanning tunneling microscope to probe the field of surface plasmon polariton modes excited on finite-width thin metal films (metal stripes). We first investigate the coupling between surface plasmons launched by a focused beam on a homogeneous thin film and the modes sustained by metal stripes of different widths. We show that. if the width of the metal stripe is about a few micrometers, a strong coupling with the stripe modes can be achieved at visible frequencies. A sharp transverse confinement of the field associated with the surface plasmon modes propagating on the metal stripe is unambiguously observed on the constant height photon scanning tunn…

research product

Discrimination between Single Protein Conformations Using Dynamic SERS

In biomedicine and biophysics, the discrimination of protein conformations is of critical importance for identifying the unfolding states in the diagnosis of neurodegenerative diseases. We develop a dynamic Raman spectroscopic approach based on a statistical analysis of the time series of spectral fingerprints of single protein. We show that the unfolded state of bovine serum albumin can be identified in the time series using the fluctuations of the Raman bands of some amino acids, tryptophan, tyrosine, leucine, and histidine, acting as biomarkers. The statistical analysis induces also the sorting between physisorption and chemisorption events. This is confirmed by the spectral analysis of …

research product

Magneto-optical effects in multilayers illuminated by total internal reflection

This paper describes the magneto-optical effects of metallic multilayers under the condition of total internal reflection. In the framework of Green’s dyadic technique, we detail a practical and at time-consuming scheme to compute accurately the optical properties of anisotropic multilayers deposited on a substrate. We present numerical simulations which account for the variation of the angle of incidence at a fixed wavelength and for the variation of the wavelength at fixed angle of incidence. The Kerr rotation is found to increase significantly around the critical angle for total reflection. We also discuss the importance of plasmon effects in the structure of the Kerr rotation spectra. @…

research product

Surface plasmon polaritons on metal cylinders with dielectric core

International audience; Metal-cladded dielectric cylinders with submicron diameters may serve to model coated tips used in nearfield scanning optical microscopy. The signal measured may be greatly influenced by resonance effects due to eigenmodes of the probe. Especially, using a photon scanning tunneling microscope setup, gold-coated tips have been found to detect a signal proportional to the magnetic field distributions [E. Devaux et al.. Phys. Rev. B 62, 10 504 (2000)]. This effect is attributed to cylindrical surface plasmons. We present here fully retarded calculations of the dispersion and field patterns of the nonradiative plasmon modes in cylindrical geometry. We study the effect of…

research product

Theory of Near‐field Optical Imaging with a Single Molecule as Light Source

Scanning near-field optical microscopes (SNOM) illuminate a sample in the very near-field using a nanometer sized tip. Ideally, the light source should be point-like and many efforts have been made to optimize tip efficiency (see, for example, the article of Heimel et al in this issue). Very recently, Sandoghdar et al have realized a molecular probe tip in which a terrylene molecule inserted in a paraterphenyl microcrystal is attached at the extremity of the probe tip [1]. The excited molecule behaves as a point-like light source which is raster scanned over an aluminium patterned structure. We propose here an analysis of this experiment based on the field-susceptibility formalism (also cal…

research product

Optical near-field distributions of surface plasmon waveguide modes

International audience; Thin gold stripes, featuring various widths in the micrometer range, were microfabricated to obtain surface-plasmon guides on a glass substrate. Each metal stripe (MS) was excited by an incident surface-plasmon polariton which was itself launched on an extended thin gold film by the total internal reflection of a focused beam coming through the substrate. The optical near-field distributions of the surface-plasmon (sp) modes sustained by the stripes were then recorded using a photon scanning tunneling microscope (PSTM). For a fixed frequency of the incident light, these field distributions are found to depend on the widths of the stripes. We first provide an experime…

research product

Performance of electro-optical plasmonic ring resonators at telecom wavelengths

International audience; In this work we report on the characteristics of an electro-optical dielectric-loaded surface plasmon polariton waveguide ring resonator. By doping the dielectric host matrix with an electro-optical material and designing an appropriate set of planar electrodes, we measured a 16% relative change of transmission upon application of a controlled electric field. We have analyzed the temporal response of the device and conclude that electrostriction of the host matrix is playing a dominating role in the transmission response.

research product

Plasmonic Waveguides Co-Integrated with Si3N4 Waveguide Platform for Integrated Biosensors

Integration of plasmonic waveguides with low-loss photonic platforms have attracted research efforts as the means to benefit from the extra-ordinary features of plasmonics while enhancing the functional portfolio of Photonic Integrated Circuits (PICs). In this work, we review a technology platform that integrates water cladded plasmonic waveguides integrated in a low-loss Si 3 N 4 photonic platform, targeting biosensing applications. Results obtained experimentally and numerically will be presented with respect to propagation losses, interface coupling loss and accumulated phase change per unit length, showing how Surface Plasmon Polariton (SPP) waveguides can be effectively combined with p…

research product

Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides

International audience; Surface plasmon waveguides (SPW's) are metal ridges featuring widths in the micrometer range and thicknesses of a few tens of nanometers. A focused ion beam has been used to carve microscatterers into gold SPW's and the near-field distributions around these microstructures are observed by means of photon scanning tunneling microscopy (PSTM). On the basis of near-field images, we show that a finite length periodic arrangement of narrow slits can reflect a surface plasmon mode propagating along a SPW. The reflection efficiency of the micrograting is found to depend upon the number of slits, the period of the grating, and the incident wavelength. The optimum reflection …

research product

Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains

We study the ability of noble metal nanoparticle chains supporting localized surface plasmons to tailor the transmittance of channel waveguides on which they are deposited. The optical interaction between a microwaveguide ~MWG! and various arrangements of nanoparticles is first analyzed by means numerical calculations based on the Green’s tensor formalism. For specific geometries of the particle chains, the transmission spectra of the composite device ~MWG and nanoparticles! exhibits strong modulations in the optical range with the appearance of a neat band gap. The results of an experiment inspired by this theoretical study are also discussed. The photon scanning tunneling microscope image…

research product

Progress in the interpretation of near-field optics

International audience

research product

Changes in surface stress, morphology and chemical composition of silica and silicon nitride surfaces during the etching by gaseous HF acid

