0000000000939864

AUTHOR

Michele Sessolo

showing 192 related works from this author

Perovskite Light-Emitting Devices - Fundamentals and Working Principles

2018

Materials scienceEngineering physicsPerovskite (structure)
researchProduct

Influence of hole transport material ionization energy on the performance of perovskite solar cells

2019

Halide perovskites have shown excellent photophysical properties for solar cell applications which led to a rapid increase of the device efficiency. Understanding the charge carrier dynamics within the active perovskite absorber and at its interfaces will be key to further progress in their development. Here we present a series of fully evaporated devices employing hole transport materials with different ionization energies. The open circuit voltage of the devices, along with their ideality factors, confirm that the former is mainly determined by the bulk and surface recombination in the perovskite, rather than by the energetic offset between the valence band of the perovskite and the highe…

Materials scienceOpen-circuit voltagebusiness.industryHalide02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceslaw.inventionlawSolar cellMaterials ChemistryValence bandOptoelectronicsCharge carrierIonization energy0210 nano-technologybusinessMaterialsHOMO/LUMOCèl·lules fotoelèctriquesPerovskite (structure)Journal of Materials Chemistry C
researchProduct

Interfacial Modification for High-Efficiency Vapor-Phase-Deposited Perovskite Solar Cells Based on a Metal Oxide Buffer Layer.

2018

Vacuum deposition is one of the most technologically relevant techniques for the fabrication of perovskite solar cells. The most efficient vacuum-based devices rely on doped organic contacts, compromising the long-term stability of the system. Here, we introduce an inorganic electron-transporting material to obtain power conversion efficiencies matching the best performing vacuum-deposited devices, with open-circuit potential close to the thermodynamic limit. We analyze the leakage current reduction and the interfacial recombination improvement upon use of a thin (<10 nm) interlayer of C60, as well as a more favorable band alignment after a bias/ultraviolet light activation process. This wo…

Work (thermodynamics)FabricationMaterials sciencebusiness.industryDopingOxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical scienceschemistry.chemical_compoundVacuum depositionchemistryUltraviolet lightOptoelectronicsGeneral Materials SciencePhysical and Theoretical Chemistry0210 nano-technologybusinessLayer (electronics)Perovskite (structure)The journal of physical chemistry letters
researchProduct

Efficient Polymer Light‐Emitting Diode Using Air‐Stable Metal Oxides as Electrodes

2009

Poly(phenylenevinylene)‐based organic light‐emitting diodes (OLEDs) are fabricated using air‐stable metal oxides as electrodes, producing very efficient and bright electroluminescent devices. Efficiencies of 8 cd A−1 and luminances above 20000 cd m−2 are obtained, comparable to the values reported for classic OLED structures using reactive metals as cathodes.

Materials sciencebusiness.industryMechanical Engineering02 engineering and technologyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesPolymer light emitting diodes0104 chemical scienceslaw.inventionMetalMechanics of MaterialslawElectrònica Materialsvisual_artElectrodevisual_art.visual_art_mediumOptoelectronicsGeneral Materials Science0210 nano-technologybusinessLight-emitting diode
researchProduct

Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain

2019

​This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.9b04991

Steady state (electronics)Materials scienceIMPSImpedance spectroscopy610 Medicine & health02 engineering and technology010402 general chemistrycomputer.software_genre01 natural sciencesChemical societyGeneral Materials ScienceTransient (computer programming)Device simulation10266 Clinic for Reconstructive SurgeryMaterials621.3: Elektrotechnik und ElektronikCèl·lules fotoelèctriquesTrapsPerovskite (structure)Drift-diffusion modelingProgramming languagePerovskite solar cellsHysteresis021001 nanoscience & nanotechnology2500 General Materials Science0104 chemical sciencesMobile ionsFrequency domainTransient photo-current0210 nano-technologycomputer
researchProduct

Efficient Vacuum Deposited P-I-N Perovskite Solar Cells by Front Contact Optimization.

2020

Hole transport layers HTLs are of fundamental importance in perovskite solar cells PSCs , as they must ensure an efficient and selective hole extraction, and ohmic charge transfer to the corresponding electrodes. In p i n solar cells, the ITO HTL is usually not ohmic, and an additional interlayer such as MoO3 is usually placed in between the two materials by vacuum sublimation. In this work, we evaluated the properties of the MoO3 TaTm TaTm is the HTL N4,N4,N4 amp; 8243;,N4 amp; 8243; tetra [1,1 amp; 8242; biphenyl] 4 yl [1,1 amp; 8242; 4 amp; 8242;,1 amp; 8243; terphenyl] 4,4 amp; 8243; diamine hole extraction interface by selectively annealing either MoO3 prior to the deposition of TaTm o…

FabricationMaterials scienceAnnealing (metallurgy)Perovskite solar cell02 engineering and technologyperovskite solar cell ; molybdenum oxide ; vacuum deposition ; processing ; hole transport layer010402 general chemistryhole transport layer01 natural sciencesmolybdenum oxidelcsh:ChemistryVacuum depositionWork functionOhmic contactMaterialsCèl·lules fotoelèctriquesOriginal Researchbusiness.industryGeneral Chemistryvacuum-deposition021001 nanoscience & nanotechnologyperovskite solar cell0104 chemical sciencesActive layerChemistrylcsh:QD1-999ElectrodeOptoelectronicsprocessing0210 nano-technologybusinessFrontiers in chemistry
researchProduct

Inside Front Cover: Long-Living Light-Emitting Electrochemical Cells - Control through Supramolecular Interactions (Adv. Mater. 20/2008)

2008

Organic semiconductorFront coverMaterials scienceMechanics of Materialsbusiness.industryMechanical EngineeringSupramolecular chemistryOLEDOptoelectronicsGeneral Materials ScienceNanotechnologybusinessElectrochemical cellAdvanced Materials
researchProduct

Dual-source vacuum deposition of pure and mixed halide 2D perovskites: thin film characterization and processing guidelines

2020

The dual-source vacuum deposition of 2D perovskite films of the type PEA2PbX4, (PEA = phenethylammonium and X = I−, Br−, or a combination of both) is presented. Low-temperature deposited 2D perovskite films showed high crystallinity with the expected trend of bandgap as a function of halide type and concentration. Importantly, we observed an unavoidable halide cross-contamination among different deposition runs, as well as a strong dependence of the material quality on the type of halide precursors used. These findings should be taken into account in the development of vacuum processing for low-dimensional mixed halide perovskites.

Materials scienceBand gapAnalytical chemistryHalide02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCharacterization (materials science)CrystallinityVacuum depositionSemiconductorsMaterials ChemistryDeposition (phase transition)Thin film0210 nano-technologyMaterialsPerovskite (structure)
researchProduct

Perovskite/Perovskite Tandem Solar Cells in the Substrate Configuration with Potential for Bifacial Operation.

2022

Perovskite/perovskite tandem solar cells have recently exceeded the record power conversion efficiency (PCE) of single-junction perovskite solar cells. They are typically built in the superstrate configuration, in which the device is illuminated from the substrate side. This limits the fabrication of the solar cell to transparent substrates, typically glass coated with a transparent conductive oxide (TCO), and adds constraints because the first subcell that is deposited on the substrate must contain the wide-bandgap perovskite. However, devices in the substrate configuration could potentially be fabricated on a large variety of opaque and inexpensive substrates, such as plastic and metal fo…

General Chemical EngineeringBiomedical EngineeringGeneral Materials ScienceMaterialsCèl·lules fotoelèctriquesACS materials letters
researchProduct

Structural control of mixed ionic and electronic transport in conducting polymers

2016

Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced change…

Conductive polymerOrganic electronics0306 Physical Chemistry (incl. Structural)BioelectronicsMultidisciplinaryMaterials scienceScienceDopingQGeneral Physics and AstronomyIonic bondingNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticle0104 chemical sciencesIonPEDOT:PSSNano-0210 nano-technology0912 Materials EngineeringNature Communications
researchProduct

Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material

2017

Abstract Planar perovskite solar cells using organic charge selective contacts were fabricated. In a vacuum deposited perovskite-based solar cell, dopant and additive free triazatruxene as the hole transport layer was introduced for device fabrication. High open-circuit voltage of 1090 mV was obtained using methylammonium lead iodide (Eg=1.55 eV) as light harvesting material, thus representing a loss of only 460 mV which is in close vicinity of mature silicon technology (400 mV). The devices showed a very competitive photovoltaic performance, monochromatic incident photon-to-electron conversion efficiency of 80% and the power conversion efficiencies in excess of 15% were measured with a neg…

Materials scienceFabricationDopantSiliconRenewable Energy Sustainability and the Environmentbusiness.industryEnergy conversion efficiencyPhotovoltaic systemchemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionHysteresischemistrylawSolar cellOptoelectronics0210 nano-technologybusinessPerovskite (structure)Solar Energy Materials and Solar Cells
researchProduct

Simultaneous determination of carrier lifetime and electron density-of-states in P3HT:PCBM organic solar cells under illumination by impedance spectr…

2010

We report new insights into recombination kinetics in poly(3-hexylthiophene):methanofullerene (P3HT:PCBM) bulk heterojunction (BHJ) solar cells, based on simultaneous determination of the density of states (DOS), internal recombination resistance, and carrier lifetime, at different steady states, by impedance spectroscopy. A set of measurements at open circuit under illumination was performed aiming to better understand the limitations to the photovoltage, which in this class of solar cells remains far below the theoretical limit which is the difference between the LUMO level of PCBM and the HOMO of P3HT (∼1.1 eV). Recombination kinetics follows a bimolecular law, being the recombination ti…

Electron densityOrganic solar cellRenewable Energy Sustainability and the EnvironmentChemistryBulk heterojunctionFermi levelAnalytical chemistryCharge densityImpedance spectroscopyCarrier lifetimeMolecular physicsPolymer solar cellSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakeOrganic solar cellsymbolsDensity of statesHOMO/LUMOLifetime
researchProduct

Vacuum deposition of perovskite films and solar cells

2019

Materials scienceVacuum depositionChemical engineeringPerovskite (structure)Proceedings of the International Conference on Perovskite Thin Film Photovoltaics and Perovskite Photonics and Optoelectronics
researchProduct

Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?

2017

Summary High-quality semiconducting perovskites can be easily synthesized through several methods. The ease of fabrication has favored the adoption of lab-scale solution-processing techniques, which have yielded the highest performing devices. Most of these processes, however, are not directly applicable to larger scale and volume preparations, hindering the consolidation and market entry of this technology. Vapor-based methods, a mature technology widely adopted in the coating and semiconductor industry, could change this trend. Their application to perovskite solar cells includes a large amount of fabrication approaches, offering versatility in the employed materials as well as in the cha…

FabricationMaterials sciencebusiness.industryMature technologyNanotechnology02 engineering and technologyChemical vapor depositionengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionSemiconductor industryGeneral EnergyCoatingPhotovoltaicslawSolar cellengineering0210 nano-technologybusinessPerovskite (structure)Joule
researchProduct

Potential and limitations of CsBi3I10 as a photovoltaic material

2020

Herein we demonstrate the dry synthesis of CsBi3I10 both as a free-standing material and in the form of homogeneous thin films, deposited by thermal vacuum deposition. Chemical and optical characterization shows high thermal stability, phase purity, and photoluminescence centered at 700 nm, corresponding to a bandgap of 1.77 eV. These characteristics make CsBi3I10 a promising low-toxicity material for wide bandgap photovoltaics. Nevertheless, the performance of this material as a semiconductor in solar cells remains rather limited, which can be at least partially ascribed to a low charge carrier mobility, as determined from pulsed-radiolysis time-resolved microwave conductivity. Further dev…

PhotoluminescenceMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryBand gapDoping02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesSemiconductorVacuum depositionPhotovoltaicsOptoelectronicsGeneral Materials ScienceThermal stabilityThin film0210 nano-technologybusinessMaterials
researchProduct

Use of Hydrogen Molybdenum Bronze in Vacuum‐Deposited Perovskite Solar Cells

2019

Herein, the dehydration of a hydrogen molybdenum bronze (HYMoO3), converting it to molybdenum oxide (MoOX), is explored toward the development of perovskite solar cells (PSCs) for the first time. H0.11MoO3 bronze is synthesized, characterized, and deposited on indium tin oxide (ITO) under different concentrations and annealing conditions for in situ conversion into MoOX with appropriate oxygen vacancies. Vacuum‐deposited PSCs are fabricated using the as‐produced MoOX hole injection layers, achieving a power conversion efficiency of 17.3% (average) for the optimal device. The latter has its stability and reproducibility tested, proving the robustness and affordability of the developed hole t…

Materials scienceHydrogenMetallurgyMolybdenum oxidechemistry.chemical_elementMolybdenum bronzechemistry.chemical_compoundGeneral EnergychemistryMOLIBDÊNIOMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Inverted Solution Processable OLEDs Using a Metal Oxide as an Electron Injection Contact.

2007

A new type of bottom-emission electroluminescent device is described in which a metal oxide is used as the electron-injecting contact. The preparation of such a device is simple. It consists of the deposition of a thin layer of a metal oxide on top of an indium tin oxide covered glass substrate, followed by the solution processing of the light-emitting layer and subsequently the deposition of a high-workfunction (air-stable) metal anode. This architecture allows for a low-cost electroluminescent device because no rigorous encapsulation is required. Electroluminescence with a high brightness reaching 5700 cd m–2 is observed at voltages as low as 8 V, demonstrating the potential of this new a…

chemistry.chemical_classificationBrightnessMaterials sciencebusiness.industryOxideFísicaPolymerElectroluminescenceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsIndium tin oxideBiomaterialschemistry.chemical_compoundchemistryElectrochemistryOLEDOptoelectronicsbusinessMaterialsVoltageDiodeAdvanced Functional Materials
researchProduct

ChemInform Abstract: Hybrid Organic-Inorganic Light-Emitting Diodes

2011

The demonstration of colour tunability and high efficiency has brought organic light-emitting diodes (OLEDs) into the displays and lighting market. However, high production costs due to expensive deposition techniques and the use of reactive materials still limit their market entry, highlighting the need for novel concepts. This has driven the research towards the integration of both organic and inorganic materials into devices that benefit from their respective peculiar properties. The most representative example of this tendency is the application of metal oxides in organic optoelectronics. Metal oxides combine properties such as high transparency, good electrical conductivities, tuneable…

Transparency (projection)ChemistrylawOrganic inorganicElectrodeOLEDDeposition (phase transition)General MedicineEngineering physicsReactive materialDiodeLight-emitting diodelaw.inventionChemInform
researchProduct

Hybrid organic-inorganic light-emitting diodes.

2011

The demonstration of colour tunability and high efficiency has brought organic light-emitting diodes (OLEDs) into the displays and lighting market. However, high production costs due to expensive deposition techniques and the use of reactive materials still limit their market entry, highlighting the need for novel concepts. This has driven the research towards the integration of both organic and inorganic materials into devices that benefit from their respective peculiar properties. The most representative example of this tendency is the application of metal oxides in organic optoelectronics. Metal oxides combine properties such as high transparency, good electrical conductivities, tuneable…

Materials scienceLuminescent Agentsbusiness.industryPolymersMechanical EngineeringOxideslaw.inventionTransparency (projection)SemiconductorsMechanics of MaterialslawMetalsElectrodeOLEDDeposition (phase transition)OptoelectronicsQuantum TheoryGeneral Materials ScienceThin filmbusinessReactive materialLight-emitting diodeDiodeAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Bright and stable light-emitting electrochemical cells based on an intramolecularly π-stacked, 2-naphthyl-substituted iridium complex

2014

The synthesis and characterization of a new cationic bis-cyclometallated iridium(III) complex and its use in solid-state light-emitting electrochemical cells (LECs) are described. The complex [Ir(ppy)2(Naphbpy)][PF6], where Hppy = 2-phenylpyridine and Naphbpy = 6-(2-naphthyl)-2,2′-bipyridine, incorporates a pendant 2-naphthyl unit that π-stacks face-to-face with the adjacent ppy− ligand and acts as a peripheral bulky group. The complex presents a structureless emission centred around 595–600 nm both in solution and in thin film with relatively low photoluminescence quantum yields compared with analogous systems. Density functional theory calculations support the charge transfer character of…

PhotoluminescenceMaterials scienceLigandchemistry.chemical_elementGeneral ChemistryElectroluminescencePhotochemistryElectrochemical cellchemistryMaterials ChemistryDensity functional theoryIridiumTriplet stateThin film
researchProduct

Short photoluminescence lifetimes in vacuum-deposited ch3nh3pbI3 perovskite thin films as a result of fast diffusion of photogenerated charge carriers

2019

It is widely accepted that a long photoluminescence (PL) lifetime in metal halide perovskite films is a crucial and favorable factor, as it ensures a large charge diffusion length leading to a high power conversion efficiency (PCE) in solar cells. It has been recently found that vacuumevaporated CH3NH3PbI3 (eMAPI) films show very short PL lifetimes of several nanoseconds. The corresponding solar cells, however, have high photovoltage (>1.1 V) and PCEs (up to 20%). We rationalize this apparent contradiction and show that eMAPI films are characterized by a very high diffusion coefficient D, estimated from modeling the PL kinetics to exceed 1 cm2/s. Such high D values are favorable for long di…

Materials sciencePhotoluminescenceUNESCO::QUÍMICAEnergy conversion efficiencyHalide02 engineering and technologyNanosecond010402 general chemistry021001 nanoscience & nanotechnology:QUÍMICA [UNESCO]01 natural sciences7. Clean energyMolecular physics0104 chemical sciencesGeneral Materials ScienceCharge carrierPhysical and Theoretical ChemistryThin filmDiffusion (business)0210 nano-technologyPerovskite (structure)
researchProduct

Aqueous electrolyte-gated ZnO transistors for environmental and biological sensing

2014

Electrolyte-gated transistors (EGTs) based on ZnO thin films, obtained by solution processing of suspensions of nanoparticles, have a low turn-on voltage (<0.5 V), a high on/off ratio and transconductance exceeding 0.2 mS. Importantly, the ZnO surface can be functionalized with a large variety of molecular recognition elements, making these devices ideal transducers in physiological and environmental monitoring. We present simple glucose-sensing and ion-selective EGTs, demonstrating the versatility of such devices in biosensing.