Abstract HF acid attack of SiO2 and Si3N4 substrates is analyzed to improve the sensitivity of a sensor based on microcantilever. Ex situ analysis of the etching using XPS, SIMS and AFM show significant changes in the anisotropy and the rate of the etching of the oxides on SiO2 and Si3N4 surface. Those differences influence the kinetic evolution of the plastic bending deflection of the cantilever coated with SiO2 and Si3N4 layer, respectively. The linear dependence between the HF concentration and the Si3N4 cantilever bending corresponds to a deep attack of the layer whereas the non-linear behavior observed for SiO2 layer can be explained by a combination of deep and lateral etching. The ca…

research product

Influence of the filling factor on the spectral properties of plasmonic crystals

Plasmonics crystals (PCs) comprised of finite-size triangular lattices of gold bumps deposited on a gold thin film are studied by means of a near-field optical microscope. The plasmonic crystals fabricated by electron-beam lithography are illuminated by an incident surface plasmon polariton excited in the Kretschmann-Raether configuration at the gold/air thin-film interface for incident free-space wavelengths in the range $740--820\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$. Based on the measurement of the surface plasmon polariton (SPP) damping distance in the crystals, the existence of a band gap for an incident SPP traveling along the two symmetry axes $\ensuremath{\Gamma}M$ and $\ensuremath…

research product

First demonstration of active plasmonic device in true data traffic conditions: On/off thermo-optic modulation using a hybrid silicon-plasmonic asymmetric MZI

We demonstrate the first system-level evaluation of an active plasmonic device in 10Gb/s data traffic conditions. Thermo-optic ON/OFF modulation with 3μs response time and 10mW power consumption is presented using an asymmetric MZI silicon-plasmonic gate.

research product

Octave Spanning Supercontinuum in Titanium Dioxide Waveguides

International audience; We report on the experimental generation of an octave-spanning supercontinuum in a 2.2 cm-long titanium dioxide optical waveguide with two zero dispersion wavelengths. The resulting on-chip supercontinuum reaches the visible wavelength range as well as the mid-infrared region by using a femtosecond fiber laser pump at 1.64 µm.

research product

Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides

International audience; We consider wavelength-selective splitting of radiation using directional couplers (DCs) formed by dielectric-loaded surface-plasmon-polariton waveguides (DLSPPWs). The DCs were fabricated by depositing subwavelength-sized polymer ridges on a gold film using large-scale UV photolithography and characterized at telecommunications wavelengths with near-field microscopy. We demonstrate a DLSPPW-based 45-mu m-long DC comprising 3 mu m offset S bends and 25-mu m-long parallel waveguides that changes from the "through" state at 1500 nm to 3 dB splitting at 1600 nm, and show that a 50.5-mu m-long DC should enable complete separation of the radiation channels at 1400 and 162…

research product

A coupled lossy local-mode theory description of a plasmonic tip

International audience; We investigate power propagation in a metal-coated tapered optical fiber. We analyze in detail the conversion from the fiber core guided mode to a surface plasmon polariton (SPP) confined at the tip apex. To this aim, we adapt coupled local-mode theory to include lossy modes. Two distinct regimes are identified. In the case of thin metal coating, a strong coupling regime occurs between a core guided mode and a SPP with good conversion efficiency. In the case of thick metal coating, a very weak coupling occurs. Finally, energy confinement and the role of Joule losses are discussed in the near-infrared and visible ranges. Moreover, the coupled equations derived for loc…

research product

Dielectric-loaded plasmonic waveguide components: Going practical

Surface plasmon propagating modes supported by metal/dielectric interfaces in various configurations can be used for radiation guiding similarly to conventional dielectric waveguides. Plasmonic waveguides offer two attractive features: subdiffraction mode confinement and the presence of conducting elements at the mode-field maximum. The first feature can be exploited to realize ultrahigh density of nanophotonics components, whereas the second feature enables the development of dynamic components controlling the plasmon propagation with ultralow signals, minimizing heat dissipation in switching elements. While the first feature is yet to be brought close to the domain of practical applicatio…

research product

Purcell factor for a point-like dipolar emitter coupled to a two-dimensional plasmonic waveguide

International audience; We theoretically investigate the spontaneous emission of a point-like dipolar emitter located near a two-dimensional plasmonic waveguide of arbitrary form. We invoke an explicit link with the density of modes of the waveguide describing the electromagnetic channels into which the emitter can couple. We obtain a closed form expression for the coupling to propagative plasmon, extending thus the Purcell factor to plasmonic configurations. Radiative and nonradiative contributions to the spontaneous emission are also discussed in detail.

research product

CMOS plasmonics in WDM data transmission: 200 Gb/s (8 × 25Gb/s) transmission over aluminum plasmonic waveguides

We demonstrate wavelength-division-multiplexed (WDM) 200 Gb/s (8 × 25 Gb/s) data transmission over 100 μm long aluminum (Al) surface-plasmon-polariton (SPP) waveguides on a Si3N4 waveguide platform at telecom wavelengths. The Al SPP waveguide was evaluated in terms of signal integrity by performing bit-error-rate (BER) measurements that revealed error-free operation for all eight 25 Gb/s non-return-to-zero (NRZ) modulated data channels with power penalties not exceeding 0.2 dB at 10−9. To the best of our knowledge, this is the first demonstration of WDM enabled data transmission over complementary-metal-oxide-semiconductor (CMOS) SPP waveguides fueling future development of CMOS compatible …

research product

Fiber-pigtailed temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators.

We demonstrate optical fiber-pigtailed temperature sensors based on dielectric-loaded surface plasmon-polariton waveguide-ring resonators (DLSPP-WRRs), whose transmission depends on the ambient temperature. The DLSPP-WRR-based temperature sensors represent polymer ridge waveguides (~1×1 µm(2) in cross section) forming 5-µm-radius rings coupled to straight waveguides fabricated by UV-lithography on a 50-nm-thick gold layer atop a 2.3-µm-thick CYTOP layer covering a Si wafer. A broadband light source is used to characterize the DLSPP-WRR wavelength-dependent transmission in the range of 1480-1600 nm and to select the DLSPP-WRR component for temperature sensing. In- and out-coupling single-mod…

research product

Efficient excitation of dielectric-loaded surface plasmon-polariton waveguide modes at telecommunication wavelengths

International audience; The excitation of surface plasmon-polariton (SPP) waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element method simulations. Two excitation geometries have been investigated where SPPs are excited outside or inside the dielectric tapered region adjoint to the waveguide. The dependence of the efficiency of the SPP guided mode excitation on the taper opening angle has been measured an…

research product

Direct observation of localized surface plasmon coupling

We report on the direct observation of localized surface plasmon coupling using a photon scanning tunneling microscope. The surface plasmons are excited in gold nanostructures tailored by electron beam lithography. Electromagnetic energy transfer from a resonantly excited nanoparticle to a nanowire, which is not directly excited by the incident light is observed. Our experimental results appear to be in good agreement with theoretical computations based on Green's dyadic technique.

research product

Nanosecond thermo-optical dynamics of polymer loaded plasmonic waveguides

The thermo-optical dynamics of polymer loaded surface plasmon waveguide (PLSPPW) based devices photo-thermally excited in the nanosecond regime is investigated. We demonstrate thermo-absorption of PLSPPW modes mediated by the temperature-dependent ohmic losses of the metal and the thermally controlled field distribution of the plasmon mode within the metal. For a PLSPPW excited by sub-nanosecond long pulses, we find that the thermo-absorption process leads to modulation depths up to 50% and features an activation time around 2ns whereas the relaxation time is around 800ns, four-fold smaller than the cooling time of the metal film itself. Next, we observe the photo-thermal activation of PLSP…

research product

First experimental demonstration of a plasmonic MMI switch in 10 Gb/s true data traffic conditions

We report the first experimental performance evaluation of a 75 um long plasmonic MMI switch, hetero-integrated on a SOI platform, operating with 10Gb/s data signals. The switch exhibits 2.9μs response time and 44.5% modulation depth while its extinction ratio varies from 5.4 to -1.5 dB for 35mW switching power. Error-free performance was achieved.

research product

Efficient surface plasmon field confinement in one-dimensional crystal line-defect waveguides

International audience; The authors operate a near-field optical microscope to investigate surface plasmon polariton (SPP) propagation along linear waveguides opened into one-dimensional (1D) plasmonic crystals, i.e., crystals featuring a single lattice plane orientation. They show that efficient SPP field confinement can be achieved by this type of waveguide although no band gap exists in the direction perpendicular to the waveguide axis. From computed wave-vector diagrams, they show that 1D plasmonic crystals can open a wide range of prohibited propagation directions preventing from a significant coupling of the waveguide SPP modes with the crystal Bloch modes. Finally, the authors demons…

research product

Local detection of the optical magnetic field in the near zone of dielectric samples

International audience; We present a study of the influence of the probe composition on the formation of constant-height photon scanning tunneling microscope images when observing a dielectric sample. Dramatic effects due to the metallization of the tip are presented and discussed in detail. We show how the recorded images can look quite different when the probe is dielectric or coated with gold. Comparison with numerical calculations indicate that the experimental signals are of electric or magnetic nature depending on the composition of the tip. For well-defined conditions, gold-coated tips provide images of the distribution of the magnetic field intensity associated with the optical near…

research product

Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches

International audience; We report on the photo-thermal activation of dielectric loaded plasmonic switches comprised of gold nanoparticle-doped polymer deposited onto a gold film. The plasmonic switches rely on a multi-mode interferometer design and are fabricated by electron beam lithography applied to a positive resin doped with gold nanoparticles at a volume ratio of 0.52%. A cross-bar switching is obtained at telecom wavelengths by pumping the devices with a visible beam having a frequency within the localized surface plasmon resonance band of the embedded nanoparticles. By comparing the switching performances of doped and undoped devices, we show that for the modest doping level we cons…

research product

Resonant optical tunnel effect through dielectric structures of subwavelength cross sections.

We show that optical tunnel effects through elongated structures of subwavelength cross sections can be enhanced by the appropriate structuration of the local dielectric function. Even under total internal reflection, transfer channels can be excited to perform spatially confined photonic transfer between transparent media linked by such subwavelength structures. The optical properties of such systems are analyzed using field susceptibilities, also known as electromagnetic Green's dyadics, which determine both the local density of photon states and the optical transmittance of the system. Green's dyadics obtained by solving numerically a set of dyadic Dyson equations are applied to study th…

research product

Optimized factor of merit of the magneto-optical Kerr effect of ferromagnetic thin films

This paper deals with the optimization of the factor of merit of the magneto-optical Kerr effect of a resonant multilayer cavity including a ferromagnetic film. This optimization is of interest in the context of optical storage technology. Using numerical simulations based on the Green's dyadic technique, we discuss a route to obtain magneto-optical multilayers with a vanishing ellipticity and factors of merit (with respect to the bulk magnetic material) larger than 3 on a broad range of wavelengths, significantly higher than the actual state of the art.

research product

Influence of the Number of Nanoparticles on the Enhancement Properties of Surface-Enhanced Raman Scattering Active Area: Sensitivity versus Repeatability