Materials scienceTransconductanceTransistorNanoparticleNanotechnologyGeneral ChemistryAqueous electrolytelaw.inventionMolecular recognitionlawMaterials ChemistryThin filmBiosensorVoltageJ. Mater. Chem. C
researchProduct

Colloids of naked CH 3 NH 3 PbBr 3 Perovskite Nanoparticles: Synthesis, Ssability, and thin solid film deposition

2018

A novel preparation of lead halide, CH3NH3PbBr3, perovskite nanoparticle solid films from colloidal "naked" nanoparticles, that is, dispersible nanoparticles without any surfactant, is reported. The colloids are obtained by simply adding potassium ions, whose counterions are both more lipophilic and less coordinating than bromide ions, to the perovskite precursor solutions (CH3NH3Br/PbBr2 in dimethylformamide) following the reprecipitation strategy. The naked nanoparticles exhibit a low tendency to aggregate in solution, and they effectively self-assembled on a substrate by centrifugation of the colloid, leading to homogeneous nanoparticle solid films with arbitrary thickness. These results…

Materials scienceGeneral Chemical EngineeringPHASEHalideNanoparticle02 engineering and technologySubstrate (electronics)INGENIERÍAS Y TECNOLOGÍAS010402 general chemistry01 natural scienceslcsh:ChemistryColloidPhase (matter)//purl.org/becyt/ford/2.10 [https]NANOPARTICLESELECTRON TRANSFERPerovskite (structure)chemistry.chemical_classificationNanotecnologíaGeneral Chemistry021001 nanoscience & nanotechnologyNano-materiales0104 chemical scienceslcsh:QD1-999chemistryChemical engineering//purl.org/becyt/ford/2 [https]LUMINESCENCECounterion0210 nano-technologyLuminescence
researchProduct

Lithium salt additives and the influence of their counterion on the performances of light-emitting electrochemical cells

2016

In this work we study the effect of the addition of lithium salts to light-emitting electrochemical cells (LECs), and in particular the effect of the lithium counterion. We found that the chosen lithium salts can substantially improve the device turn-on time as well as the overall lifetime, with respect to reference LECs using the pure emitter. A correlation between the lithium counterion and the corresponding device performance is established, and efficient LECs with lifetimes approaching 2000 hours are presented.

chemistry.chemical_classificationMaterials scienceInorganic chemistrySalt (chemistry)chemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesElectrochemical cellchemistryMaterials ChemistryLithiumCounterion0210 nano-technologyCommon emitterJournal of Materials Chemistry C
researchProduct

Room-Temperature Cubic Phase Crystallization and High Stability of Vacuum-Deposited Methylammonium Lead Triiodide Thin Films for High-Efficiency Sola…

2019

Methylammonium lead triiodide (MAPI) has emerged as a high-performance photovoltaic material. Common understanding is that at room temperature it adopts a tetragonal phase and it only converts to the perfect cubic phase around 50-60 ºC. Most MAPI films are prepared using a solution-based coating process, yet they can also be obtained by vapor phase deposition methods. Vapor phase processed MAPI films have significantly different characteristics compared to their solvent processed analogous, such as a relatively small crystal grain sizes and short excited state lifetimes. Yet solar cells based on vapor phase processed MAPI films exhibit high power conversion efficiencies. Surprisingly, after…

Materials scienceAnalytical chemistry02 engineering and technologyCubic crystal system010402 general chemistry7. Clean energy01 natural scienceslaw.inventionchemistry.chemical_compoundTetragonal crystal systemlawPhase (matter)Deposition (phase transition)General Materials ScienceThin filmTriiodideCrystallizationMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Mechanical Engineering021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of Materials0210 nano-technology
researchProduct

Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes

2016

Abstract In this work, we demonstrate flexible solution processed light emitting electrochemical cells (LECs) which use single-walled carbon nanotubes (SWCNTs) films as the substrate. The SWCNTs were synthesized by an integrated aerosol method and dry-transferred on the plastic substrates at room temperature. The addition of a screen printed poly (3,4-ethylene dioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) film onto the nanostructured electrode further homogenizes the surface and enlarges the work function, enhancing the hole injection into the active layer. By using an efficient phosphorescent ionic transition metal complex (iTMC) as the active material, efficacies up to 9…

Materials scienceLight-emitting electrochemical cellsFlexible devices02 engineering and technologySubstrate (electronics)Carbon nanotubeElectroluminescence010402 general chemistry01 natural sciencesElectrochemical celllaw.inventionBiomaterialsPEDOT:PSSlawSWCNTsMaterials ChemistryOLEDWork functionElectrical and Electronic Engineeringta114business.industryOLEDsGeneral ChemistryTransition metal complex021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectroluminescenceElectrodeOptoelectronics0210 nano-technologybusinessORGANIC ELECTRONICS
researchProduct

Tunable Wide‐Bandgap Monohalide Perovskites

2020

Herein the mechanochemical synthesis of inorganic as well as hybrid organic-inorganic monohalide perovskites with tunable bandgaps is reported. It is shown that the bandgap bowing known for iodide mixed Sn-Pb perovskites is also present in the pure bromide analogous. This results in technologically very interesting materials with bandgaps in the range of 1.7-1.9 eV. Similar bandgap perovskites are typically achieved by mixing two halides that are prone to segregate over time. This limits the achievable open circuit voltage. For monohalide perovskites this problem is eliminated, making these materials especially promising wide bandgap absorbers for tandem solar cells. Perovskite Thin-film Ph…

Materials sciencebusiness.industryBand gap02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsPhotovoltaicsOptoelectronics0210 nano-technologybusinessMaterialsCèl·lules fotoelèctriquesAdvanced Optical Materials
researchProduct

Crystal Reorientation and Amorphization Induced by Stressing Efficient and Stable P–I–N Vacuum‐Processed MAPbI 3 Perovskite Solar Cells

2021

Herein, the long-term stability of vacuum-deposited methylammonium lead iodide (MAPbI(3)) perovskite solar cells (PSCs) with power conversion efficiencies (PCEs) of around 19% is evaluated. A low-temperature atomic layer deposition (ALD) Al2O3 coating is developed and used to protect the MAPbI(3) layers and the solar cells from environmental agents. The ALD encapsulation enables the MAPbI(3) to be exposed to temperatures as high as 150 degrees C for several hours without change in color. It also improves the thermal stability of the solar cells, which maintain 80% of the initial PCEs after aging for approximate to 40 and 37days at 65 and 85 degrees C, respectively. However, room-temperature…

Materials scienceCrystal orientationTJ807-83002 engineering and technologyGeneral MedicineQuímicastability010402 general chemistry021001 nanoscience & nanotechnologyperovskite solar cellsEnvironmental technology. Sanitary engineering01 natural sciences7. Clean energyRenewable energy sources0104 chemical sciencesCrystalCrystallographyAtomic layer depositionthermal evaporationcrystal orientationatomic layer deposition0210 nano-technologyTD1-1066Perovskite (structure)Advanced Energy and Sustainability Research
researchProduct

Charge Noise in Organic Electrochemical Transistors

2017

Organic electrochemical transistors (OECTs) are increasingly studied as transducers in sensing applications. While much emphasis has been placed on analyzing and maximizing the OECT signal, noise has been mostly ignored, although it determines the resolution of the sensor. The major contribution to the noise in sensing devices is the 1/f noise, dominant at low frequency. In this work, we demonstrate that the 1/f noise in OECTs follows a charge-noise model, which reveals that the noise is due to charge fuctuations in proximity or within the bulk of the channel material. We present the noise scaling behavior with gate voltage, channel dimensions and polymer thickness. Our results suggest the …

Materials sciencebusiness.industryGrapheneTransistorGeneral Physics and AstronomyCharge (physics)02 engineering and technologyCarbon nanotube010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciencesSignalNoise (electronics)0104 chemical scienceslaw.inventionlawOptoelectronics0210 nano-technologybusinessCommunication channelPhysical Review Applied
researchProduct

Removing Leakage and Surface Recombination in Planar Perovskite Solar Cells

2019

Thin-film solar cells suffer from various types of recombination, of which leakage current usually dominates at lower voltages. Herein, we demonstrate first a three-order reduction of the shunt loss mechanism in planar methylammonium lead iodide perovskite solar cells by replacing the commonly used hole transport layer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with a better hole-selective polyarylamine. As a result, these cells exhibit superior operation under reduced light conditions, which we demonstrate for the extreme case of moonlight irradiance, at which open-circuit voltages of 530 mV can still be obtained. By the shunt removal we also observe the VOC to dro…

IodideFOS: Physical sciencesEnergy Engineering and Power TechnologyHole transport layerApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistry01 natural sciencesPlanarPEDOT:PSSMaterials ChemistryLeakage (electronics)chemistry.chemical_classificationRenewable Energy Sustainability and the Environmentbusiness.industryPhysics - Applied Physics021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologychemistryChemistry (miscellaneous)Optoelectronics0210 nano-technologybusinessShunt (electrical)RecombinationVoltage
researchProduct

Remote Modification of Bidentate Phosphane Ligands Controlling the Photonic Properties in Their Complexes: Enhanced Performance of [Cu(RN‐xantphos)(N…

2020

A series of copper(I) complexes of the type [Cu(HN-xantphos)(N^N)][PF6] and [Cu(BnN-xantphos)(N^N)][PF6], in which N^N = bpy, Mebpy and Me2bpy, HN-xantphos = 4,6-bis(diphenylphosphanyl)-10H-phenoxazine and BnN-xantphos = 10-benzyl-4,6-bis(diphenylphosphanyl)-10H-phenoxazine is described. The single crystal structures of [Cu(HN-xantphos)(Mebpy)][PF6] and [Cu(BnN-xantphos)(Me2bpy)][PF6] confirm the presence of N^N and P^P chelating ligands with the copper(I) atoms in distorted coordination environments. Solution electrochemical and photophysical properties of the BnN-xantphos-containing compounds (for which the highest-occupied molecular orbital is located on the phenoxazine moiety) are repor…

DenticityMaterials scienceAbsorption spectroscopyXantphosLigandQuantum yield02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic Materialschemistry.chemical_compoundCrystallographychemistryExcited stateDensity functional theory0210 nano-technologySingle crystalAdvanced Optical Materials
researchProduct

Ion-Selective Organic Electrochemical Transistors

2014

Ion-selective organic electrochemical transistors with sensitivity to potassium approaching 50 μA dec(-1) are demonstrated. The remarkable sensitivity arises from the use of high transconductance devices, where the conducting polymer is in direct contact with a reference gel electrolyte and integrated with an ion-selective membrane.

Materials scienceConductometryTransistors ElectronicTransconductanceInorganic chemistryBiosensing TechniquesElectrolyteElectrochemistrylaw.inventionlawGeneral Materials ScienceOrganic ChemicalsPolyvinyl ChlorideIonsConductive polymerbusiness.industryMechanical EngineeringTransistorMembranes ArtificialEquipment DesignEquipment Failure AnalysisMembraneMechanics of MaterialsPotassiumOptoelectronicsbusinessBiosensorOrganic electrochemical transistorAdvanced Materials
researchProduct

Ionically Assisted Charge Injection in Hybrid Organic−Inorganic Light-Emitting Diodes

2010

We have developed hybrid organic−inorganic light-emitting diodes (HyLEDs) featuring a buffer layer of a conjugated polyelectrolyte (CPE) sandwiched between a light emitting polymer (LEP) film and a ZnO electron injection layer. Efficacies exceeding 5 cd/A and the possibility of employing various LEPs are demonstrated. These improvements, compared to HyLEDs without any interlayer, are attributed to the redistribution of ions in the CPE film, causing hole accumulation at the CPE/LEP interfaces and enhanced electron injection from the ZnO into the electroluminescent polymer. The intrinsic air-stability of the electrodes used in HyLEDs, together with the solution processability of the ZnO/CPE/L…

chemistry.chemical_classificationMaterials sciencebusiness.industryPolymerElectroluminescenceBuffer (optical fiber)Ionlaw.inventionchemistrylawElectrodeOLEDOptoelectronicsGeneral Materials SciencebusinessDiodeLight-emitting diodeACS Applied Materials &amp; Interfaces
researchProduct

Quantifying the Composition of Methylammonium Lead Iodide Perovskite Thin Films with Infrared Spectroscopy

2019

Lead halide perovskites (ABX3) are generally formed from a reaction of the lead halide salt (BX2) with the halide salt of the A cation (AX). The effects of varying film compositions as result of non-stoichiometric precursor ratios on electronic properties of halide perovskites are currently under debate. It is imperative, but experimentally challenging, to determine the chemical composition of thin films as a function of precursor ratio for a full understanding of the effect. Herein we report a precise quantification of the methylammonium (MA) content in differently fabricated films of MAPbI3 via infrared (IR) spectroscopy. We compare the thin film data to the first high quality dielectric …

Materials scienceInfraredAnalytical chemistryInfrared spectroscopyHalideSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyEllipsometryPhysical and Theoretical ChemistryThin filmSpectroscopyChemical compositionPerovskite (structure)The Journal of Physical Chemistry C
researchProduct

High voltage vacuum-processed perovskite solar cells with organic semiconducting interlayers

2020

In perovskite solar cells, the choice of appropriate transport layers and electrodes is of great importance to guarantee efficient charge transport and collection, minimizing recombination losses. The possibility to sequentially process multiple layers by vacuum methods offers a tool to explore the effects of different materials and their combinations on the performance of optoelectronic devices. In this work, the effect of introducing interlayers and altering the electrode work function has been evaluated in fully vacuum-deposited perovskite solar cells. We compared the performance of solar cells employing common electron buffer layers such as bathocuproine (BCP), with other injection mate…

Materials scienceContinuous operationGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technologyElectron010402 general chemistry7. Clean energy01 natural sciencesWork functionCèl·lules fotoelèctriquesDiodePerovskite (structure)business.industryHigh voltageGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistrySemiconductorsElectrodeOptoelectronicsLithiumEnergies renovables0210 nano-technologybusinessRSC Advances
researchProduct

Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material.

2018

A cross-linkable triazatruxene that leads to insoluble films upon thermal annealing at temperatures compatible with flexible substrates is presented. The films were used as the hole transporting and electron blocking layer in partially solution processed phosphorescent organic light-emitting diodes, reaching power conversion efficiencies of 24 lm W−1, an almost 50% improvement compared to the same OLEDs without the cross-linkable hole transporting layer.