In the present work, the combination of chemical immobilization with electron beam lithography enables the production of sensitive and reproducible SERS-active areas composed of stochastic arrangements of gold nanoparticles. The number of nanoparticles was varied from 2 to 500. Thereby a systematic analysis of these SERS-active areas allows us to study SERS efficiency as a function of the number of nanoparticles. We found that the experimental parameters are critical, in particular the size of the SERS-active area must be comparable to the effective area of excitation to obtained reproducible SERS measurements. The sensitivity has also been studied by deducing the number of NPs that generat…

research product

Study of the angular acceptance of surface plasmon Bragg mirrors

Surface plasmon based photonic devices are promising candidates for highly integrated optics. A surface plasmon (SP) is basically an electromagnetic wave confined in the interface between a metal and a dielectric, and is due to the interaction of the electromagnetic field with the surface bounded electron charges in the metal. A SP can propagate along the interface where it is confined (the propagation length being tens of micrometers in the visible range), but its associated electromagnetic field decreases exponentially in the perpendicular direction, in such a way that this vertical confinement makes SP very attractive for the design of optical devices in coplanar geometry. An important e…

research product

DNA nanofilm thickness measurement on microarray in air and in liquid using an atomic force microscope.

International audience; The measurement of the thickness of DNA films on microarray as a function of the medium (liquid, air) is gaining importance for understanding the signal response of biosensors. Thiol group has been used to attach DNA strands to gold micropads deposited on silicon surface. Atomic force microscopy (AFM) was employed in its height mode to measure the change in the pad thickness and in its force mode to measure the indentation depth of the nanofilm. A good coherence between the height and force modes is observed for the film thickness in air. The adhesion force was found to be an alternative way to measure the surface coverage of the biolayer at nanoscopic scale. However…

research product

Single molecules probe local density of modes (LDOS) around photonic nanostructures

International audience; According to Fermi's golden rule, the fluorescence decay rate is directly proportional to the projected local density of photonic modes (LDOS) at the molecule location. The relevant LDOS depends on the molecule orientation. In this paper, the direct measurement of the fluorescence lifetime near gold dot photonic structures is investigated and compared to calculated LDOS. Detailed analysis of the decay channels is presented on the basis of numerical simulations.

research product

Near-field beam displacement at surface plasmon resonance

International audience; A finite-size beam exciting a surface plasmon polariton (SPP) in a prism coupling configuration experiences an in-plane displacement that can be used for the characterization of plasmonic components by means of near-field optical microscopy. We first demonstrate experimentally the existence of this displacement by taking near-field images of finite-width metal strips. Next, the properties of this shift are analyzed in detail. We investigate the dynamic of the near-field shift for an incident Gaussian beam as a function of illumination conditions. For beams with a narrow spectrum, we propose a straightforward derivation showing that the displacement depends on the ave…

research product

Physical interaction between tip and molecules in scanning force microscopy imaging of adsorbed C60 and fullerene tubules

After the discovery of C60, a large family of fullerene molecules was also identified. Among them, elongated fullerenes are formed by the tubular assembly of carbon atoms. The van der Waals bonds between fullerene molecules are due to the correlations between fluctuating charge densities inside the molecules. The interaction is then dominated by collective excitations which are sensitive to the shape of the molecules. Therefore, van der Waals attraction is expected to be modified when considering successively spherical C60, C70 and more elongated fullerenes (tubules). This paper presents self‐consistent computations of the van der Waals interaction between a (111) diamond probe tip and vari…

research product

Data Transmission and Thermo-Optic Tuning Performance of Dielectric-Loaded Plasmonic Structures Hetero-Integrated on a Silicon Chip

We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical power and verify error-free 10-Gb/s transmission through a 60-mu m-long dielectric-loaded plasmonic waveguide. We demonstrate experimental evidence of the data capture and the low-energy thermo-optic tuning credentials of dielectric-loaded plasmonic structures integrated on a silicon chip. We show 7-nm thermo-optical tuning of a plasmonic racetrack-resonator with less than 3.3 mW required electrical powe…

research product

Controlling Light Confinement by Excitation of Localized Surface Plasmons

Localized surface plasmons can be used to control near-field optical phenomena in the subwavelength range. Specifically, this chaper reviews recent results which show that localized surface plasmons can confine the optical intensity down to nanoscopic dimensions. The discussion first considers how a collection-mode near-field optical microscope can observe the squeezing of the plasmon field of metallic nanostructures deposited on a flat surface. Numerical simulations then provide illustrations of the confined fields associated with nanostructures which are feasible using current microfabrication techniques. Finally, we present arguments which explain how localized surface plasmons can deliv…

research product

Near‐field optical addressing of single molecules in coplanar geometry: a theoretical study

Photonic transfer through elongated optical structures of submicrometre section microfabricated at the surface of dielectric or semiconductor samples can be enhanced by an appropriate structuring of the local refraction index. We show from computerized simulations that both the light localization and the spectroscopic properties of such structures can be used to selectively excite, in coplanar geometry, individuals molecules located in the near-field.

research product

Power monitoring in dielectric-loaded plasmonic waveguides with internal Wheatstone bridges

We report on monitoring the mode power in dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) by measuring the resistance of gold electrodes, supporting the DLSPPW mode propagation, with internal (on-chip) Wheatstone bridges. The investigated DLSPPW configuration consisted of 1-μm-thick and 10-μm-wide cycloaliphatic acrylate polymer ridges tapered laterally to a 1-μm-wide ridge placed on a 50-nm-thin and 4-um wide gold stripe, all supported by a ~1.7-µm-thick Cytop layer deposited on a Si wafer. The fabricated DLSPPW power monitors were characterized at telecom wavelengths, showing very high responsivities reaching up to ~6.4 μV/μW (for a bias voltage of 245 mV) and the operati…

research product

Thermo-electric detection of waveguided surface plasmon propagation

International audience; The thermo-electric detection of a waveguided surface plasmon traveling along one electrode of an in-plane integrated thermocouple is demonstrated. By using a particular design of the thermocouple, the thermo-electric signal due to the losses of the plasmon mode can be separated from the non-resonant heating of the waveguide. The thermo-electric signal associated with the plasmon propagation is proportional to the power coupled into the waveguided mode and exhibits a maximum at a distance from the excitation site depending on both the heat transfer coefficient of the system and the plasmon mode damping distance.