Materials sciencebusiness.industryGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesElectron blocking layerTriazatruxene0104 chemical sciencesSolution processedOLEDOptoelectronics0210 nano-technologyPhosphorescencebusinessLayer (electronics)DiodeRSC advances
researchProduct

Stable Light-Emitting Electrochemical Cells Using Hyperbranched Polymer Electrolyte

2021

The choice of an adequate electrolyte is a fundamental aspect in polymer light-emitting electrochemical cells (PLECs) as it provides the in situ electrochemical doping and influences the performance of these devices. In this study, a hyperbranched polymer (Hybrane DEO750 8500) blended with a Li salt is used as a novel electrolyte in state-of-the-art Super Yellow (a polyphenylenevinylene) based LECs. Due to the desirable properties of the hyperbranched polymer and the homogeneous and smooth films that it forms with the emitting polymer, PLEC with excellent electroluminescent properties are obtained using a pulsed current bias scheme. The devices are very stable, with lifetimes in excess of 2…

chemistry.chemical_classificationMaterials sciencePhotoluminescencePolymer electrolytesHyperbranched polymersPolymerElectrolyteElectroluminescenceCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionElectrochemical cellBiomaterialsElectroquímicaSolid-state lightingchemistryChemical engineeringlawElectrochemistryMaterials
researchProduct

Vacuum Deposited Triple-Cation Mixed-Halide Perovskite Solar Cells

2018

Hybrid lead halide perovskites are promising materials for future photovoltaics applications. Their spectral response can be readily tuned by controlling the halide composition, while their stability is strongly dependent on the film morphology and on the type of organic cation used. Mixed cation and mixed halide systems have led to the most efficient and stable perovskite solar cells reported, so far they are prepared exclusively by solution-processing. This might be due to the technical difficulties associated with the vacuum deposition from multiple thermal sources, requiring a high level of control over the deposition rate of each precursor during the film formation. In this report, the…

Materials scienceRenewable Energy Sustainability and the EnvironmentInorganic chemistryDopingHalide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesVacuum depositionGeneral Materials Science0210 nano-technologyScience technology and societyMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Coating Evaporated MAPI Thin Films with Organic Molecules: Improved Stability at High Temperature and Implementation in High-Efficiency Solar Cells

2018

Methylammonium lead iodide (MAPI) has proven to be an exceptional light-absorber for single-junction thin-film solar cells. Nonetheless, degradation induced by environmental agents (air, moisture, heat) limits the stability of this hybrid perovskite. Here, we demonstrate that coating evaporated MAPI thin films with different hydrophobic molecules leads to a significant improvement in their stability. We especially investigated the degradation of MAPI and the subsequent formation of PbI2 at 150 °C by in situ XRD analysis and showed that this transformation is remarkably slowed down in films coated with trioctyl phosphine oxide and tridodecyl methylammonium iodide. This enhances the processab…

FabricationMaterials scienceIodideEnergy Engineering and Power Technology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesCoatingMaterials ChemistryCalefacció solarThin filmPerovskite (structure)chemistry.chemical_classificationMoistureRenewable Energy Sustainability and the Environment021001 nanoscience & nanotechnology0104 chemical sciencesHydrophobeFuel TechnologychemistryChemical engineeringChemistry (miscellaneous)engineeringDegradation (geology)Energia0210 nano-technologyACS Energy Letters
researchProduct

Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination

2008

Capacitance analysis of P3HT:PCBM bulk heterojunction solar cells, in dark and under illumination, shows a linear Mott-Schottky characteristic at moderate reverse bias, indicating p-doping of the organic blend. The flatband potential under illumination is displaced negatively about 0.6 V with respect to dark conditions. A basic photovoltaic model is developed to explain this, in terms of electron transfer via surface states at the metal/organic interface. Surface states with a slow exchange kinetics, become charged under illumination, unpinning the band and decreasing the depletion layer at the electron extraction contact. This becomes a major factor limiting the performance of bulk heteroj…

Materials sciencebusiness.industryPhotovoltaic systemGeneral Physics and AstronomyHeterojunctionElectronCapacitancePolymer solar cellElectron transferDepletion regionOptoelectronicsPhysical and Theoretical ChemistrybusinessSurface statesChemical Physics Letters
researchProduct

White-light phosphorescence emission from a single molecule: application to OLED.

2009

A simple mononuclear cyclometallated iridium(III) complex exhibits white photo- and electro- luminescence in the wavelength range from 440 to 800 nm, which originates from a single emitting excited state of mixed character. Bolink Henk, Henk.Bolink@uv.es ; Coronado Miralles, Eugenio, Eugenio.Coronado@uv.es

DesignLuminescenceUNESCO::QUÍMICAAb initioColorchemistry.chemical_elementEfficiency010402 general chemistryPhotochemistry:QUÍMICA [UNESCO]01 natural sciencesCatalysisCopolymerIridium ComplexesMaterials ChemistryOLEDMoleculeIridiumDiodeEmitting DevicesMononuclear cyclometallated iridiumPhosphorescence010405 organic chemistryChemistrybusiness.industryUNESCO::QUÍMICA::Química analíticaMetals and AlloysAb-InitioGeneral ChemistryDiodes0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBlueOLEDExcited stateGreen:QUÍMICA::Química analítica [UNESCO]Ceramics and CompositesOptoelectronicsMononuclear cyclometallated iridium ; Luminescence ; Phosphorescence ; OLEDLuminescencePhosphorescencebusinessChemical communications (Cambridge, England)
researchProduct

Highly photoluminescent, dense solid films from organic-capped CH3NH3PbBr3 perovskite colloids

2018

The preparation of densely-packed films from hybrid lead halide perovskite nanocrystals is not trivial, as during assembly into the solid state both the charge transport and photoluminescence can be substantially altered. The objective of the present study was to retain the pre-engineered confined morphologies of hybrid lead halide perovskite nanocrystals in densely-packed solid films by using short organic ligands. Therefore, the roles of the organic ligands would be to provide stable colloids and a good passivation of the nanoparticle surface, as well as to enable the efficient assembly of the nanoparticles in the solid state. We report here an effective and reproducible process to deposi…

Materials sciencePhotoluminescencePassivationHalideNanoparticleQuantum yield02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesColloidChemical engineeringNanocrystalMaterials Chemistry0210 nano-technologyPerovskite (structure)Journal of Materials Chemistry C
researchProduct

Photoluminescence quantum yield exceeding 80% in low dimensional perovskite thin-films via passivation control

2017

Quasi-2D perovskites with the BA : MA molar ratio equal to 3 : 3 show a remarkable PLQY exceeding 80%, thanks to the use of an electron donor as the passivating agent. These films have been applied in LEDs that exhibit high brightness exceeding 1000 cd m−2 and current efficiencies >3 cd A−1.

BrightnessPhotoluminescenceMaterials sciencePassivationQuantum yieldElectron donor02 engineering and technology010402 general chemistry01 natural sciencesCatalysislaw.inventionchemistry.chemical_compoundlawMaterials ChemistryThin filmPerovskite (structure)business.industryMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryCeramics and CompositesOptoelectronics0210 nano-technologybusinessLight-emitting diodeChemical Communications
researchProduct

Perovskites and Beyond: Dry Mechanochemical Synthesis of Multinary Metal Halides

2019

chemistry.chemical_compoundMetal halidesMaterials sciencechemistryInorganic chemistryProceedings of the 1st Interfaces in Organic and Hybrid Thin-Film Optoelectronics
researchProduct

Mechanochemical Synthesis of Sn(II) and Sn(IV) Iodide Perovskites and Study of Their Structural, Chemical, Thermal, Optical and Electrical Properties

2019

Phase‐pure CsSnI3, FASnI3, Cs(PbSn)I3, FA(PbSn)I3 perovskites (FA = formamidinium = HC(NH2)2+) as well as the analogous so‐called vacancy‐ordered double perovskites Cs2SnI6 and FA2SnI6 are mechanochemically synthesized. The addition of SnF2 is found to be crucial for the synthesis of Cs‐containing perovskites but unnecessary for hybrid ones. All compounds show an absorption onset in the near‐infrared (NIR) region, which makes them especially relevant for photovoltaic applications. The addition of Pb(II) and SnF2 is crucial to improve the electronic properties in 3D Sn(II)‐based perovskites, in particular their charge carriers mobility (≈0.2 cm2 Vs−1) which is enhanced upon reduction of the …

Materials scienceChemical substanceIodideperovskitesSolid-statechemistry.chemical_element02 engineering and technologylow-bandgap010402 general chemistry7. Clean energy01 natural sciencessolid-statelow-bandgap mechanochemistry perovskites solid-state tintinMechanochemistryThermalMaterialschemistry.chemical_classificationThesaurus (information retrieval)021001 nanoscience & nanotechnology0104 chemical sciencesGeneral EnergychemistryChemical engineeringEnergiamechanochemistry0210 nano-technologyTinScience technology and society
researchProduct

Intrinsic Organic Semiconductors as Hole Transport Layers in p–i–n Perovskite Solar Cells

2021

Thin polymeric and small-molecular-weight organic semiconductors are widely employed as hole transport layers (HTLs) in perovskite solar cells. To ensure ohmic contact with the electrodes, the use of doping or additional high work function (WF) interlayer is common. In some cases, however, intrinsic organic semiconductors can be used without any additive or buffer layers, although their thickness must be tuned to ensure selective and ohmic hole transport. Herein, the characteristics of thin HTLs in vacuum-deposited perovskite solar cells are studied, and it is found that only very thin (&lt;5 nm) HTLs readily result inhigh-performing devices, as the HTL acts as a WF enhancer while still ens…

Semiconductors orgànicsEnergy Engineering and Power TechnologydopingKemihole transport layersCondensed Matter Physicsperovskite solar cellsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssmall moleculesChemical SciencesPhysical SciencesFysikElectrical and Electronic Engineeringorganic semiconductorsDen kondenserade materiens fysikCèl·lules fotoelèctriques
researchProduct

Highly phosphorescent perfect green emitting iridium(iii) complex for application in OLEDs.

2007

A novel iridium complex, [bis-(2-phenylpyridine)(2-carboxy-4-dimethylaminopyridine)iridium(III)] (N984), was synthesized and characterized using spectroscopic and electrochemical methods; a solution processable OLED device incorporating the N984 complex displays electroluminescence spectra with a narrow bandwidth of 70 nm at half of its intensity, with colour coordinates of x = 0.322; y = 0.529 that are very close to those suggested by the PAL standard for a green emitter. Bolink, Henk, Henk.Bolink@uv.es ; Coronado Miralles, Eugenio, Eugenio.Coronado@uv.es ; Garcia Santamaria, Sonsoles Amor, Sonsoles.Garcia@uv.es

Materials sciencePhosforescenseUNESCO::QUÍMICAchemistry.chemical_elementNanotechnologyIridiumElectrochemistry:QUÍMICA [UNESCO]CatalysisNarrow bandwidthSpectrostopic methodElectrochemical methodMaterials ChemistryOLEDIridiumElectroluminescence spectraCommon emitterbusiness.industryUNESCO::QUÍMICA::Química analíticaMetals and AlloysGeneral ChemistryPhosforescense ; Green ; Iridium ; OLED ; Spectrostopic method ; Electrochemical methodSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOLEDchemistryGreen:QUÍMICA::Química analítica [UNESCO]Ceramics and CompositesOptoelectronicsbusinessPhosphorescenceChemical communications (Cambridge, England)
researchProduct

Working mechanisms of vacuum-deposited perovskite solar cells

2018

Materials scienceChemical engineeringPerovskite (structure)Proceedings of the 10th International Conference on Hybrid and Organic Photovoltaics
researchProduct

Efficient and Thermally Stable Wide Bandgap Perovskite Solar Cells by Dual‐Source Vacuum Deposition

2023

BiomaterialsElectrochemistryCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAdvanced Functional Materials
researchProduct

Molecular Passivation of MoO3: Band Alignment and Protection of Charge Transport Layers in Vacuum-Deposited Perovskite Solar Cells

2019

Vacuum-deposition of perovskite solar cells can achieve efficiencies rivalling solution-based methods and it allows for more complex device stacks. MoO3 has been used to enhance carrier extraction to the transparent bottom electrode in a p-i-n configuration, here we show that by inserting an organic charge transport molecule it can also be used on the top of a perovskite absorber in a n-i-p configuration. This strategy enables the first vacuum-deposited perovskite solar cells with metal oxides as charge transporting layers for both electrons and holes leading to power conversion efficiency > 19 %.

Materials sciencePassivationbusiness.industryGeneral Chemical EngineeringExtraction (chemistry)Charge (physics)02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesVacuum depositionMaterials ChemistryOptoelectronicsMOLIBDÊNIO0210 nano-technologybusinessMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Highly Photoluminescent Blue Ionic Platinum-Based Emitters

2019

New cycloplatinated N-heterocyclic carbene (NHC) compounds with chelate diphosphines (P^P) as ancillary ligands: [Pt(R-C^C*)(P^P)]PF6 (R = H, P^P = dppm (1A), dppe (2A), dppbz (3A); R = CN, P^P = dppm (1B), dppe (2B), dppbz (3B)) have been prepared from the corresponding starting material [{Pt(R-C^C*)(μ-Cl)}2] (R = H, A, R = CN, B) and fully characterized. The new compound A has been prepared by a stepwise protocol. The photophysical properties of 1A–3A and 1B–3B have been widely studied and supported by the time-dependent-density functional theory. These compounds show an efficient blue (dppe, dppbz) or cyan (dppm) emission in PMMA films (5 wt %), with photoluminescence quantum yield (PLQY…

Photoluminescence010405 organic chemistryIonic bondingchemistry.chemical_elementQuímica010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryDiphosphinesPolymer chemistryChelationPhysical and Theoretical ChemistryPlatinumCarbeneMaterials
researchProduct

Lead acetate precursor based p-i-n perovskite solar cells with enhanced reproducibility and low hysteresis

2015

A low temperature approach for the fabrication of p-i-n perovskite solar cells is presented. Using lead acetate-based precursors, flat and homogeneous CH3NH3PbI3 films, compatible with the use of thin organic charge transport layers, can be obtained. The corresponding solar cells showed power conversion efficiency up to 12.5%, with remarkable reproducibility and very low hysteresis.

ReproducibilityMaterials scienceFabricationRenewable Energy Sustainability and the EnvironmentEnergy conversion efficiencyfood and beveragesNanotechnologyGeneral ChemistryCondensed Matter::Materials ScienceHysteresisChemical engineeringLead acetateHomogeneousGeneral Materials SciencePerovskite (structure)Journal of Materials Chemistry A
researchProduct

Influence of device geometry on sensor characteristics of planar organic electrochemical transistors.

2009

The response of PEDOT:PSS planar electrochemical transistors to H2O2 can be tuned by varying the ratio between the areas of the channel and the gate electrode. Devices with small gates show lower background signal and higher sensitivity. The detection range, on the other hand, is found to be rather independent of the gate/channel area ratio.

Conductive polymerOrganic electronicsMaterials scienceTransistors Electronicbusiness.industryMechanical EngineeringTransistorEquipment Designlaw.inventionEquipment Failure AnalysisPlanarPEDOT:PSSMechanics of MaterialslawElectrodeElectrochemistryOptoelectronicsGeneral Materials ScienceOrganic ChemicalsbusinessSensitivity (electronics)ElectrodesOrganic electrochemical transistorAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Low-dimensional iodide perovskite nanocrystals enable efficient red emission

2019

We report herein a simple ligand-assisted reprecipitation method at room temperature to synthesize mixed-cation hybrid organic–inorganic perovskite nanocrystals with low structural dimensionality.

chemistry.chemical_classificationMaterials sciencePhotoluminescenceNanotecnologiabusiness.industryBand gapIodide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesBlueshiftLaser linewidthNanocrystalchemistryOptoelectronicsGeneral Materials Science0210 nano-technologybusinessMaterialsVisible spectrumPerovskite (structure)Nanoscale
researchProduct

Vacuum-Deposited Microcavity Perovskite Photovoltaic Devices

2021

The interaction between semiconductor materials and electromagnetic fields resonating in microcavities or the light-matter coupling is of both fundamental and practical significance for improving the performance of various photonic technologies. The demonstration of light-matter coupling effects in the emerging perovskite-based optoelectronic devices via optical pumping and electrical readout (e.g., photovoltaics) and vice versa (e.g., light-emitting diodes), however, is still scarce. Here, we demonstrate the microcavity formation in vacuum-deposited methylammonium lead iodide (CH3NH3PbI3, MAPI) p-i-n photovoltaic devices fabricated between two reflecting silver electrodes. We tune the posi…

Materials sciencebusiness.industrylight-matter couplingPhotovoltaic systemPhysics::OpticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsphotovoltaicmicrocavity devicehybrid organic inorganic perovskiteOptoelectronicsvacuum depositionElectrical and Electronic EngineeringbusinessMaterialsBiotechnologyPerovskite (structure)
researchProduct

Phosphomolybdic acid as an efficient hole injection material in perovskite optoelectronic devices.