research product

Imaging of photonic nanopatterns by scanning near-field optical microscopy

We define photonic nanopatterns of a sample as images recorded by scanning near-field optical microscopy with a locally excited electric dipole as a probe. This photonic nanopattern can be calculated by use of the Green’s dyadic technique. Here, we show that scanning near-field optical microscopy images of well-defined gold triangles taken with the tetrahedral tip as a probe show a close similarity to the photonic nanopattern of this nanostructure with an electric dipole at a distance of 15 nm to the sample and tilted 45° with respect to the scanning plane.

research product

Direct interpretation of near-field optical images.

The interpretation of the detection process in near-field optical microscopy is reviewed on the basis of a discussion about the possibility of establishing direct comparisons between experimental images and the solutions of Maxwell equations or the electromagnetic local density of states. On the basis of simple physical arguments, it is expected that the solutions of Maxwell equations should agree with images obtained by collecting mode near-field microscopes, while the electromagnetic local density of states should be considered to provide a practical interpretation of illumination mode near-field microscopes. We review collecting mode near-field microscope images where the conditions to o…

research product

Light field propagation by metal micro- and nanostructures

The ability to sustain plasmon oscillations gives rise to unique properties of metal nanostructures, which can be exploited for the controlled manipulation of light fields on the nanoscale. In this context we investigate electromagnetic coupling effects within lithographically produced ensembles of gold nanoparticles with a photon scanning tunnelling microscope. To provide an interface between these nano-optical devices and classical far-field optics, we investigate surface plasmon propagation on microstructured metal thin films.

research product

Tuning of an Optical Dimer Nanoantenna by Electrically Controlling Its Load Impedance

International audience; Optical antennas are elementary units used to direct optical radiation to the nanoscale. Here we demonstrate an active control over individual antenna performances by an external electrical trigger. We find that by an in-plane command of an anisotropic load medium, the electromagnetic interaction between individual elements constituting an optical antenna can be controlled, resulting in a strong polarization and tuning response. An active command of the antenna is a prerequisite for directing light wave through the utilization of such a device.

research product

Observation of Light Confinement Effects with a Near-Field Optical Microscope.

This Letter reports the experimental observation of light confinement effects by near-field optical microscopy. Depolarization effects giving rise to light confinement close to nanoscopic objects have been unambiguously observed in near-field optical images of subwavelength dielectric pads etched on a flat glass substrate. According to the incident polarization, this phenomenon leads to reverse contrasts in the near-field optical image of the same subwavelength objects.

research product

Thermo-plasmonic components at telecom wavelength

International audience

research product

Tb/s switching fabrics for optical interconnects using heterointegration of plasmonics and silicon photonics: The FP7 PLATON approach

We present recent work that is carried out within the FP7 project PLATON on novel Tb/s switch fabric architectures and technologies for optical interconnect applications, employing heterointegration of plasmonics, silicon photonics and electronics.

research product

Optical analogy to electronic quantum corrals.

We describe full multiple-scattering calculations of localized surface photonic states set up by lithographically designed nanostructures made of a finite number of dielectric pads deposited on a planar surface. The method is based on a numerical solution of the dyadic Dyson's equation. When the pads are arranged to form a closed circle, we find field patterns that look like the electronic charge density recently observed above quantum corrals. We propose two experimental techniques that could be used to observe these electromagnetic modes in direct space.

research product

Physics of Near-Field Optical Images

research product

PRINCIPLES OF NEAR-FIELD OPTICAL MAPPING

research product

Surface plasmon interference excited by tightly focused laser beams

International audience; We show that interfering surface plasmon polaritons can be excited with a focused laser beam at normal incidence to a plane metal film. No protrusions or holes are needed in this excitation scheme. Depending on the axial position of the focus, the intensity distribution on the metal surface is either dominated by interferences between counterpropagating plasmons or by a two-lobe pattern characteristic of localized surface plasmon excitation. Our experiments can be accurately explained by use of the angular spectrum representation and provide a simple means for locally exciting standing surface plasmon polaritons.

research product

Ultra-sensitive refractive index sensor using CMOS plasmonic transducers on silicon photonic interferometric platform

Optical refractive-index sensors exploiting selective co-integration of plasmonics with silicon photonics has emerged as an attractive technology for biosensing applications that can unleash unprecedented performance breakthroughs that reaps the benefits of both technologies. However, towards this direction, a major challenge remains their integration using exclusively CMOS-compatible materials. In this context, herein, we demonstrate, for the first time to our knowledge, a CMOS-compatible plasmo-photonic Mach-Zehnder-interferometer (MZI) based on aluminum and Si3N4 waveguides, exhibiting record-high bulk sensitivity of 4764 nm/RIU with clear potential to scale up the bulk sensitivity value…

research product

Surface plasmon routing along right angle bent metal strips

International audience; An efficient routing of surface plasmon polaritons (SPP) is of fundamental importance in the development of SPP-based photonics. This paper reports that microgratings acting as Bragg mirrors can guide SPP along metal stripes waveguides featuring 90 degrees bents. The measurement of the mirrors efficiency, performed by means of photon scanning tunneling microscopy, shows that bent losses as low as 1.9 dB can be achieved. Finally, we demonstrate operating SPP beamsplitters obtained by an appropriate design of the Bragg mirrors constituting elements. (c) 2005 American Institute of Physics.

research product

Surface plasmon circuitry in opto-electronics

This tutorial reviews the physics of surface plasmon circuitry in order to bring to the fore recently demonstrated applications of surface plasmon in optoelectronics such as on-board optical interconnects or routing in datacom networks.

research product

Far-field imaging of the electromagnetic local density of optical states.