2018

Efficient perovskite devices consist in a perovskite film sandwiched in between charge selective layers, in order to avoid non-radiative recombination. A common metal oxide used as p-type or hole transport layer is molybdenum oxide. MoO3 is of particular interest for its very large work function, which allows it to be used both as an interfacial charge transfer material as well as a dopant for organic semiconductors. However, high quality and high work function MoO3 is typically thermally evaporated in vacuum. An alternative solution-processable high work function material is phosphomolybdic acid (PMA), which is stable, commercially available and environmentally friendly. In this communicat…

Materials scienceDopant010405 organic chemistrybusiness.industry010402 general chemistry01 natural sciences7. Clean energy0104 chemical scienceslaw.inventionInorganic ChemistryOrganic semiconductorchemistry.chemical_compoundchemistrylawSolar cellPhosphomolybdic acidOptoelectronicsQuantum efficiencyWork functionCharge carrierbusinessMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Dalton transactions (Cambridge, England : 2003)
researchProduct

Controlling the mode of operation of organic transistors through side chain engineering

2016

Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode…

Materials scienceTransconductanceNanotechnologyHardware_PERFORMANCEANDRELIABILITY02 engineering and technologyElectrolyte010402 general chemistry01 natural scienceslaw.inventionelectrochemical transistorlawMD MultidisciplinaryHardware_INTEGRATEDCIRCUITSSide chainConductive polymerMultidisciplinarySubthreshold conductionbusiness.industrysemiconducting polymersTransistor021001 nanoscience & nanotechnologyequipment and supplies0104 chemical sciencesorganic electronicsSemiconductorPhysical SciencesOptoelectronics0210 nano-technologybusinessHardware_LOGICDESIGNOrganic electrochemical transistor
researchProduct

Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition

2021

Vacuum deposition methods are increasingly applied to the preparation of perovskite films and devices, in view of the possibility to prepare multilayer structures at low temperature. Vacuum-deposited, wide-bandgap solar cells based on mixed-cation and mixed-anion perovskites have been scarcely reported, due to the challenges associated with the multiple-source processing of perovskite thin films. In this work, we describe a four-source vacuum deposition process to prepare wide-bandgap perovskites of the type FA1-n Cs n Pb(I1-x Br x )3 with a tunable bandgap and controlled morphology, using FAI, CsI, PbI2, and PbBr2 as the precursors. The simultaneous sublimation of PbI2 and PbBr2 allows the…

Materials scienceBand gapEnergy Engineering and Power TechnologyHalide02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyVacuum depositionMaterials ChemistryThin filmCèl·lules fotoelèctriquesPerovskite (structure)Range (particle radiation)Renewable Energy Sustainability and the Environmentbusiness.industryConductivitat elèctrica021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyChemistry (miscellaneous)HomogeneousOptoelectronicsPhotovoltaics and Wind EnergySublimation (phase transition)0210 nano-technologybusinessACS Energy Letters
researchProduct

Reinforced Room-Temperature Spin Filtering in Chiral Paramagnetic Metallopeptides

2020

Chirality-induced spin selectivity (CISS), whereby helical molecules polarize the spin of electrical current, is an intriguing effect with potential applications in nanospintronics. In this nascent field, the study of the CISS effect using paramagnetic chiral molecules, which could introduce another degree of freedom in controlling the spin transport, remains so far unexplored. To address this challenge, herein we propose the use of self-assembled monolayers (SAMs) of helical lanthanide-binding peptides. To elucidate the effect of the paramagnetic nuclei, monolayers of the peptide coordinating paramagnetic or diamagnetic ions are prepared. By means of spin-dependent electrochemistry, the CI…

Surface PropertiesFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistryLanthanoid Series Elements01 natural sciencesBiochemistryCatalysisElectron TransportParamagnetismColloid and Surface ChemistryElectrical currentMesoscale and Nanoscale Physics (cond-mat.mes-hall)ElectrochemistryOrganometallic CompoundsMoleculeAmino Acid SequenceSpin-½Spin filteringCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsChemistryElectron Spin Resonance SpectroscopyTemperatureStereoisomerismPhysics - Applied PhysicsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesModels ChemicalCondensed Matter::Strongly Correlated ElectronsGoldPeptides0210 nano-technologySelectivityJournal of the American Chemical Society
researchProduct

Preparation and Characterization of Mixed Halide MAPbI 3− x Cl x Perovskite Thin Films by Three‐Source Vacuum Deposition

2019

General EnergyMaterials scienceVacuum depositionAnalytical chemistryHalideThin filmScience technology and societyCharacterization (materials science)Perovskite (structure)Energy Technology
researchProduct

Wide-Bite-Angle Diphosphine Ligands in Thermally Activated Delayed Fluorescent Copper(I) Complexes: Impact on the Performance of Electroluminescence …

2021

We report a series of seven cationic heteroleptic copper(I) complexes of the form [Cu(P^P)(dmphen)]BF4, where dmphen is 2,9-dimethyl-1,10-phenanthroline and P^P is a diphosphine chelate, in which the effect of the bite angle of the diphosphine ligand on the photophysical properties of the complexes was studied. Several of the complexes exhibit moderately high photoluminescence quantum yields in the solid state, with ΦPL of up to 35%, and in solution, with ΦPL of up to 98%. We were able to correlate the powder photoluminescence quantum yields with the % Vbur of the P^P ligand. The most emissive complexes were used to fabricate both organic light-emitting diodes and light-emitting electrochem…

PhotoluminescenceLigandCationic polymerizationchemistry.chemical_element02 engineering and technologyBite angle010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciencesCopper0104 chemical sciencesInorganic ChemistryCrystallographychemistryElectrochemiluminescenceChelationPhysical and Theoretical Chemistry0210 nano-technologyInorganic chemistry
researchProduct

A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes

2018

Efficient organic light-emitting diodes (OLEDs) can be obtained using multilayered architectures where the processes of charge injection, transport and recombination are separated and optimized in each layer. Processing these structures from solution requires strategies to avoid redissolution or damage of the previously deposited layers. Several reports have demonstrated the development of cross-linkable hole transport materials, while less literature describes the synthesis and applications of such wide bandgap host materials for multilayered OLEDs. In this work we introduce a cross-linkable derivative of 9-(4-(10-phenylanthracene-9-yl)phenyl)-9H-carbazole incorporating styrene moieties (S…

chemistry.chemical_classificationMaterials sciencebusiness.industryBand gapRadical polymerization910-Diphenylanthracene02 engineering and technologyGeneral ChemistryPolymerElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryMaterials ChemistryOLEDOptoelectronics0210 nano-technologybusinessLayer (electronics)DiodeJournal of Materials Chemistry C
researchProduct

Perovskite solar cells prepared by flash evaporation

2015

A simple vacuum deposition method for the preparation of high quality hybrid organic-inorganic methylammonium lead iodide perovskite thin films is reported. When sandwiched in between organic charge transporting layers, such films lead to solar cells with a power conversion efficiency of 12.2%.

chemistry.chemical_classificationMaterials scienceF100IodideInorganic chemistryEnergy conversion efficiencyF200Metals and AlloysFlash evaporationGeneral ChemistryHybrid solar cellCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringVacuum depositionMaterials ChemistryCeramics and CompositesThin filmPerovskite (structure)Chemical Communications
researchProduct

Simple approach for an electron extraction layer in all-vacuum processed n-i-p perovskite solar cell

2021

Vacuum processing is considered to be a promising method allowing the scalable fabrication of perovskite solar cells (PSCs). In vacuum processed PSCs, the n-i-p structure employing organic charge transport layers is less common than the p-i-n structure due to limited options to achieve an efficient electron extraction layer (EEL) on indium tin oxide (ITO) with vacuum thermal evaporation. There are a number of specific applications where an n-i-p structure is required and therefore, it is of interest to have alternative solutions for the n-type contact in vacuum processed PSCs. In this work, we report an efficient vacuum deposited EEL using a mixture of conventional organic small molecules, …

EnergiaCèl·lules fotoelèctriques
researchProduct

Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill-Factor Solar Cells.

2016

The addition of Sr2+ in CH3 NH3 PbI3 perovskite films enhances the charge carrier collection efficiency of solar cells leading to very high fill factors, up to 85%. The charge carrier lifetime of Sr2+ -containing perovskites is in excess of 40 μs, longer than those reported for perovskite single crystals.

chemistry.chemical_classificationStrontiumMaterials sciencebusiness.industryMechanical EngineeringInorganic chemistryIodideDopingchemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistryMechanics of MaterialsOptoelectronicsGeneral Materials ScienceFill factorCharge carrier0210 nano-technologybusinessPerovskite (structure)Advanced materials (Deerfield Beach, Fla.)
researchProduct

Photovoltaic devices employing vacuum-deposited perovskite layers

2015

Organic–inorganic perovskites have emerged as one of the most promising materials for future optoelectronics applications, most notably photovoltaics. The achievement of high-efficiency solar cells has been possible mainly through the understanding of the perovskite formation during the solution deposition of thin films. Vacuum deposition methods have also been developed and have intrinsic advantages over solution-based processing, including control over the film thickness and composition, low-temperature processing, and the possibility of preparing multilayer structures. This article summarizes the latest advances in the vacuum deposition of hybrid perovskites, with an emphasis on the appl…

Materials sciencebusiness.industryPhotovoltaic systemInorganic chemistryNanotechnologyCondensed Matter PhysicsVacuum depositionPhotovoltaicsPhysical vapor depositionEnergy materialsDeposition (phase transition)General Materials SciencePhysical and Theoretical ChemistryThin filmbusinessPerovskite (structure)MRS Bulletin
researchProduct

Interfacial engineering for single and multijunction vacuum-deposited perovskite solar cells

2019

Materials scienceChemical engineeringInterfacial engineeringPerovskite (structure)Proceedings of the 1st Interfaces in Organic and Hybrid Thin-Film Optoelectronics
researchProduct

Fully Vacuum-Processed Wide Band Gap Mixed-Halide Perovskite Solar Cells

2017

Methylammonium lead mixed-halide perovskites MAPb(BrxI1–x)3 are promising materials for the preparation of tandem devices. When exposed to light, MAPb(BrxI1–x)3 segregates in iodide- and bromide-rich phases, limiting the achievable photovoltage and hence the attainable device efficiency. To date only solution-processed mixed-halide perovskites have been demonstrated. We present fully vacuum-deposited mixed-halide perovskite thin films with band gap of 1.72 and 1.87 eV, prepared by controlling the deposition rates of the different halide precursors. When used in thin-film devices, these materials lead to power conversion efficiencies of 15.9 and 10.5%, respectively, which are among the highe…

chemistry.chemical_classificationMaterials scienceTandemRenewable Energy Sustainability and the EnvironmentBand gapbusiness.industryIodideWide-bandgap semiconductorEnergy Engineering and Power TechnologyHalide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesFuel TechnologychemistryChemistry (miscellaneous)Materials ChemistryOptoelectronicsThin film0210 nano-technologybusinessDeposition (law)Perovskite (structure)ACS Energy Letters
researchProduct

Efficient photovoltaic and electroluminescent perovskite devices.

2015

Planar diode structures employing hybrid organic–inorganic methylammonium lead iodide perovskites lead to multifunctional devices exhibiting both a high photovoltaic efficiency and good electroluminescence. The electroluminescence strongly improves at higher current density applied using a pulsed driving method.

chemistry.chemical_classificationMaterials sciencebusiness.industryF300H600Photovoltaic systemIodideF100Metals and AlloysF200General ChemistryElectroluminescenceCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryMaterials ChemistryCeramics and CompositesOptoelectronicsbusinessCurrent densityPlanar diodePerovskite (structure)Chemical communications (Cambridge, England)
researchProduct

White hybrid organic-inorganic light-emitting diode using ZnO as the air-stable cathode

2009

An efficient white light emitting hybrid organic−inorganic device utilizing air-stable metal oxides as anode and cathode and a polyfluorene mixed with a phosphorescent iridium complex as the emitting material is presented.

Materials scienceGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylaw.inventionMetalPolyfluorenechemistry.chemical_compoundlawOrganic inorganicMaterials ChemistryIridiumbusiness.industryGeneral Chemistry021001 nanoscience & nanotechnologyCathode0104 chemical sciencesAnodechemistryvisual_artvisual_art.visual_art_mediumOptoelectronics0210 nano-technologybusinessPhosphorescenceLight-emitting diodeChemistry of Materials
researchProduct

Solvent-Free Synthesis and Thin-Film Deposition of Cesium Copper Halides with Bright Blue Photoluminescence

2019

Non-toxic alternatives to lead halide perovskites are highly sought after for applications in optoelectronics. Blue-luminescent materials are especially demanded as they could be used to prepare white light-emitting diodes, with important potential applications in lighting systems. However, wide bandgap blue emitters with high photoluminescence quantum yields (PLQY) are typically more difficult to obtain as compared to green- or red-emitting ones. Here, we prepared two series of inorganic cesium copper halides, with the general formulas Cs3Cu2X5 and CsCu2X3 (X = Cl, Br, I, and mixtures thereof) by dry mechanochemical synthesis at room temperature. X-ray diffraction demonstrates quantitative…

Materials sciencePhotoluminescenceGeneral Chemical EngineeringInorganic chemistryWide-bandgap semiconductorHalidechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesCopper0104 chemical scienceschemistryCaesiumMaterials ChemistryThin film0210 nano-technologyLuminescenceTernary operationMaterialsChemistry of Materials
researchProduct

Effect of the precursor's stoichiometry on the optoelectronic properties of methylammonium lead bromide perovskites

2017

International audience; Methylammonium lead bromide (MAPbBr 3) perovskites have been widely studied in applications such as lasers and light-emitting diodes, thanks to their favorable bandgap, efficient charge transport, and the possibility of processing by simple solution methods. The film morphology has a large impact on the optical and electronic properties of the material; hence the deposition methods and the type of precursors used are crucial in the preparation of efficient optoelectronic devices. Here we studied the effect of the precursor´s stoichiometry of solution processed MAPbBr 3 thin films on their optical and electronic properties. We found a drastic effect of the stoichiomet…

Materials scienceBand gapBiophysicsNanoparticleHalide02 engineering and technologyElectroluminescence010402 general chemistry01 natural sciencesBiochemistrylaw.inventionlawThin filmbusiness.industryGeneral ChemistrySemiconductor device[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and Optics0104 chemical sciencesOptoelectronics0210 nano-technologybusinessStoichiometryLight-emitting diode
researchProduct

Exploring the effect of the cyclometallating ligand in 2-(pyridine-2-yl)benzo[d]thiazole-containing iridium(III) complexes for stable light-emitting …

2018

The preparation and characterization of a series of iridium(III) ionic transition-metal complexes for application in light-emitting electrochemical cells (LECs) are reported. The complexes are of the type [Ir(C^N)2(N^N)][PF6] in which C^N is one of the cyclometallating ligands 2-(3-(tert-butyl)phenyl)pyridine (tppy), 2-phenylbenzo[d]thiazole (pbtz), 1-phenyl-1H-pyrazole (ppz) and 1-phenylisoquninoline (piq), and N^N is 2-(pyridine-2-yl)benzo[d]thiazole (btzpy). The variation in the C^N ligands allows the HOMO energy level to be tuned, leading to HOMO–LUMO gaps in the range 2.76–3.01 eV and values of Eox1/2 of 0.81–1.11 V. In solution, the complexes are orange to deep-red emitters (λmax in t…

Materials sciencePhotoluminescenceLigandIonic bondingchemistry.chemical_element02 engineering and technologyGeneral ChemistryElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryPyridineMaterials ChemistryDensity functional theoryIridium0210 nano-technologyThiazole
researchProduct

Phosphorescent hybrid organic-inorganic light-emitting diodes.

2010

Organic electronicsMaterials scienceLuminescencebusiness.industryMechanical EngineeringCarbonatesCesiumIridiumlaw.inventionSolid-state lightingMechanics of MaterialslawCoordination ComplexesOrganic inorganicPhosphorescent organic light-emitting diodeOptoelectronicsGeneral Materials SciencePolyvinylsZinc OxidePhosphorescenceLuminescencebusinessElectrodesLight-emitting diodeAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Quadruple-Cation Wide-Bandgap Perovskite Solar Cells with Enhanced Thermal Stability Enabled by Vacuum Deposition.

2022

Vacuum processing of multicomponent perovskites is not straightforward, because the number of precursors is in principle limited by the number of available thermal sources. Herein, we present a process which allows increasing the complexity of the formulation of vacuum-deposited lead halide perovskite films by multisource deposition and premixing both inorganic and organic components. We apply it to the preparation of wide-bandgap CsMAFA triple-cation perovskite solar cells, which are found to be efficient but not thermally stable. With the aim of stabilizing the perovskite phase, we add guanidinium (GA+) to the material formulation and obtained CsMAFAGA quadruple-cation perovskite films wi…

Fuel TechnologyRenewable Energy Sustainability and the EnvironmentChemistry (miscellaneous)Materials ChemistryEnergy Engineering and Power TechnologyMaterialsCèl·lules fotoelèctriquesACS energy letters
researchProduct

Deposition Kinetics and Compositional Control of Vacuum-Processed CH3NH3PbI3 Perovskite

2020

Halide perovskites have generated considerable research interest due to their excellent optoelectronic properties in the past decade. To ensure the formation of high-quality semiconductors, the deposition process for the perovskite film is a critical issue. Vacuum-based processing is considered to be a promising method, allowing, in principle, for uniform deposition on a large area. One of the benefits of vacuum processing is the control over the film composition through the use of quartz crystal microbalances (QCMs) that monitor the rates of the components in situ. In metal halide perovskites, however, one frequently employed component or precursor, CH3NH3I, exhibits nonstandard sublimatio…

Materials sciencebusiness.industryHalide02 engineering and technologyQuartz crystal microbalance010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAdsorptionSemiconductorSemiconductorsChemical engineeringGeneral Materials ScienceSublimation (phase transition)Physical and Theoretical Chemistry0210 nano-technologybusinessMaterialsQuartzStoichiometryPerovskite (structure)The Journal of Physical Chemistry Letters
researchProduct

Narrowband Monolithic Perovskite-Perovskite Tandem Photodetectors

2022

Narrowband photodetectors (PDs) are sought after for many applications requiring selective spectral response. The most common systems combine optical bandpass filters with broadband photodiodes. This work reports a method to obtain a narrowband response in a perovskite PD by the monolithic integration of a perovskite photoconductor and a perovskite photodiode. The spectral response of the tandem PD is determined by the bandgap energy difference of the two perovskites, and exhibits a full width at half maximum below 85 nm, an external quantum efficiency up to 68% and a high specific detectivity of ≈1012 Jones in reverse bias, enabling the device to detect weak light signals. The absorption p…

ÒpticaMaterialsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials
researchProduct

Zinc oxide nanocrystals as electron injecting building blocks for plastic light sources

2012

Hybrid inorganic–organic light emitting devices (HyLEDs) employing ZnO nanocrystals as one of their metal oxide contacts lead to very bright devices on plastic substrates with performances superior to those obtained from the rigid counterparts employing planar films of bulk ZnO. The superior performance is related to the increase in the bandgap of the ZnO nanocrystals caused by quantum confinement effects. We demonstrate that this effect diminishes with increasing annealing temperature of the ZnO nanocrystal layer due to a gradual decrease of the bandgap towards the bulk ZnO value. Therefore, best performances were obtained with room temperature processing of the ZnO nanocrystals.