International audience; We introduce a new experimental method to measure the local electromagnetic density of states (LDOS) by integrating the differential scattering cross section. The signal detected essentially reflects the intrinsic scattering response of the photonic structures and renders the partial LDOS dominated by evanescent modes. We give a theoretical understanding of the LDOS image formation and show a qualitative agreement between experimental images and theoretical maps. This approach can be practically applied to the direct measurement of an optical antenna's scattering efficiency and can provide valuable information for designing optimum structures utilized in radiative de…

research product

Dielectric-loaded plasmonic waveguide-ring resonators

International audience; Using near-field microscopy, the performance of dielectric-loaded plasmonic waveguide-ring resonators (WRRs) operating at telecom wavelengths is investigated for various waveguide-ring separations. It is demonstrated that compact ( footprint similar to 150 mu m(2)) and efficient ( extinction ratio similar to 13 dB) WRR-based filters can be realized using UV-lithography. The WRR wavelength responses measured and calculated using the effective-index method are found in good agreement. (c) 2009 Optical Society of America

research product

Surface plasmon subwavelength optics.

International audience; Surface plasmons are waves that propagate along the surface of a conductor. By altering the structure of a metal's surface, the properties of surface plasmons- in particular their interaction with light-can be tailored, which offers the potential for developing new types of photonic device. This could lead to miniaturized photonic circuits with length scales that are much smaller than those currently achieved. Surface plasmons are being explored for their potential in subwavelength optics, data storage, light generation, microscopy and bio-photonics.

research product

Sorting of Single Biomolecules based on Fourier Polar Representation of Surface Enhanced Raman Spectra

AbstractSurface enhanced Raman scattering (SERS) spectroscopy becomes increasingly used in biosensors for its capacity to detect and identify single molecules. In practice, a large number of SERS spectra are acquired and reliable ranking methods are thus essential for analysing all these data. Supervised classification strategies, which are the most effective methods, are usually applied but they require pre-determined models or classes. In this work, we propose to sort SERS spectra in unknown groups with an alternative strategy called Fourier polar representation. This non-fitting method based on simple Fourier sine and cosine transforms produces a fast and graphical representation for sor…

research product

Gain, detuning, and radiation patterns of nanoparticle optical antennas

International audience; For their capability to localize and redirect electromagnetic field, metal nanoparticles have been recently viewed as efficient nanoantenna operating in the optical regime. In this article, we experimentally investigated the optical responses of coupled gold antenna pairs and measured the critical parameters defining antenna characteristics: resonant frequencies and bandwidths, detuning and gains, and radiation patterns.

research product

Discerning the Origins of the Amplitude Fluctuations in Dynamic Raman Nanospectroscopy

International audience; We introduce a novel experimental and analytical method for discerning rare surface-enhanced Raman scattering (SERS) events observable at the nanoscale. We show that the kinetics of the Raman activity recorded on an isolated nanostructure is punctuated by intense and rare events of large amplitude and spectral variations. The fluctuations of thousands of SERS spectra were analyzed statistically in terms of power density functions, and the occurrence of the rare events was quantified by a wavenumber statistics. Our analysis enables one to extract valuable and unique spectroscopic signature of Raman variations usually hidden in time-average or space-average measurement…

research product

Plasmonic Stripes in Aqueous Environment Co-Integrated With Si3N4 Photonics

We demonstrate the design, fabrication, and the experimental characterization of gold-based plasmonic stripes butt-coupled with low-pressure-chemical-vapor-deposition (LPCVD)-based Si3N4 waveguides for the excitation of surface-plasmon-polariton (SPP) modes in aqueous environment. Plasmonic gold stripes, in aqueous environment, with cross-sectional dimensions of 100 nm × 7 μm were interfaced with 360 nm × 800 nm Si3N4 waveguides cladded with low-temperature-oxide, exploiting linear photonic tapers with appropriate vertical (VO) and longitudinal (LO) offsets between the plasmonic and photonic waveguide facets. An interface insertion loss of 2.3 ± 0.3 dB and a plas…

research product

WDM switching employing a hybrid silicon-plasmonic A-MZI

We demonstrate a system-level evaluation of an A-MZI with 60μm long DLSPP active branches exhibiting more than 14dB extinction ratio. Error-free switching operation is achieved for a 4×10Gb/s incoming WDM data stream with only 13.1mW power consumption.

research product

Silencing and enhancement of second-harmonic generation in optical gap antennas

International audience; Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a…

research product

SNOM signal near plasmonic nanostructures: an analogy with fluorescence decays channels

International audience; Scanning Near-field Optical Microscope (SNOM) is based on local excitations of nanostructures deposited on a substrate (illumination mode). Ideally, the local source behaves like a dipolar emitter so that the SNOM signal is strongly similar to the fluorescence decay rates of an excited molecule that would be located at the SNOM tip position. We present here how the SNOM signal near plasmonic nanostructures can be used to analyze radiative and non-radiative contribution to the fluorescence decay rate.

research product

All-optical and electro-optical active plasmonic telecom components

Active plasmonics is an attractive emerging field in which the ability to control the surface plasmon polariton (SPP) propagation finds many applications such as realization of fully functional integrated photonic circuitry. We demonstrate both numerically and experimentally switching of the SPP transmission based on two different approaches namely the all-optical and electro-optical at telecom wavelengths. The plasmonic component consists of a compact and efficient SPP switch utilizing highly sensitive ring resonator which has high sensitivity to the refractive index changes. Fabrication was done via e-beam lithography utilizing advanced proximity corrections. The compenents were character…

research product

Low energy routing platforms for optical interconnects using active plasmonics integrated with Silicon Photonics