Materials scienceAnnealing (metallurgy)Band gapbusiness.industryOxidechemistry.chemical_elementGeneral ChemistryElectronZincMetalchemistry.chemical_compoundNanocrystalchemistryQuantum dotvisual_artMaterials Chemistryvisual_art.visual_art_mediumOptoelectronicsbusinessJournal of Materials Chemistry
researchProduct

Long-Living Light-Emitting Electrochemical Cells - Control through Supramolecular Interactions

2008

Light-emitting electrochemical cells with lifetimes surpassing 3000 hours at an average luminance of 200 cd m(-2) are obtained with an ionic iridium(III) complex conveniently designed to form a supramolecularly caged structure.

Materials scienceMechanical EngineeringSupramolecular chemistrychemistry.chemical_elementIonic bondingPhotochemistryLuminanceElectrochemical cellOrganic semiconductorchemistryMechanics of MaterialsOLEDGeneral Materials ScienceIridiumAdvanced Materials
researchProduct

A counterion study of a series of [Cu(P^P)(N^N)][A] compounds with bis(phosphane) and 6-methyl and 6,6′-dimethyl-substituted 2,2′-bipyridine ligands …

2021

The syntheses and characterisations of a series of heteroleptic copper(i) compounds [Cu(POP)(Mebpy)][A], [Cu(POP)(Me2bpy)][A], [Cu(xantphos)(Mebpy)][A] and [Cu(xantphos)(Me2bpy)][A] in which [A]− is [BF4]−, [PF6]−, [BPh4]− and [BArF4]− (Mebpy = 6-methyl-2,2′-bipyridine, Me2bpy = 6,6′-dimethyl-2,2′-bipyridine, POP = oxydi(2,1-phenylene)bis(diphenylphosphane), xantphos = (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane), [BArF4]− = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) are reported. Nine of the compounds have been characterised by single crystal X-ray crystallography, and the consequences of the different anions on the packing interactions in the solid state are discussed. T…

chemistry.chemical_classificationTrifluoromethylXantphoschemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopperMedicinal chemistry22'-Bipyridine0104 chemical sciences3. Good healthInorganic ChemistryElectroquímicachemistry.chemical_compoundChemistrychemistryIonic liquidLuminophoreCounterion0210 nano-technologySingle crystalDalton Transactions (Cambridge, England : 2003)
researchProduct

Efficient wide band gap double cation – double halide perovskite solar cells

2017

In this work we study the band gap variation and properties of the perovskite compound Cs0.15FA0.85Pb(BrxI1−x)3 as a function of the halide composition, with the aim of developing an efficient complementary absorber for MAPbI3 in all-perovskite tandem devices. We have found the perovskite stoichiometry Cs0.15FA0.85Pb(Br0.7I0.3)3 to be a promising candidate, thanks to its band gap of approximately 2 eV. Single junction devices using this perovskite absorber lead to a maximum PCE of 11.5%, among the highest reported for solar cells using perovskites with a band gap wider than 1.8 eV.

Materials scienceChemical substanceTandemRenewable Energy Sustainability and the Environmentbusiness.industryBand gapWide-bandgap semiconductorHalideNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesOptoelectronicsGeneral Materials Science0210 nano-technologyScience technology and societybusinessStoichiometryPerovskite (structure)Journal of Materials Chemistry A
researchProduct

Recombination in Perovskite Solar Cells

2017

Trap-assisted recombination, despite being lower as compared with traditional inorganic solar cells, is still the dominant recombination mechanism in perovskite solar cells (PSCs) and limits their efficiency. We investigate the attributes of the primary trap assisted recombination channels (grain boundaries and interfaces) and their correlation to defect ions in PSCs. We achieve this by using a validated device model to fit the simulations to the experimental data of efficient vacuum-deposited p-i-n and n-i-p CH3NH3PbI3 solar cells, including the light intensity dependence of the open circuit voltage and fill factor. We find that, despite the presence of traps at interfaces and grain bounda…

Materials scienceLetterEFFICIENCYMETHYLAMMONIUM LEAD IODIDEMIGRATIONEnergy Engineering and Power TechnologyNanotechnology02 engineering and technologyQuantum dot solar cell010402 general chemistryFILMS01 natural sciencesIonMaterials ChemistryORGANOMETAL TRIHALIDE PEROVSKITEVOLTAGEHYSTERESISPerovskite (structure)Theory of solar cellsRenewable Energy Sustainability and the EnvironmentHybrid solar cellELECTRICAL-PROPERTIES021001 nanoscience & nanotechnologySURFACE-DEFECTSTRANSPORT0104 chemical sciencesLight intensityFuel TechnologyChemistry (miscellaneous)Chemical physicsGrain boundary0210 nano-technologyRecombinationACS Energy Letters
researchProduct

Vacuum-Deposited 2D/3D Perovskite Heterojunctions

2019

Low-dimensional (quasi-) 2D perovskites are being extensively studied in order to enhance the stability and the open-circuit voltage of perovskite solar cells. Up to now, thin 2D perovskite layers on the surface and/or at the grain boundaries of 3D perovskites have been deposited solely by solution processing, leading to unavoidable intermixing between the two phases. In this work, we report the fabrication of 2D/3D/2D perovskite heterostructures by dual-source vacuum deposition, with the aim of studying the interaction between the 3D and 2D phases as well as the charge transport properties of 2D perovskites in neat 2D/3D interfaces. Unlike what is normally observed in solution-processed 3D…

Materials scienceRenewable Energy Sustainability and the Environmentbusiness.industryEnergy Engineering and Power TechnologyHeterojunction02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesFuel TechnologySemiconductorsChemistry (miscellaneous)Materials ChemistryOptoelectronics0210 nano-technologybusinessMaterialsPerovskite (structure)Voltage
researchProduct

Interface engineering in efficient vacuum deposited perovskite solar cells

2016

Abstract We studied the effect of the charge transport layers in p-i-n perovskite solar cells using vacuum deposited methylammonium lead iodide thin-film absorbers. While solution-processed perovskite films are frequently deposited directly on PEDOT:PSS leading to good solar cell performances, in some cases even to very good Voc values, we show that in devices employing vacuum deposited MAPbI3 perovskites, the removal of the polyTPD electron blocker substantially reduces the photovoltaic behavior. This is indicative of rather different charge transport properties in the vacuum deposited MAPbI3 perovskites compared to those prepared from solution. On the other hand, we investigated the use o…

FullereneMaterials scienceIonic bondingNanotechnology02 engineering and technologyElectroluminescence010402 general chemistry01 natural sciences7. Clean energylaw.inventionBiomaterialsPEDOT:PSSlawSolar cellMaterials ChemistryElectrical and Electronic EngineeringDiodePerovskite (structure)business.industryGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectrodeOptoelectronics0210 nano-technologybusinessOrganic Electronics
researchProduct

Fully Evaporated High Efficiency Single Junction and Tandem Perovskite based Solar Cells.

2018

Materials scienceTandembusiness.industryOptoelectronicsbusinessPerovskite (structure)Proceedings of the 10th International Conference on Hybrid and Organic Photovoltaics
researchProduct

Efficient Vacuum-Deposited Perovskite Solar Cells with Stable Cubic FA 1– x MA x PbI 3

2020

Preparation of black formamidinium lead iodide (FAPbI3) requires high temperature annealing and the incorporation of smaller A-site cations, such as methylammonium (MA+), cesium or rubidium. A major advantage of vacuum processing is the possibility to deposit perovskite films at room temperature (RT), without any annealing step. Here we demonstrate stabilization of the cubic perovskite phase at RT, in a three-sources co-sublimation method. We found that the MA+ incorporation is a self-limiting process, where the amount of MA+ which is incorporated in the perovskite is essentially unvaried with increasing MAI deposition rate. In this way a phase-pure, cubic perovskite with a bandgap of 1.53 …

Materials scienceAnnealing (metallurgy)virusesIodideInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyRubidiumMaterials ChemistryCèl·lules fotoelèctriqueschemistry.chemical_classificationRenewable Energy Sustainability and the EnvironmentConductivitat elèctrica021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyFormamidiniumchemistryChemistry (miscellaneous)Caesium0210 nano-technologyACS Energy Letters
researchProduct

Photovoltaic Devices Using Sublimed Methylammonium Lead Iodide Perovskites: Long‐Term Reproducible Processing

2023

Energy Engineering and Power TechnologyElectrical and Electronic EngineeringAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSolar RRL
researchProduct

Incorporation of potassium halides in the mechanosynthesis of inorganic perovskites: feasibility and limitations of ion-replacement and trap passivat…

2018

Potassium halides (KX; X = I, Br, or Cl) were incorporated as partial replacements of CsBr in the mechanosynthesis of CsPbBr3. This led to partial substitution of both monovalent ions forming mixed Cs1−xKxPbBr3−yXy perovskites. Longer photoluminescence lifetimes were also observed, possibly linked to the formation of a non-perovskite KPb2X5 passivating layer.

Materials sciencePhotoluminescencePassivationGeneral Chemical EngineeringPotassiumInorganic chemistryHalidechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesIonTrap (computing)chemistryMechanosynthesis0210 nano-technologyLayer (electronics)MaterialsFisicoquímicaRSC Advances
researchProduct

Phosphane tuning in heteroleptic [Cu(N^N)(P^P)]+ complexes for light-emitting electrochemical cells

2019

The synthesis and characterization of five [Cu(P^P)(N^N)][PF 6 ] complexes in which P^P = 2,7-bis( tert -butyl)-4,5-bis(diphenylphosphino)-9,9-dimethylxanthene ( t Bu 2 xantphos) or the chiral 4,5-bis(mesitylphenylphosphino)-9,9-dimethylxanthene (xantphosMes 2 ) and N^N = 2,2'-bipyridine (bpy), 6-methyl-2,2'-bipyridine (6-Mebpy) or 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me 2 bpy) are reported. Single crystal structures of four of the compounds confirm that the copper(I) centre is in a distorted tetrahedral environment. In [Cu(xantphosMes 2 )(6-Mebpy)][PF 6 ], the 6-Mebpy unit is disordered over two equally populated orientations and this disorder parallels a combination of two dynamic processe…

Steric effectsPhotoluminescenceMaterials science010405 organic chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesCopper0104 chemical sciencesInorganic ChemistryElectroquímicaCrystallographychemistryExcited stateDensity functional theorySinglet stateSingle crystalConformational isomerism
researchProduct

Tunable luminescent lead bromide complexes

2020

Lead halides are used extensively to prepare perovskite-based devices but it is less known that lead halides can also form luminescent complexes in solvents. Using polyethylene glycol as a solvent, a lead bromide complex with a photoluminescence quantum yield over 20% is obtained and the photoluminescence peak can be shifted around 50 nm with different alkylammonium bromides.

PhotoluminescenceMaterials scienceInorganic chemistryLead bromideQuantum yieldHalideGeneral ChemistryPolyethylene glycolSolventchemistry.chemical_compoundchemistryMaterials ChemistryLuminescenceMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Luminescent copper(i) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands

2018

Heteroleptic [Cu(P^P)(N^N)][PF6] complexes, where N^N is a halo-substituted 2,2'-bipyridine (bpy) and P^P is either bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9- dimethylxanthene (xantphos) have been synthesized and investigated. To stabilize the tetrahedral geometry of the copper(I) complexes, the steric demands of the bpy ligands have been increased by introducing 6- or 6,6'-halo-substituents in 6,6'-dichloro-2,2'-bipyridine (6,6'-Cl2bpy), 6-bromo-2,2'- bipyridine (6-Brbpy) and 6,6'-dibromo-2,2'-bipyridine (6,6'-Br2bpy). The solid-state structures of [Cu(POP)(6,6'-Cl2bpy)][PF6], [Cu(xantphos)(6,6'-Cl2bpy)][PF6].CH2Cl2, [Cu(POP)(6-Brbpy)][PF6] and [Cu(xantp…

Materials scienceXantphosF100F200Tetrahedral molecular geometrychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopper22'-Bipyridine0104 chemical sciencesInorganic ChemistryCrystallographyBipyridinechemistry.chemical_compoundchemistryDensity functional theoryTriplet state0210 nano-technologySingle crystalDalton Transactions
researchProduct

Dry Mechanochemical Synthesis of Highly Luminescent, Blue and Green Hybrid Perovskite Solids

2019

A simple method to obtain bright photoluminescent wide bandgap mixed‐halide 3D perovskites is reported. The materials are prepared by dry mechanochemical synthesis (ball‐milling) starting from neat binary precursors, and show enhanced photoluminescence upon the addition of an adamantane derivative in the precursors' mixture. The structural characterization suggests that the additive does not participate in the crystal structure of the perovskite, which remains unvaried even with high loading of amantadine hydrochloride. By simple stoichiometric control of the halide precursors, the photoluminescence can be finely tuned from the UV to the green part of the visible spectrum. Photoluminescence…

PhotoluminescenceMaterials sciencePassivation02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsChemical engineeringMaterials nanoestructurats0210 nano-technologyLuminescenceMaterialsPerovskite (structure)
researchProduct

Efficient Photo- and Electroluminescence by Trap States Passivation in Vacuum-Deposited Hybrid Perovskite Thin Films

2018

Methylammonium lead iodide (MAPI) has excellent properties for photovoltaic applications, although it typically shows low photoluminescence quantum yield. Here, we report on vacuum-deposited MAPI perovskites obtained by modifying the methylammonium iodide (MAI) to PbI2 ratio during vacuum deposition. By studying the excitation density dependence of the photoluminescence lifetime, a large concentration of trap states was deduced for the stoichiometric MAPI films. The use of excess MAI during vacuum processing is capable of passivating these traps, resulting in luminescent films which can be used to fabricate planar light-emitting diodes with quantum efficiency approaching 2%.

Materials sciencePhotoluminescencePassivationbusiness.industryQuantum yield02 engineering and technologyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesVacuum depositionOptoelectronicsQuantum efficiencyGeneral Materials ScienceThin film0210 nano-technologybusinessMaterialsCèl·lules fotoelèctriquesPerovskite (structure)
researchProduct

Efficient Perovskite Light-Emitting Diodes: Effect of Composition, Morphology, and Transport Layers

2018

Organic-inorganic metal halide perovskites are emerging as novel materials for light-emitting applications due to their high color purity, band gap tunability, straightforward synthesis, and inexpensive precursors. In this work, we improve the performance of three-dimensional perovskite light-emitting diodes (PeLEDs) by tuning the emissive layer composition and thickness and by using small-molecule transport layers. Additionally, we correlate PeLED efficiencies to the perovskite structure and morphology. The results show that the PeLEDs containing perovskites with an excess of methylammonium bromide (MABr) to lead bromide (PbBr2) in a 2:1 ratio and a layer thickness of 80 nm have the highes…

Materials scienceBand gapHOL - HolstHalide02 engineering and technologyPerovskite010402 general chemistry01 natural scienceslaw.inventionTransport layerslawLight-emitting diodeSurface roughnessGeneral Materials SciencePerovskite (structure)TS - Technical Sciencesbusiness.industryStoichiometric perovskite021001 nanoscience & nanotechnology0104 chemical sciencesNano TechnologyOptoelectronicsQuantum efficiencyCrystallite0210 nano-technologybusinessLayer (electronics)High efficiencyLight-emitting diodeACS Applied Materials &amp; Interfaces
researchProduct

Semitransparent near-infrared Sn–Pb hybrid perovskite photodetectors

2022

We report semitransparent NIR perovskite photodetectors based on tin–lead hybrid perovskites, by using very thin film perovskite layers and transparent indium tin oxide electrodes.

Materials ChemistryGeneral ChemistryJournal of Materials Chemistry C
researchProduct

Single-Source Vacuum Deposition of Mechanosynthesized Inorganic Halide Perovskites

2018

Fully inorganic cesium lead halide perovskite thin films were prepared by an easy, fast and dry process based on single-source vacuum deposition. We investigated the structural and optical characteristics of the so-formed films as a function of chemical composition (chloride, bromide and iodide films were formed), post-deposition thermal annealing, as well as previous mechanosynthesis of perovskite powders. We found out that the CsPbX3 perovskite was preferentially formed for the smaller halides and favored by previous ball-milling of CsX and PbX2 precursors. When bigger halides were used and/or CsX and PbX2 precursors were simply mixed without previous mechanosynthesis, PbX2-rich compounds…

Materials scienceGeneral Chemical EngineeringInorganic chemistryHalide02 engineering and technologyGeneral ChemistryQuímica010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesVacuum depositionMaterials Chemistry0210 nano-technologyMaterialsChemistry of Materials
researchProduct

Ionic iridium complex and conjugated polymer used to solution-process a bilayer white light-emitting diode.

2013

Bilayer white light-emitting devices are prepared from solution, using an ionic orange phosphorescent organometallic complex and a neutral fluorescent conjugated polymer. Because of the very different polarity of the two components, they dissolve in orthogonal solvents, allowing for the direct deposition of the blue emitter on top of the orange emitter without the need of cross-linking or special coating methodology. Fine tuning of the layer thickness of both light-emitting layers allows for the color tuning of different types of white light.

chemistry.chemical_classificationMaterials sciencebusiness.industryBilayerIonic bondingPolymerengineering.materialElectroluminescenceCoatingchemistryPhysics::Atomic and Molecular ClustersengineeringOptoelectronicsGeneral Materials SciencePhosphorescencebusinessSolution processCommon emitterACS applied materialsinterfaces
researchProduct

Perovskite solar cells join the major league

2015

Just six years after their discovery, organolead halide perovskite solar cells have taken the lead among emergent photovoltaic (PV) technologies, thanks to the demonstration of power conversion efficiencies (PCEs) of up to 20% ( 1 , 2 ). The perovskite precursor compounds are abundant and inexpensive and can easily be converted into thin films. Perovskite photovoltaics can therefore, in principle, generate electricity at a very low cost. However, high efficiencies have been limited to very small devices. On page 944 of this issue, Chen et al. ( 3 ) report perovskite solar cells of 1 cm2 with a certified efficiency of 15%.

MultidisciplinaryMaterials sciencePhotovoltaicsbusiness.industryPhotovoltaic systemNanotechnologyThin filmbusinessEngineering physicsPerovskite (structure)Science
researchProduct

Low-dimensional non-toxic A 3 Bi 2 X 9 compounds synthesized by a dry mechanochemical route with tunable visible photoluminescence at room temperature

2019

We have synthesized fifteen inorganic and hybrid organic-inorganic non-toxic A3Bi2X9 compounds (A = K+, Rb+, Cs+, CH3NH3+ and HC(NH2)2+; X = I−, Br−, Cl−) through dry mechanochemistry. We demonstrate that this synthetic method is very well suited to prepare compounds from poorly soluble precursors, allowing thus the preparation of so far unreported compounds. X-ray diffraction analysis demonstrates the high crystallinity of the so-formed ternary bismuth halides. Furthermore, we show that, through substitution of the A-cation and X-anion, the bandgap of these compounds can be tuned to absorb throughout the whole visible spectrum. As-prepared powders of Cs3Bi2Br9 and Cs3Bi2I9 without any pass…

PhotoluminescenceMaterials scienceBand gapHalidechemistry.chemical_element02 engineering and technologyGeneral ChemistryQuímica010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesBismuthCrystallinitychemistryMechanochemistryMaterials Chemistry0210 nano-technologyTernary operationMaterialsVisible spectrumJournal of Materials Chemistry C
researchProduct

Combinatorial Vacuum-Deposition of Wide Bandgap Perovskite Films and Solar Cells

2022

The development of vacuum-deposited perovskite materials and devices is partially slowed down by the minor research effort in this direction, due to the high cost of the required research tools. But there is also another factor, thermal co-deposition in high vacuum involves the simultaneous sublimation of several precursors with an overall deposition rate in the range of few Å s−1 . This leads to a deposition time of hours with only a single set of process parameters per batch, hence to a long timeframe to optimize even a single perovskite composition. Here we report the combinatorial vacuum deposition of wide bandgap perovskites using 4 sources and a non-rotating sample holder. By using sm…

Mechanics of MaterialsMechanical EngineeringMaterialsCèl·lules fotoelèctriques
researchProduct

Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells

2016

Five different commercially available fullerenes are evaluated as hole blocking/electron transporting materials in p–i–n methylammonium lead iodide perovskite solar cells using a vacuum deposited perovskite absorber layer. A significant enhancement of the solar cell performance can be obtained by selecting a suitable fullerene derivative. Open-circuit voltages as high as 1.11 volts are obtained leading to a power conversion efficiency of 14.6%.

Materials scienceFullereneInorganic chemistryIodide02 engineering and technology010402 general chemistry7. Clean energy01 natural scienceslaw.inventionlawSolar cellGeneral Materials SciencePerovskite (structure)chemistry.chemical_classificationRenewable Energy Sustainability and the EnvironmentOpen-circuit voltagebusiness.industryEnergy conversion efficiencyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistryOptoelectronics0210 nano-technologybusinessLayer (electronics)VoltageJournal of Materials Chemistry A
researchProduct

Engineering Charge Injection Interfaces in Hybrid Light-Emitting Electrochemical Cells

2014

Light-emitting electrochemical cells (LECs) consists of a thin film of an ionic organic semiconductor sandwiched between two electrodes. Because of the large density of ions, LECs are often reported to perform independently on the electrodes work function. Here we use metal oxides as charge injection layers and demonstrate that, although electroluminescence is observed independently of the electrodes used, the device performances are strongly dependent on the choice of the interface materials. Relying on metal oxide charge injection layers, such hybrid devices are of interest for real lighting applications and could pave the way for new efficient, stable, low-cost lighting sources.

Organic electronicsOrganic semiconductorMaterials sciencebusiness.industryElectrodeOLEDOptoelectronicsGeneral Materials ScienceWork functionThin filmElectroluminescencebusinessElectrochemical cellACS Applied Materials &amp; Interfaces
researchProduct

Origin of the Chemiresistive Response of Ultrathin Films of Conductive Metal–Organic Frameworks

2018

Conductive metal-organic frameworks are opening new perspectives for the use of these porous materials for applications traditionally limited to more classical inorganic materials, such as their integration into electronic devices. This has enabled the development of chemiresistive sensors capable of transducing the presence of specific guests into an electrical response with good selectivity and sensitivity. By combining experimental data with computational modelling, a possible origin for the underlying mechanism of this phenomenon in ultrathin films (ca. 30 nm) of Cu-CAT-1 is described. ispartof: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION vol:57 issue:46 pages:15086-15090 ispartof: location…

Materials scienceChemistry MultidisciplinaryQuímica organometàl·licaNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemiresistive sensingmolecular devicesELECTRICAL-CONDUCTIVITYultrathin filmsElectronicsmetal-organic frameworksElectrical conductorScience & Technologyelectrical conductivity010405 organic chemistryGeneral ChemistryConductivitat elèctricaGeneral Medicine021001 nanoscience & nanotechnology0104 chemical sciencesChemistryPhysical SciencesMetal-organic frameworkInorganic materials0210 nano-technologyPorous mediumAngewandte Chemie
researchProduct

Tuning the Optical Absorption of Sn-, Ge-, and Zn-Substituted Cs2AgBiBr6 Double Perovskites: Structural and Electronic Effects

2021

Lead-free halide double perovskites (DPs) are highly tunable materials in terms of chemical composition and optical properties. One of the most widely reported DPs is Cs2AgBiBr6, which is envisaged as a promising absorber for photovoltaics. Nevertheless, its bandgap (around 1.9−2.3 eV) remains too large for common tandem solar cells. In this work, we report the mechanochemical synthesis of Sn-, Ge-, and Zn-substituted Cs2AgBiBr6 in powder form; their bandgaps reach 1.55, 1.80, and 2.02 eV, respectively. These differences are rationalized through density functional theory calculations, demonstrating combined electronic and structural (disorder) effects introduced by the divalent metal-cation…

Materials scienceGeneral Chemical EngineeringMaterials ChemistryElectronic effectAnalytical chemistryDouble perovskiteGeneral ChemistryAbsorption (electromagnetic radiation)MaterialsCèl·lules fotoelèctriquesChemistry of Materials
researchProduct

[Cu(P^P)(N^N)][PF6] compounds with bis(phosphane) and 6-alkoxy, 6-alkylthio, 6-phenyloxy and 6-phenylthio-substituted 2,2'-bipyridine ligands for lig…

2018

We report a series of [Cu(P^P)(N^N)][PF6] complexes with P^P = bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) and N^N = 6-methoxy-2,2′-bipyridine (MeObpy), 6-ethoxy-2,2′-bipyridine (EtObpy), 6-phenyloxy-2,2′-bipyridine (PhObpy), 6-methylthio-2,2′-bipyridine (MeSbpy), 6-ethylthio-2,2′-bipyridine (EtSbpy) and 6-phenylthio-2,2′-bipyridine (PhSbpy). The single crystal structures of all twelve compounds have been determined and confirm chelating modes for each N^N and P^P ligand, and a distorted tetrahedral geometry for copper(I). For the xantphos-containing complexes, the asymmetrical bpy ligand is arranged with the 6-substituent lying …

XantheneMaterials scienceXantphosLigandTetrahedral molecular geometryEther02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMedicinal chemistry22'-Bipyridine0104 chemical scienceschemistry.chemical_compoundchemistryMaterials ChemistryAlkoxy group0210 nano-technologySingle crystal
researchProduct

Single Molecule Solid State Light Emitting Electrochemical Cells with Lifetimes Superior to 3000 Hours

2008

ChemistrySolid-stateMoleculePhotochemistryElectrochemical cellMaterials Research Society Symposium Proceedings
researchProduct

Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode

2007

An air stable hybrid organic-inorganic light emitting device is presented. This architecture makes use of metal oxides as charge injecting materials into the light emitting polymer, avoiding the use of air sensitive cathodes commonly employed in organic light emitting diode manufacturing. We report the application of zinc oxide as a cathode in an organic light emitting device. This electroluminescent device shows high brightness levels reaching 6500 cd/m2 at voltages as low as 8 V. Compared to a conventional device using low workfunction metal cathodes, our device shows a lower turn-on voltage and it can operate in air.

BrightnessMaterials sciencePhysics and Astronomy (miscellaneous)business.industryFlexible organic light-emitting diodeElectroluminescenceCathodeInnovacions tecnològiqueslaw.inventionElectrònica molecularlawElectrodeOLEDOptoelectronicsWork functionbusinessLight-emitting diodeApplied Physics Letters
researchProduct

High voltage vacuum-deposited CH3NH3PbI3-CH3NH3PbI3 tandem solar cells

2018

The recent success of perovskite solar cells is based on two solid pillars: the rapid progress of their power conversion efficiency and their flexibility in terms of optoelectrical properties and processing methods. That versatility makes these devices ideal candidates for multi-junction photovoltaics. We report an optically optimized double junction CH3NH3PbI3–CH3NH3PbI3 tandem solar cell where the matched short-circuit current is maximized while parasitic absorption is minimized. The use of an additive vacuum-deposition protocol allows us to reproduce calculated stack designs, which comprise several charge selective materials that ensure appropriate band alignment and charge recombination…

Materials scienceEquivalent series resistanceTandemRenewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageEnergy conversion efficiencyHigh voltage02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energyPollution0104 chemical sciencesNuclear Energy and EngineeringStack (abstract data type)PhotovoltaicsEnvironmental ChemistryOptoelectronics0210 nano-technologybusinessPerovskite (structure)
researchProduct

Perovskite-Perovskite Homojunctions via Compositional Doping.

2018

One of the most important properties of semiconductors is the possibility of controlling their electronic behavior via intentional doping. Despite the unprecedented progress in the understanding of hybrid metal halide perovskites, extrinsic doping of perovskite remains nearly unexplored and perovskite–perovskite homojunctions have not been reported. Here we present a perovskite–perovskite homojunction obtained by vacuum deposition of stoichiometrically tuned methylammonium lead iodide (MAPI) films. Doping is realized by adjusting the relative deposition rates of MAI and PbI2, obtaining p-type (MAI excess) and n-type (MAI defect) MAPI. The successful stoichiometry change in the thin films is…

Materials sciencebusiness.industryDopingInfrared spectroscopy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSemiconductorVacuum depositionOptoelectronicsGeneral Materials SciencePhysical and Theoretical ChemistryThin filmHomojunction0210 nano-technologybusinessVolta potentialPerovskite (structure)The journal of physical chemistry letters
researchProduct

Room temperature vacuum-deposition of CsPbI2Br perovskite films from multiple-sources and mixed halide precursors

2020

Fully inorganic cesium lead halide perovskites, such as CsPbI2Br, show enhanced thermal stability compared to hybrid ones and are being widely investigated as wide bandgap absorbers for tandem applications. Despite their simple stoichiometry, the preparation of highly crystalline and stable cesium lead halide thin films is not trivial. In general, high-efficiency solar cells based on solution-processed CsPbI2Br thin films are prepared by hightemperature annealing or the use of chemical additives. In this work, we use solvent-free synthesis to investigate the formation of CsPbI2Br in bulk or in thin films via mechanochemical synthesis and multiple-source vacuum deposition, respectively. We d…

Materials scienceTandemBand gapGeneral Chemical EngineeringHalidechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesVacuum depositionChemical engineeringchemistryCaesiumMaterials ChemistryThermal stability0210 nano-technologyMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Chemistry of Materials
researchProduct

Hovering solar cells

2015

Ultrathin, flexible and lightweight perovskite solar cells with improved stability in air can now power model airplanes for several hours.

Power modelMaterials scienceMechanics of MaterialsPhotovoltaicsbusiness.industryMechanical EngineeringGeneral Materials ScienceGeneral ChemistryCondensed Matter PhysicsbusinessEngineering physicsPerovskite (structure)Nature Materials
researchProduct

High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

2017

One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium l…

Materials sciencePhotoluminescenceLuminescencePhosphinesGeneral Chemical EngineeringNanoparticle02 engineering and technologyElectroluminescence010402 general chemistry01 natural scienceslaw.inventionlawEnvironmental ChemistryGeneral Materials SciencePerovskite (structure)Titaniumbusiness.industryOxidesCalcium Compounds021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorGeneral EnergySemiconductorSemiconductorsOptoelectronics0210 nano-technologybusinessLuminescenceLight-emitting diodeChemSusChem
researchProduct

Mixed Iodide-Bromide Methylammonium Lead Perovskite-based Diodes for Light Emission and Photovoltaics.

2015

Vacuum deposition techniques are used to prepare mixed iodide–bromide methylammonium lead perovskite diodes via an intermediate double layer of the pure iodide and bromide perovskites. The diodes lead to bright electroluminescence, whose emission spectra maxima shift from the infrared toward the visible with increasing bromide content. When illuminated with AM1.5 simulated sunlight the devices function as efficient solar cells with power conversion efficiencies as high as 12.9%.

chemistry.chemical_classificationInfraredbusiness.industryIodideElectroluminescencechemistry.chemical_compoundchemistryPhotovoltaicsBromideOptoelectronicsGeneral Materials ScienceLight emissionPhysical and Theoretical ChemistrybusinessDiodePerovskite (structure)The journal of physical chemistry letters
researchProduct

Hybrid organic-inorganic light emitting diodes: effect of the metal oxide

2010

Hybrid organic-inorganic light emitting diodes (HyLEDs), employing metal oxides as the electron injecting contacts, are interesting as an alternative to OLEDs. Until recently, the metal oxide of choice was either titanium dioxide or zinc oxide. In this work two wide bandgap metal oxides, HfO2 and MgO, are employed as electron injecting layer in HyLEDs. It is demonstrated that both the current density and the luminance values obtained are directly related to the barriers for electron injection (from the ITO to the metal oxide) and for hole transfer to the same metal oxide, outlining a new design rule for the optimization of HyLEDs. Record device efficacies (3.3 cd/A, >10000 cd/m2) using the …

Materials scienceBand gapOxidechemistry.chemical_element02 engineering and technologyZinc01 natural sciences7. Clean energylaw.inventionMetalchemistry.chemical_compoundlaw0103 physical sciencesMaterials ChemistryOLED010302 applied physicsbusiness.industryGeneral Chemistry021001 nanoscience & nanotechnologychemistryvisual_artTitanium dioxidevisual_art.visual_art_mediumOptoelectronics0210 nano-technologybusinessCurrent densityLight-emitting diodeJournal of Materials Chemistry
researchProduct

Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers

2016

Methylammonium lead halide perovskites have emerged as high performance photovoltaic materials. Most of these solar cells are prepared via solution-processing and record efficiencies (>20%) have been obtained employing perovskites with mixed halides and organic cations on (mesoscopic) metal oxides. Here, we demonstrate fully vacuum deposited planar perovskite solar cells by depositing methylammonium lead iodide in between intrinsic and doped organic charge transport molecules. Two configurations, one inverted with respect to the other, p-i-n and n-i-p, are prepared and optimized leading to planar solar cells without hysteresis and very high efficiencies, 16.5% and 20%, respectively. It is t…

Renewable Energy Sustainability and the EnvironmentChemistryPhotovoltaic systemDopingAnalytical chemistryHalidePerovskite solar cellNanotechnology02 engineering and technologyHybrid solar cellMethylammonium lead halide010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesPollutionPolymer solar cell0104 chemical scienceschemistry.chemical_compoundNuclear Energy and EngineeringEnvironmental Chemistry0210 nano-technologyMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Energy Environ. Sci.
researchProduct

Influence of doped charge transport layers on efficient perovskite solar cells

2018

Planar vacuum deposited p–i–n methyl ammonium lead tri-iodide perovskite solar cells are prepared with different electron and hole transporting layers, either doped or undoped. The effect of these layers on the solar cells performance (efficiency and stability) is studied. The main benefit of using doped layers lies in the formation of barrier free charge extraction contacts to the electrodes. However, this comes at the cost of increased residual absorption (reducing the current density and efficiency of the cells) and a decreased stability. A generic solar cell structure using undoped charge extraction layers is presented, containing a thin layer of a strong electron acceptor in between th…

Solar cells of the next generationMaterials scienceEnergy Engineering and Power Technology02 engineering and technologyElectron010402 general chemistry7. Clean energy01 natural scienceslaw.inventionlawSolar cellAbsorption (electromagnetic radiation)Perovskite (structure)chemistry.chemical_classificationRenewable Energy Sustainability and the Environmentbusiness.industryDopingElectron acceptor021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologychemistryElectrodeOptoelectronics0210 nano-technologybusinessCurrent density
researchProduct

Delayed Luminescence in Lead Halide Perovskite Nanocrystals

2017

The mechanism responsible for the extremely long photoluminescence (PL) lifetimes observed in many lead halide perovskites is still under debate. While the presence of trap states is widely accepted, the process of electron detrapping back to the emissive state has been mostly ignored, especially from deep traps as these are typically associated with nonradiative recombination. Here, we study the photophysics of methylammonium lead bromide perovskite nanocrystals (PNCs) with a photoluminescence quantum yield close to unity. We show that the lifetime of the spontaneous radiative recombination in PNCs is as short as 2 ns, which is expected considering the direct bandgap character of perovskit…

PhotoluminescenceChemistryQuantum yield02 engineering and technologyTrappingElectron010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyChemical physicsSpontaneous emissionDirect and indirect band gapsPhysical and Theoretical ChemistryAtomic physics0210 nano-technologyLuminescencePerovskite (structure)The Journal of Physical Chemistry C
researchProduct

[Cu(bpy)(P^P)]+ containing light-emitting electrochemical cells: improving performance through simple substitution

2014

Light-emitting electrochemical cells (LECs) containing [Cu(POP)(N^N)][PF6] (POP = bis(2-diphenylphosphinophenyl)ether, N^N = 6-methyl- or 6,6′-dimethyl-2,2′-bipyridine) exhibit luminance and efficiency surpassing previous copper(i)-containing LECs.