Power consumption and bandwidth of electronics appear as the main set of technology barriers in next-generation Data Center and High-Performance Computing (HPC) environments. The limited capacity and pitch lane of electrically wired interconnects require the development of new disruptive technologies to cope with the massive amount of data moving across all hierarchical communication levels, namely rack-to-rack, backplane, chip-to-chip and even on-chip interconnections. Plasmonics comes indeed as a disruptive technology that enables seamless interoperability between light beams and electronic control signals through the underlying metallic layer, providing thereby an inherent energy-efficie…

research product

Excitation of a one-dimensional evanescent wave by conical edge diffraction of surface plasmon

International audience; The experimental observation of a one-dimensional evanescent wave supported by a 90◦ metal edge is reported. Through a measurement of in-plane momenta, we clearly demonstrate the dimensional character of this surface wave and show that it is non-radiative in the superstrate. Excitation conditions, lateral extension and polarization properties of this wave are discussed. Finally, we explore the effect of the surrounding dielectric medium and demonstrate that a single edge can sustain distinct excitations.

research product

Modulation of surface plasmon coupling-in by one-dimensional surface corrugation

Surface plasmon-polaritons have recently attracted renewed interest in the scientific community for their potential in sub-wavelength optics, light generation and non-destructive sensing. Given that they cannot be directly excited by freely propagating light due to their intrinsical binding to the metal surface, the light-plasmon coupling efficiency becomes of crucial importance for the success of any plasmonic device. Here we present a comprehensive study on the modulation (enhancement or suppression) of such coupling efficiency by means of one-dimensional surface corrugation. Our approach is based on simple wave interference and enables us to make quantitative predictions which have been …

research product

Subwavelength mapping of surface photonic states

We show that the spectral tailoring of optical local density of states (LDOS) may be achieved by lithographically designed nanostructures and that the subwavelength mapping of the spectral variation of the optical LDOS is feasible by varying the driving frequency of the effective dipole used in an illumination mode scanning near-field optical microscope.

research product

Theoretical principles of near-field optical microscopies and spectroscopies

International audience; This paper deals with the principles of detection of optical signals near a surface in a manner permitting the mapping of the distribution of the fields close to various kinds of illuminated samples. We begin with a discussion of the main physical properties of the optical fields near a surface in the absence of any probe tip. This mainly concerns phenomena involving evanescent waves for which the local decay lengths are governed not only by the sizes but also by the intrinsic properties of the surface structures. The interpretation of the detection process is reviewed on the basis of a discussion about the possibility of establishing direct comparisons between exper…

research product

Differential method for modelling dielectric-loaded surface plasmon polariton waveguides

International audience; This paper demonstrates the efficiency of the differential method, a conventional grating theory, to investigate dielectric loaded surface plasmon polariton waveguides (DLSPPWs), known to be a potential solution for optical interconnects. The method is used to obtain the mode effective indices (both real and imaginary parts) and the mode profiles. The results obtained with the differential method are found to be in good agreement with those provided by the effective index method or finite elements. The versatility of the differential method is demonstrated by considering complex configurations such as trapezoidal waveguides or DLSPPWs lying on a finite width metal st…

research product

Near-field optical contrasts in the Fresnel evanescent wave

The surface waves generated by total internal reflection at the surface of a transparent material may be viewed as quasi-two-dimensional, because they decay exponentially in the direction normal to the sample surface. These waves are appropriate to analyze polarization effects associated with light confinement phenomena in near-field optics. In this paper we derive four useful analytical relations governing the near-field contrast around dielectric nanometer-sized particles versus a limited number of external parameters. In the $p$-polarized mode, unlike to what happens with the electric near field, we show that the magnitude of the magnetic near-field contrast can be adjusted by increasing…

research product

Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy

Scanning near-field optical microscopy images of metal nanostructures taken with the tetrahedral tip (T-tip) show a distribution of dark and bright spots at distances in the order of 25-50 nm. The images are interpreted as photonic nanopatterns defined as calculated scanning near-field optical microscopy images using a dipole serving as a light-emitting scanning near-field optical microscopy probe. Changing from a positive to a negative value of the dielectric function of a sample leads to the partition of one spot into several spots in the photonic nanopatterns, indicating the excitation of surface plasmons of a wavelength in the order of 50-100 nm in metal nanostructures.

research product

Scaling the Sensitivity of Integrated Plasmo-Photonic Interferometric Sensors

We present a new optical biosensing integration approach with multifunctional capabilities using plasmonic and photonic components on the same chip and a new methodology to design interferometric b...

research product

Modelling resonant coupling between microring resonators addressed by optical evanescent waves

In this paper we study the properties of microring resonator structures fabricated with high-index-of-refraction dielectric material. These structures concentrate light and can produce very strong optical potential gradients. They are of great interest for the trapping, manipulation and transport of cold atoms near surfaces. The study consists of two parts: in the first part we investigate the symmetry properties of the resonator response for simple models of the microring structures. In the second part we present detailed numerical calculations of the actual spectra for realistic microfabricated structures. We employ the direct space integral equation method (DSIEM). This method, based on …

research product

Coupling of a dipolar emitter into one-dimensional surface plasmon.