Materials scienceF300H600F100Substitution (logic)F200chemistry.chemical_elementNanotechnologyEtherCopper3. Good healthElectrochemical cellInorganic Chemistrychemistry.chemical_compoundchemistryPhysical chemistry
researchProduct

Ruthenium pentamethylcyclopentadienyl mesitylene dimer: a sublimable n-dopant and electron buffer layer for efficient n-i-p perovskite solar cells

2019

Electron-transport materials such as fullerenes are widely used in perovskite solar cells to selectively transfer the photogenerated electrons to the electrodes. In order to minimize losses at the interface between the fullerene and the electrode, it is important to reduce the energy difference between the transport level of the two materials. A common approach to reduce such energy mismatch is to increase the charge carrier density in the semiconductor through doping. A variety of molecular dopants have been reported to reduce (n-dope) fullerenes. However, most of them are either difficult to process or extremely air sensitive, with most n-dopants leading to the formation of undesirable si…

Materials scienceFullereneDopantRenewable Energy Sustainability and the EnvironmentDopingchemistry.chemical_element02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyPhotochemistry7. Clean energyRutheniumchemistry.chemical_compoundchemistrySemiconductorsElectrodeGeneral Materials ScienceThin film0210 nano-technologyMesityleneMaterialsPerovskite (structure)
researchProduct

Origin of the Enhanced Photoluminescence Quantum Yield in MAPbBr 3 Perovskite with Reduced Crystal Size

2018

Methylammonium lead bromide perovskite (MAPbBr3) has been widely investigated for applications in visible perovskite light-emitting diodes (LEDs). Fine-tuning of the morphology and of the crystal size, from the microscale down to the quantum confinement regime, has been used to increase the photoluminescence quantum yield (PLQY). However, the physical processes underlying the PL emission of this perovskite remain unclear. Here, we elucidate the origin of the PL emission of polycrystalline MAPbBr3 thin films by different spectroscopic techniques. We estimate the exciton binding energy, the reduced exciton effective mass, and the trap density. Moreover, we confirm the coexistence of free carr…

PhotoluminescenceMaterials science530 PhysicsExcitonF100PopulationF200Energy Engineering and Power TechnologyQuantum yield02 engineering and technology010402 general chemistry01 natural sciencesCondensed Matter::Materials ScienceEffective mass (solid-state physics)540 ChemistryMaterials ChemistryThin filmeducationeducation.field_of_studyRenewable Energy Sustainability and the Environment021001 nanoscience & nanotechnology0104 chemical sciencesFuel TechnologyChemistry (miscellaneous)Quantum dotChemical physicsCrystallite0210 nano-technology
researchProduct

Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells

2016

Thin-film solar cells suffer from various types of recombination, of which leakage current usually dominates at lower voltages. Herein, we demonstrate first a three-order reduction of the shunt loss mechanism in planar methylammonium lead iodide perovskite solar cells by replacing the commonly used hole transport layer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with a better hole-selective polyarylamine. As a result, these cells exhibit superior operation under reduced light conditions, which we demonstrate for the extreme case of moonlight irradiance, at which open-circuit voltages of 530 mV can still be obtained. By the shunt removal we also observe the VOC to dro…

charge recombination layerMaterials sciencedoping02 engineering and technologyElectron010402 general chemistry01 natural sciencesPlanarPEDOT:PSSGeneral Materials Sciencevacuum depositionMaterialsperovskiteCèl·lules fotoelèctriquesLeakage (electronics)Renewable Energy Sustainability and the Environmentbusiness.industry021001 nanoscience & nanotechnology0104 chemical sciencesSemiconductorElectrodeOptoelectronicstandem solar cells0210 nano-technologybusinessRecombinationVoltage
researchProduct

Enamine-based hole transporting materials for vacuum-deposited perovskite solar cells

2020

In a short period of time, the rapid development of perovskite solar cells attracted a lot of attention in the science community with the record for power conversion efficiency being broken every year. Despite the fast progress in power conversion efficiency there are still many issues that need to be solved before starting large scale commercial applications, such as, among others, the difficult and costly synthesis and usage of toxic solvents for the deposition of hole transport materials (HTMs). We herein report new enamine-based charge transport materials obtained via a simple one step synthesis procedure, from commercially available precursors and without the use of expensive organomet…

Materials scienceenamine-based hole transporting materialsEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry01 natural sciences7. Clean energyperovskite solar cellsCatalysisEnaminechemistry.chemical_compoundVacuum depositionElectric fieldDeposition (phase transition)Materialsenamine-based hole transporting materials ; vacuum-deposited ; perovskite solar cellsCèl·lules fotoelèctriquesPerovskite (structure)Renewable Energy Sustainability and the Environmentbusiness.industryEnergy conversion efficiency021001 nanoscience & nanotechnology0104 chemical sciencesThermogravimetryFuel TechnologychemistryOptoelectronics0210 nano-technologybusinessvacuum-deposited
researchProduct

Highly luminescent perovskite–aluminum oxide composites

2015

In this communication we report on the preparation of CH3NH3PbBr3 perovskite/Al2O3 nanoparticle composites in a thin film configuration and demonstrate their high photoluminescence quantum yield. The composite material is solution-processed at low temperature, using stable alumina nanoparticle dispersions. There is a large influence of the alumina nanoparticle concentration on the perovskite morphology and on its photoluminescence.

Morphology (linguistics)PhotoluminescenceMaterials scienceF100F200NanoparticleQuantum yieldGeneral ChemistryMaterials ChemistryThin filmComposite materialLuminescenceAluminum oxidePerovskite (structure)
researchProduct

Hansen theory applied to the identification of nonhazardous solvents for hybrid perovskite thin-films processing

2018

Abstract Metal-halide perovskites have become the most studied material for efficient next-generation solar cells, in part because of the possibility of depositing high quality semiconducting perovskites by simple solution-based methods. However, the majority of solvent systems implemented in literature for deposition of lead halide perovskites are hazardous to handle. Investigation of alternatives perovskite processing methods are hence key to safely upscale the perovskite photovoltaic manufacturing. In this manuscript we use the Hansen theory to find suitable nonhazardous solvents to solubilize two lead salts, PbBr2 and PbI2, used to fabricate the corresponding methylammonium (MA) lead ha…

ChemistryHalide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical sciencesInorganic ChemistrySolventHildebrand solubility parameterChemical engineeringMaterials ChemistryDeposition (phase transition)Lead saltPhysical and Theoretical ChemistryThin filmSolubility0210 nano-technologyPerovskite (structure)Polyhedron
researchProduct

Influence of mobile ions on the electroluminescence characteristics of methylammonium lead iodide perovskite diodes

2016

In this work, we study the effect of voltage bias on the optoelectronic behavior of methylammonium lead iodide planar diodes. Upon biasing the diodes with a positive voltage, the turn-on voltage of the electroluminescence diminishes and its intensity substantially increases. This behavior is reminiscent of that observed in light-emitting electrochemical cells (LECs), single-layer electroluminescent devices in which the charge injection is assisted by the accumulation of ions at the electrode interface. Because of this mechanism, performances are largely independent from the work function of the electrodes. The similarities observed between planar perovskite diodes and LECs suggest that mobi…

SOLAR-CELLSMaterials scienceEMITTING ELECTROCHEMICAL-CELLSEXCITON BINDING-ENERGY02 engineering and technologyElectroluminescence010402 general chemistry01 natural sciencesElectrochemical cellEFFECTIVE MASSESRECENT PROGRESSGeneral Materials ScienceWork functionHYSTERESISPerovskite (structure)DiodeRenewable Energy Sustainability and the Environmentbusiness.industryBiasingGeneral ChemistryPERFORMANCE021001 nanoscience & nanotechnologyTURN-ON TIMESHALIDE PEROVSKITES0104 chemical sciencesP-N-JUNCTIONElectrodeOptoelectronics0210 nano-technologybusinessp–n junctionJournal of Materials Chemistry A
researchProduct

Efficient light-emitting electrochemical cells using small molecular weight, ionic, host-guest systems

2015

This work has been supported by the Spanish Ministry of Economy and Competitiveness (MAT2014-55200). Light-emitting electrochemical cells (LECs) based on fluorescent host-guest small molecules system are reported. The LECs show electroluminescence coming solely from the guest, with an external quantum efficiency (EQE) of 2.0%, which is very close to the theoretical maximum EQE (2.2%) for this particular system. This work demonstrates the possibility to obtain high efficiency devices employing low-cost materials, making host-guest systems a real alternative to more traditional semiconducting polymer or transition metal compounds. Postprint Peer reviewed

Materials scienceLECNDASIonic bondingLight emitting electrochemical cellNanotechnology02 engineering and technologyElectroluminescence010402 general chemistry021001 nanoscience & nanotechnologyQD Chemistry01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsElectrochemical cellElectroluminescenceChristian ministryQDLight-emitting electrochemical cell0210 nano-technologyHost (network)
researchProduct

Dimensionality Controls Anion Intermixing in Electroluminescent Perovskite Heterojunctions.

2022

Metal halide perovskites have emerged as a promising group of materials for optoelectronic applications such as photovoltaics, light emission, and photodetectors. So-far, in particular, the stability of light-emitting devices is limited, which is in part attributed to the intrinsic ionic conductivity of these materials. High-performance devices inevitably contain heterojunctions similar to other optoelectronic devices based on oxide perovskites, II-VI, or III-V group semiconductors. To enable efficient heterojunctions, ion exchange at the interface between different layers should be controlled. Herein, we report a method that enables to control and monitor the extent of anion intermixing be…

ElectroquímicaElectrical and Electronic EngineeringAtomic and Molecular Physics and OpticsBiotechnologyElectronic Optical and Magnetic MaterialsACS photonics
researchProduct

Low Temperature, Vacuum-Processed Bismuth Triiodide Solar Cells with Organic Small-Molecule Hole Transport Bilayer

2021

Herein, the preparation of fully vacuum-processed bismuth triiodide solar cells with low annealing temperature is reported. Planar n-i-p devices are prepared using a thin compact SnO2 layer as the electron extraction layer and an electron blocking/hole extraction bilayer consisting of an intrinsic and doped organic hole-transport molecule. Using this configuration, herein, higher fill-factors and overall power conversion efficiencies than with conventional solution-processed hole transport materials are achieved.

Materials sciencebusiness.industryBilayerchemistry.chemical_elementPhotochemistrySmall moleculeBismuthchemistry.chemical_compoundGeneral EnergychemistryPhotovoltaicsEnergiaTriiodidebusinessCèl·lules fotoelèctriques
researchProduct

Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging

2016

Vacuum evaporated perovskite solar cells with a power conversion efficiency of 15% have been characterized using hyperspectral luminescence imaging. Hyperspectral luminescence imaging is a novel technique that offers spectrally resolved photoluminescence and electroluminescence maps (spatial resolution is 2 micrometer) on an absolute scale. This allows, using the generalized Planck’s law, the construction of absolute maps of the depth-averaged quasi-Fermi level splitting (Δμ), which determines the maximum achievable open circuit voltage (Voc) of the solar cells. In a similar way, using the generalized reciprocity relations the charge transfer efficiency of the cells can be obtained from the…

PhotonMaterials sciencePhotoluminescenceRenewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageEnergy conversion efficiencyHyperspectral imaging02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesPollution0104 chemical sciencesOpticsNuclear Energy and EngineeringEnvironmental ChemistryOptoelectronics0210 nano-technologyLuminescencebusinessAbsolute scalePerovskite (structure)Energy &amp; Environmental Science
researchProduct

Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles

2016

Methylammonium lead bromide nanoparticles are synthetized with a new ligand (11-aminoundecanoic acid hydrobromide) by a non-template method. Upon dispersion in toluene they show a remarkable photoluminescence quantum yield of 80%. In addition, the bifunctional ligand allows anchoring of the nanoparticles on a variety of conducting and semiconducting surfaces, showing bright photoluminescence with a quantum yield exceeding 50%. This opens a path for the simple and inexpensive preparation of multilayer light-emitting devices. NRF (Natl Research Foundation, S’pore) ASTAR (Agency for Sci., Tech. and Research, S’pore) Accepted version

Materials sciencePhotoluminescencePhotoluminescent Thin FilmsPerovskite NanoparticlesInorganic chemistryNanoparticleQuantum yield02 engineering and technology010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials ChemistryThin filmBifunctionalPerovskite (structure):Materials [Engineering]LigandMetals and AlloysGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringchemistryCeramics and Composites0210 nano-technologyDispersion (chemistry)Chemical Communications
researchProduct

The shiny side of copper: bringing copper(i) light-emitting electrochemical cells closer to application

2020

Heteroleptic [Cu(P^P)(N^N)][PF6] complexes, where N^N is 5,50-dimethyl-2,20-bipyridine (5,50-Me2bpy), 4,5,6-trimethyl-2,20-bipyridine (4,5,6-Me3bpy), 6-(tert-butyl)-2,20-bipyridine (6-tBubpy) and 2-ethyl-1,10- phenanthroline (2-Etphen) and P^P is either bis(2-(diphenylphosphino)phenyl)ether (POP, PIN [oxydi(2,1- phenylene)]bis(diphenylphosphane)) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos, PIN (9,9-dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane)) have been synthesized and their NMR spectroscopic, mass spectrometric, structural, electrochemical and photophysical properties were investigated. The single-crystal structures of [Cu(POP)(5,50-Me2bpy)][PF6], [Cu(xantphos)(5,…

ElectroquímicaCèl·lules fotoelèctriques
researchProduct

Remote modification of bidentate phosphane ligands controlling the photonic properties in their complexes: Enhanced performance of [Cu(RN-xantphos)(N…

2020

A series of copper(I) complexes of the type [Cu(HN-xantphos)(N^N)][PF6] and [Cu(BnN-xantphos)(N^N)][PF6], in which N^N = bpy, Mebpy, and Me2bpy, HN-xantphos = 4,6-bis(diphenylphosphanyl)-10H-phenoxazine and BnNxantphos = 10-benzyl-4,6-bis(diphenylphosphanyl)-10H-phenoxazine is described. The single crystal structures of [Cu(HN-xantphos)(Mebpy)][PF6] and [Cu(BnN-xantphos)(Me2bpy)][PF6] confirm the presence of N^N and P^P chelating ligands with the copper(I) atoms in distorted coordination environments. Solution electrochemical and photophysical properties of the BnNxantphos- containing compounds (for which the highest-occupied molecular orbital is located on the phenoxazine moiety) are repor…

ElectroquímicaMaterials
researchProduct

Preparation and Characterization of Mixed Halide MAPbI3−xClx Perovskite Thin Films by Three‐Source Vacuum Deposition