Quantum plasmonics relies on a new paradigm for light-matter interaction. It benefits from strong confinement of surface plasmon polaritons (SPP) that ensures efficient coupling at a deep subwavelength scale, instead of working with a long lifetime cavity polariton that increases the duration of interaction. The large bandwidth and the strong confinement of one dimensional SPP enable controlled manipulation of a nearby quantum emitter. This paves the way to ultrafast nanooptical devices. However, the large SPP bandwidth originates from strong losses so that a clear understanding of the coupling process is needed. In this report, we investigate in details the coupling between a single emitte…

research product

Titanium dioxide waveguides for supercontinuum generation and optical transmissions in the near-and mid-infrared

International audience; We report the development of titanium dioxide-based waveguides for applications in the near-and mid-infrared. Thanks to embedded metal grating couplers, we demonstrate error free 10 Gbit/s optical transmissions at 1.55 and 2 µm. With additional management of the dispersion profile, we also demonstrate octave spanning supercontinuum in cm-long TiO2 waveguides.

research product

Gold based plasmonic stripes co-integrated with low loss Si3N4 platform in aqueous environment

We demonstrate a butt-coupled interface between LPCVD Si 3 N 4 and gold based plasmonic waveguides in aqueous environment, exhibiting 2.3dB coupling loss and 75μm propagation length at 1550nm, towards future employment in biosensing applications.

research product

Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy

International audience; The guiding properties of polymer waveguides on a thin gold film are investigated in the optical regime. The details of propagation in the waveguides are studied simultaneously in the object and Fourier planes, providing direct measurement of both the real and imaginary parts of the effective index of the guided mode. A fair agreement between theoretical analysis provided by the differential method and experimental leakage radiation microscopy data is shown. All these tools bring valuable information for designing and understanding such devices. (C) 2007 American Institute of Physics.

research product

Excitation and characterization of dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths - art. no. 69880T

International audience; The excitation of surface plasmon-polariton (SPP) waveguide modes in 500-nm-wide and 550-nm-high dielectric ridges deposited on a thin gold film is characterized at telecommunication wavelengths, by application of a scanning near-field optical microscope (SNOM), and by utilizing the finite element method (FEM). Different tapering structures for coupling in SPPs, excited at the bare gold-air interface, are investigated with a SNOM, and the dependence of in coupling efficiency on tapering length is characterized by means of FEM calculations. The performance of this in coupling method is compared to an alternative excitation scheme, where the effective index of SPPs in …

research product

Imaging the Local Density of States of Optical Corrals

International audience; This paper reports the experimental observation, at optical frequencies, of the electromagnetic local density of states established by nanostructures corresponding to the recently introduced concept of optical corral [G. Colas des Francs et al., Phys. Rev. Lett. 86, 4950 (2001)]. The images obtained by a scanning near-field optical microscope under specific operational conditions are found in agreement with the theoretical maps of the optical local density of states. A clear functionality of detection by the scanning near-field optical microscope is thereby identified since the theoretical maps are computed without including any specific tip model.

research product

Mapping the 3D-surface strain field of patterned tensile stainless steels using atomic force microscopy.

Abstract The quantification of microstructural strains at the surface of materials is of major importance for understanding the reactivity of solids. The present paper aims at demonstrating the potentialities of the atomic force microscopy (AFM) for mapping the three-dimensional surface strain field on patterned tensile specimens. Electron beam (e-beam) lithography has been used to deposit 16×16 arrays of gold-squared pads. Monitoring the evolution of such a pattern under applied strain allows to quantify the triaxial strains both at the micro-(plastic) domain and nanoscale (elastic) domain vs. applied strain. The proposed method was applied to stainless steels after 4.5% plastic strain.

research product

Surface plasmon routing in dielectric-loaded surface plasmon polariton waveguides - art. no. 70330S

International audience; Waveguiding by dielectric-loaded surface plasmon-polaritons (DLSPP) structures are numerically and experimentally investigated. We used the effective index model to understand the influence of basic waveguide parameters such as width and thickness on the properties of the surface plasmon guided modes. A waveguide was fabricated and experimentally studied. The effective indices of the modes supported by the waveguide and their propagation length are evaluated by leakage radiation microscopy in both the Fourier and imaging planes. Several excitation schemes were tested including surface plasmon coupling by diascopic or episcopic illumination as well as defect-mediated …

research product

Performance of interdigitated nanoelectrodes for electrochemical DNA biosensor.

An electrochemical methodology for bio-molecule sensing using an array of well-defined nanostructures is presented. We describe the fabrication by e-beam lithography of nanoelectrodes consisting of a 100 micro m x 50 micro m area containing interdigitated electrodes of 100 nm in width and interelectrode distance of 200 nm. Sensitivity and response time of the nanoelectrodes are compared to the responses of macro- and microelectrodes. The specificity of the sensor is studied by modifying the gold electrodes with DNA. The technique enables to characterize both single and double-stranded DNA of 15 nucleotides. A special electrochemical cell is adapted to control the temperature and measure the…

research product

Optical absorption of torus-shaped metal nanoparticles in the visible range

Received 22 November 2007; published 19 December 2007We theoretically and experimentally investigated the optical response of a thin metal nanotorus in the visiblerange. The close formulas describing the extinction cross sections of a torus are obtained in the nonretardedapproximation. We demonstrate a good agreement between numerical simulations and experimental data. Ourfindings show that the main resonance is highly sensitive to the external medium and the geometrical param-eters of the particle.DOI: 10.1103/PhysRevB.76.245422 PACS number s : 78.67.Bf, 73.20.Mf, 78.20.Ci

research product

Purcell factor for 3D- dipolar emitter coupling to 2D- plasmonic waveguides

We theoretically investigate spontaneous emission of a quantum (3D) dipolar emitter located near a (2D) plasmonic waveguide of arbitrary form. The channels into which emitter couples (plasmon, scattering, electron-hole pairs creation) are well identified.

research product

Ultracompact and Low-Power Plasmonic MZI Switch Using Cyclomer Loading

We present a $2\times 2$ hybrid silicon-plasmonic thermooptic (TO) asymmetric Mach–Zehnder interferometric (MZI) switch having only 40- $\mu \text{m}$ long active cyclomer-loaded plasmonic phase arms. It requires less than 12 mW of power and has 2/5- $\mu \text{s}$ ON/OFF-times, respectively, a modulation depth higher than 90% and a 13.2-dB extinction ratio. Data traffic evaluation has been carried out using 10-Gb/s nonreturn-to-zero streams, yielding error-free operation at both switching states with power penalties ranging between 1 to 4.8 dB. The use of the cyclomer loading having a higher TO coefficient than polymethyl methacrylate has resulted to the smallest footprint among plasmonic …

research product