2020

Chloride has been extensively used in the preparation of metal halide perovskites such as methylammonium lead iodide (MAPbI3-xClx), but its persistence and role in solution-processed materials has not yet been rationalized. Multiple-source vacuum deposition of perovskites enables a fine control over the thin-film stoichiometry, and allows to incorporate chemical species irrespectively of their solubility. In this communication, we present the first example of mixed MAPbI3-xClx thin films prepared by three-source vacuum deposition using MAI, PbI2 and PbCl2 as precursors. The optoelectronic properties of the material are evaluated through photovoltaic and electro-/photo-luminescent characteri…

MaterialsCèl·lules fotoelèctriques
researchProduct

CCDC 2081388: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

Space GroupCrystallography(66'-dimethyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper tetrakis[35-bis(trifluoromethyl)phenyl]borateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562407: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-(ethylsulfanyl)-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphate diethyl ether solvate
researchProduct

CCDC 1562410: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-ethoxy-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphate
researchProduct

CCDC 2081386: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

Space GroupCrystallography(6-methyl-22'-bipyridine)-([oxybis(21-phenylene)]bis(diphenylphosphine))-copper hexafluorophosphate dichloromethane diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2061123: Experimental Crystal Structure Determination

2021

Related Article: Chenfei Li, Campbell F. R. Mackenzie, Said A. Said, Amlan K. Pal, Mohammad A. Haghighatbin, Azin Babaei, Michele Sessolo, David B. Cordes, Alexandra M. Z. Slawin, Paul C. J. Kamer, Henk J. Bolink, Conor F. Hogan, Eli Zysman-Colman|2021|Inorg.Chem.|60|10323|doi:10.1021/acs.inorgchem.1c00804

Space GroupCrystallography[(benzo[kl]xanthene-68-diyl)bis(diphenylphosphine)]-(29-dimethyl-110-phenanthroline)-copper(i) tetrafluoroborateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1944543: Experimental Crystal Structure Determination

2020

Related Article: Violeta Sicilia, Lorenzo Arnal, Andrés J. Chueca, Sara Fuertes, Azin Babaei, Ana María Igual Muñoz, Michele Sessolo, Henk J. Bolink|2020|Inorg.Chem.|59|1145|doi:10.1021/acs.inorgchem.9b02782

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(1-(4-cyanobenzen-2-idyl)-3-methyl-13-dihydro-2H-imidazol-2-ylidene)-( (12-phenylene)bis(diphenylphosphine))-platinum(ii) hexafluorophosphate dichloromethane solvate
researchProduct

CCDC 1584756: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1584755: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1844060: Experimental Crystal Structure Determination

2018

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(22'-bipyridine)-(27-di-t-butyl-99-dimethyl-9H-xanthene-45-diyl)-bis(diphenylphosphine)-copper(i) hexafluorophosphate diethyl ether solvateExperimental 3D Coordinates
researchProduct

CCDC 1562409: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal Structure(6-methoxy-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane diethyl ether solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1978436: Experimental Crystal Structure Determination

2020

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

(55'-dimethyl-22'-bipyridine)-[oxybis(21-phenylene)]-bis(diphenylphosphane)-copper(i) hexafluorophosphateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 972526: Experimental Crystal Structure Determination

2014

Related Article: Gabriel E. Schneider, Antonio Pertegás, Edwin C. Constable, Catherine E. Housecroft, Nik Hostettler, Collin D. Morris, Jennifer A. Zampese, Henk J. Bolink, José M. Junquera-Hernández, Enrique Ortí, Michele Sessolo|2014|J.Mater.Chem.C|2|7047|doi:10.1039/C4TC01171F

Space GroupCrystallographybis(2-(2-Pyridyl)phenyl-CN)-(6-(2-naphthyl)-22'-bipyridine)-iridium hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2061124: Experimental Crystal Structure Determination

2021

Related Article: Chenfei Li, Campbell F. R. Mackenzie, Said A. Said, Amlan K. Pal, Mohammad A. Haghighatbin, Azin Babaei, Michele Sessolo, David B. Cordes, Alexandra M. Z. Slawin, Paul C. J. Kamer, Henk J. Bolink, Conor F. Hogan, Eli Zysman-Colman|2021|Inorg.Chem.|60|10323|doi:10.1021/acs.inorgchem.1c00804

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(29-dimethyl-110-phenanthroline)-((ethene-12-diyl)-bis(diphenylphosphine))-copper tetrafluoroborate dichloromethane solvate
researchProduct

CCDC 1535142: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(66'-dichloro-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethylxanthene)-copper(i) hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1844063: Experimental Crystal Structure Determination

2018

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

((27-di-t-butyl-99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-(6-methyl-22'-bipyridine)-copper(i) hexafluorophosphate dichloromethane solvate hemihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2081394: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

Space GroupCrystallography((99-Dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-(6-methyl-22'-bipyridine)-copper(i) hexafluorophosphate dichloromethane diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1907394: Experimental Crystal Structure Determination

2020

Related Article: Nina Arnosti, Fabian Brunner, Isidora Susic, Sarah Keller, José M. Junquera‐Hernández, Alessandro Prescimone, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft, Edwin C. Constable|2020|Adv.Opt.Mater.|8|1901689|doi:10.1002/adom.201901689

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[10-benzyl-46-bis(diphenylphosphanyl)-10H-phenoxazine]-(66'-dimethyl-22'-bipyridine)-copper hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 2061121: Experimental Crystal Structure Determination

2021

Related Article: Chenfei Li, Campbell F. R. Mackenzie, Said A. Said, Amlan K. Pal, Mohammad A. Haghighatbin, Azin Babaei, Michele Sessolo, David B. Cordes, Alexandra M. Z. Slawin, Paul C. J. Kamer, Henk J. Bolink, Conor F. Hogan, Eli Zysman-Colman|2021|Inorg.Chem.|60|10323|doi:10.1021/acs.inorgchem.1c00804

Space GroupCrystallography[46-bis(diphenylphosphanyl)-10H-phenoxazine]-(29-dimethyl-110-phenanthroline)-copper(i) tetrafluoroborate dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2081387: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

(66'-dimethyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper tetraphenylborate acetone solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2061118: Experimental Crystal Structure Determination

2021

Related Article: Chenfei Li, Campbell F. R. Mackenzie, Said A. Said, Amlan K. Pal, Mohammad A. Haghighatbin, Azin Babaei, Michele Sessolo, David B. Cordes, Alexandra M. Z. Slawin, Paul C. J. Kamer, Henk J. Bolink, Conor F. Hogan, Eli Zysman-Colman|2021|Inorg.Chem.|60|10323|doi:10.1021/acs.inorgchem.1c00804

Space GroupCrystallographyCrystal System[(99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine)]-(29-dimethyl-110-phenanthroline)-copper(i) tetrafluoroborate dichloromethane diethyl ether solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562458: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-(methylsulfanyl)-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane diethyl ether solvate
researchProduct

CCDC 1583875: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethylxanthene)-copper(i) hexafluorophosphate diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2061119: Experimental Crystal Structure Determination

2021

Related Article: Chenfei Li, Campbell F. R. Mackenzie, Said A. Said, Amlan K. Pal, Mohammad A. Haghighatbin, Azin Babaei, Michele Sessolo, David B. Cordes, Alexandra M. Z. Slawin, Paul C. J. Kamer, Henk J. Bolink, Conor F. Hogan, Eli Zysman-Colman|2021|Inorg.Chem.|60|10323|doi:10.1021/acs.inorgchem.1c00804

Space GroupCrystallographyCrystal SystemCrystal Structure([1011-dihydrodibenzo[bf]oxepine-46-diyl)bis(diphenylphosphine)]-(29-dimethyl-110-phenanthroline)-copper(i) tetrafluoroborate dichloromethane solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1978440: Experimental Crystal Structure Determination

2020

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

Space GroupCrystallography[oxybis(21-phenylene)]-bis(diphenylphosphane)-(456-trimethyl-22'-bipyridine)-copper(i) hexafluorophosphate diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1978441: Experimental Crystal Structure Determination

2020

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(6-t-butyl-22'-bipyridine)-[oxybis(21-phenylene)]-bis(diphenylphosphane)-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1584757: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562460: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallography(6-(ethylsulfanyl)-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1944542: Experimental Crystal Structure Determination

2020

Related Article: Violeta Sicilia, Lorenzo Arnal, Andrés J. Chueca, Sara Fuertes, Azin Babaei, Ana María Igual Muñoz, Michele Sessolo, Henk J. Bolink|2020|Inorg.Chem.|59|1145|doi:10.1021/acs.inorgchem.9b02782

Space GroupCrystallographyCrystal System(1-(benzen-2-idyl)-3-methyl-13-dihydro-2H-imidazol-2-ylidene)-(methylenebis(diphenylphosphine))-platinum(ii) hexafluorophosphate acetone solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562411: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal System(6-ethoxy-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane solvate hemihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1535141: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1584754: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562408: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal System(6-methoxy-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2081391: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(66'-dimethyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper tetrafluoroborate acetone cyclohexane solvateExperimental 3D Coordinates
researchProduct

CCDC 1944541: Experimental Crystal Structure Determination

2020

Related Article: Violeta Sicilia, Lorenzo Arnal, Andrés J. Chueca, Sara Fuertes, Azin Babaei, Ana María Igual Muñoz, Michele Sessolo, Henk J. Bolink|2020|Inorg.Chem.|59|1145|doi:10.1021/acs.inorgchem.9b02782

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(1-(4-cyanobenzen-2-idyl)-3-methyl-13-dihydro-2H-imidazol-2-ylidene)-(methylenebis(diphenylphosphine))-platinum(ii) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 2081389: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(66'-dimethyl-22'-bipyridine)-([oxybis(21-phenylene)]bis(diphenylphosphine))-copper tetrakis[35-bis(trifluoromethyl)phenyl]borateExperimental 3D Coordinates
researchProduct

CCDC 1562448: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

(6-(phenylsulfanyl)-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2081393: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(66'-dimethyl-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1562457: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(6-phenoxy-22'-bipyridine)-(45-bis(diphenylphosphino)-99-dimethyl-9H-xanthene)-copper(i) hexafluorophosphate dichloromethane solvate
researchProduct

CCDC 2061120: Experimental Crystal Structure Determination

2021

Related Article: Chenfei Li, Campbell F. R. Mackenzie, Said A. Said, Amlan K. Pal, Mohammad A. Haghighatbin, Azin Babaei, Michele Sessolo, David B. Cordes, Alexandra M. Z. Slawin, Paul C. J. Kamer, Henk J. Bolink, Conor F. Hogan, Eli Zysman-Colman|2021|Inorg.Chem.|60|10323|doi:10.1021/acs.inorgchem.1c00804

Space GroupCrystallographyCrystal SystemCrystal Structure(29-dimethyl-110-phenanthroline)-{[9-(propan-2-ylidene)-9H-xanthene-45-diyl]bis(diphenylphosphine)}-copper(i) tetrafluoroborateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009455: Experimental Crystal Structure Determination

2014

Related Article: Sarah Keller, Edwin C. Constable, Catherine E. Housecroft, Markus Neuburger, Alessandro Prescimone, Giulia Longo, Antonio Pertegás, Michele Sessolo, Henk J. Bolink|2014|Dalton Trans.|43|16593|doi:10.1039/C4DT02847C

Space GroupCrystallographyCrystal System(66'-dimethyl-22'-bipyridine)-((oxydi-21-phenylene)bis(diphenylphosphine))-copper(i) hexafluorophosphate dichloromethane solvate dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2081390: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

(6-methyl-22'-bipyridine)-([oxybis(21-phenylene)]bis(diphenylphosphine))-copper tetrakis[35-bis(trifluoromethyl)phenyl]borate cyclohexane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1844062: Experimental Crystal Structure Determination

2018

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis[phenyl(246-trimethylphenyl)phosphine])-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1562453: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(6-(phenylsulfanyl)-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1978437: Experimental Crystal Structure Determination

2020

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

(2-ethyl-110-phenanthroline)-[oxybis(21-phenylene)]-bis(diphenylphosphane)-copper(i) hexafluorophosphate dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1844061: Experimental Crystal Structure Determination

2018

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters((99-dimethyl-9H-xanthene-45-diyl)bis[phenyl(246-trimethylphenyl)phosphine])-(6-methyl-22'-bipyridine)-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 2061122: Experimental Crystal Structure Determination

2021

Related Article: Chenfei Li, Campbell F. R. Mackenzie, Said A. Said, Amlan K. Pal, Mohammad A. Haghighatbin, Azin Babaei, Michele Sessolo, David B. Cordes, Alexandra M. Z. Slawin, Paul C. J. Kamer, Henk J. Bolink, Conor F. Hogan, Eli Zysman-Colman|2021|Inorg.Chem.|60|10323|doi:10.1021/acs.inorgchem.1c00804

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(29-dimethyl-110-phenanthroline)-[(phenoxathiine-46-diyl)bis(diphenylphosphine)]-copper(i) tetrafluoroborateExperimental 3D Coordinates
researchProduct

CCDC 996509: Experimental Crystal Structure Determination

2014

Related Article: Sarah Keller, Edwin C. Constable, Catherine E. Housecroft, Markus Neuburger, Alessandro Prescimone, Giulia Longo, Antonio Pertegás, Michele Sessolo, Henk J. Bolink|2014|Dalton Trans.|43|16593|doi:10.1039/C4DT02847C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(6-methyl-22'-bipyridine)-((oxydi-21-phenylene)bis(diphenylphosphine))-copper(i) hexafluorophosphate unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1562412: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

(6-phenoxy-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphate dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1535144: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(66'-dichloro-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1860879: Experimental Crystal Structure Determination

2018

Related Article: Fabian Brunner, Azin Babaei, Antonio Pertegás, José M. Junquera-Hernández, Alessandro Prescimone, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2019|Dalton Trans.|48|446|doi:10.1039/C8DT03827A

Space GroupCrystallography(99-dimethyl-9H-xanthene-45-diyl)bis[phenyl(246-trimethylphenyl)phosphane]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1978438: Experimental Crystal Structure Determination

2020

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(99-dimethyl-9H-xanthene-45-diyl)-bis(diphenylphosphane)-(456-trimethyl-22'-bipyridine)-copper(i) hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1584752: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562449: Experimental Crystal Structure Determination

2018

Related Article: Murat Alkan-Zambada, Sarah Keller, Laura Martínez-Sarti, Alessandro Prescimone, José M. Junquera-Hernández, Edwin C. Constable, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2018|J.Mater.Chem.C|6|8460|doi:10.1039/C8TC02882F

Space GroupCrystallographyCrystal SystemCrystal Structure(6-(methylsulfanyl)-22'-bipyridine)-(22'-bis(diphenylphosphino)-11'-oxydibenzene)-copper(i) hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2081392: Experimental Crystal Structure Determination

2021

Related Article: Marco Meyer, Lorenzo Mardegan, Daniel Tordera, Alessandro Prescimone, Michele Sessolo, Henk J. Bolink, Edwin C. Constable, Catherine E. Housecroft|2021|Dalton Trans.|50|17920|doi:10.1039/D1DT03239A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-(6-methyl-22'-bipyridine)-copper tetrafluoroborate dichloromethane diethyl ether solvateExperimental 3D Coordinates
researchProduct

CCDC 1907395: Experimental Crystal Structure Determination

2020

Related Article: Nina Arnosti, Fabian Brunner, Isidora Susic, Sarah Keller, José M. Junquera‐Hernández, Alessandro Prescimone, Henk J. Bolink, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft, Edwin C. Constable|2020|Adv.Opt.Mater.|8|1901689|doi:10.1002/adom.201901689

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters[46-bis(diphenylphosphanyl)-10H-phenoxazine]-(6-methyl-22'-bipyridine)-copper hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1978442: Experimental Crystal Structure Determination

2020

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

Space GroupCrystallographyCrystal SystemCrystal Structure(99-dimethyl-9H-xanthene-45-diyl)-bis(diphenylphosphane)-(2-ethyl-110-phenanthroline)-copper(i) hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1584753: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallography(6-bromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1535143: Experimental Crystal Structure Determination

2018

Related Article: Sarah Keller, Alessandro Prescimone, Henk Bolink, Michele Sessolo, Giulia Longo, Laura Martínez-Sarti, José M. Junquera-Hernández, Edwin C. Constable, Enrique Ortí, Catherine E. Housecroft|2018|Dalton Trans.|47|14263|doi:10.1039/C8DT01338A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(44'-dibromo-22'-bipyridine)-(bis(2-(diphenylphosphino)phenyl)ether)-copper(i) hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1978439: Experimental Crystal Structure Determination

2020

Related Article: Sarah Keller, Alessandro Prescimone, Maria-Grazia La Placa, José M. Junquera-Hernández, Henk J. Bolink, Edwin C. Constable, Michele Sessolo, Enrique Ortí, Catherine E. Housecroft|2020|RSC Advances|10|22631|doi:10.1039/D0RA03824E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(55'-dimethyl-22'-bipyridine)-(99-dimethyl-9H-xanthene-45-diyl)-bis(diphenylphosphane)-copper(i) hexafluorophosphateExperimental 3D Coordinates
researchProduct