0000000001171984

AUTHOR

Vincenzo La Carrubba

showing 149 related works from this author

Composite Scaffolds with a Hydrohyapatite Spatial Gradient for Osteochondral Defect Repair

2018

Osteochondral defects derived by traumatic injury or aging related disease are often associated with severe joint pain and progressive loss of joint functions for millions of people worldwide and represent a major challenge for the orthopedic community. Tissue engineering offers new therapeutic approach to repair the osteochondral defects, through the production of scaffolds manufactured to mimic their complex architecture, which consists of cartilage and bone layers. Composite scaffolds based on a PLLA polymeric matrix containing hydroxyapatite (HA) as a filler were prepared through a modified thermally induced phase separation (TIPS) protocol. A suspension was prepared by adding sieved HA…

Defect repairMaterials scienceScanning electron microscopeComposite numberEnergy Engineering and Power TechnologyscaffoldIndustrial and Manufacturing EngineeringHydroxyapatite (HA)Poly-L-lactic-acid (PLLA)Tissue engineeringArtificial IntelligencemedicineTissue engineeringPorosityosteochomdral defectInstrumentationchemistry.chemical_classificationTime pathRenewable Energy Sustainability and the EnvironmentCartilageComputer Science Applications1707 Computer Vision and Pattern RecognitionPolymerComputer Networks and Communicationmedicine.anatomical_structurechemistryBiomedical engineering2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)
researchProduct

CaP-Bioglass composite coating by galvanic deposition

Orthopedic devices are increasingly used in our life to improve the health of patients after bone fractures due to accidents, aging, or sports injuries. Metallic materials (i.e. stainless steel, titanium alloys chromium alloys) are widely employed to fabricate prostheses, screws, and osteosynthesis plates. Although metals could be good mechanical properties like human bone, corrosion phenomena could occur, causing in the worst cases the failure of orthopedic implants. In addition, metal ions released around periprosthetic tissues could arise allergenic and cancerogenic effects. Nowadays, the research was focused on coating science to deal with these issues. In particular, the development of…

bioglacorrosionbiocompatibilitySettore ING-IND/23 - Chimica Fisica ApplicatacoatingHydroxyapatite
researchProduct

Galvanic Deposition of Hydroxyapatite/Chitosan/Collagen Coatings on 304 Stainless Steel

2021

The galvanic deposition method was used to deposit Hydroxyapatite/Chitosan/Collagen coatings on 304 stainless steel. Galvanic deposition is an alternative and valid way to fabricate bio-coatings with high biocompatibility and good anticorrosion properties. Physical-chemical characterizations were carried out to investigate chemical composition and morphology of the samples. Coatings consist of a mixture of calcium phosphate (Brushite and Hydroxyapatite) with chitosan and collagen. Corrosion tests were performed in the simulated body fluid (SBF) after different aging times. Results show that, in comparison with bare 304 stainless steel, coating shifts corrosion potential to anodic values and…

Hydroxyapatite Chitosan Collagen Biocoating Corrrosion Galvanic deposition Cytotoxicity 304SS stainless steel
researchProduct

Galvanic deposition of Chitosan-AgNPs as antibacterial coating

Thanks to mechanical properties similar human bones, metallic materials represent the best choice for fabrication of orthopedic implants. Although metals could be widely used in the field of biomedical implants, corrosion phenomena could occur, causing metal ions releasing around periprosthetic tissues leading, in the worst cases, to the development of infections. In these cases, patients need prolonged antibiotic therapies that may cause bacterial resistance. Preventing bacterial colonization of biomedical surfaces is the key to limiting the spread of infections. Antibacterial coatings have become a very active field of research, strongly stimulated by the increasing urgency of identifying…

Settore ING-IND/23 - Chimica Fisica Applicatagalvanic deposition coating antibacterial silver nanoparticleschitosan
researchProduct

Effect of Polyhydroxyalkanoate (PHA) Concentration on Polymeric Scaffolds Based on Blends of Poly-L-Lactic Acid (PLLA) and PHA Prepared via Thermally…

2022

Hybrid porous scaffolds composed of both natural and synthetic biopolymers have demonstrated significant improvements in the tissue engineering field. This study investigates for the first time the fabrication route and characterization of poly-L-lactic acid scaffolds blended with polyhydroxyalkanoate up to 30 wt%. The hybrid scaffolds were prepared by a thermally induced phase separation method starting from ternary solutions. The microstructure of the hybrid porous structures was analyzed by scanning electron microscopy and related to the blend composition. The porosity and the wettability of the scaffolds were evaluated through gravimetric and water contact angle measurements, respective…

biopolymer blends porous structures scaffold thermally induced phase separation tissue engineeringPolymers and Plasticstissue engineering; biopolymer blends; porous structures; scaffold; thermally induced phase separationSettore ING-IND/34 - Bioingegneria IndustrialeGeneral ChemistryPolymers; Volume 14; Issue 12; Pages: 2494
researchProduct

Deposition and characterization of coatings of Hydroxyapatite, Chitosan, and Hydroxyapatite-Chitosan on 316L for biomedical devices

2018

In the last decades, the scientific community has turned on great interest towards the development of increasingly performing biomedical systems. In the orthopedic field, biomedical devices are made up by metallic materials (mainly steel and titanium alloys), which have low/medium resistance to corrosion and a low osteointegration capacity when implanted inside the human body. This can lead to infection or inflammation that can damage the tissues surrounding the implant. The use of biocompatible coatings allows cancelling or mitigating these phenomena. The coating interposing between aggressive environment and biomedical device inhibits corrosion so limiting the metal ions release into the …

orthopedic devicebiomedical devicecorrosionSettore ING-IND/23 - Chimica Fisica Applicatabiocompatible coatingchitosanhydroxylapatite
researchProduct

Integrated production of biopolymers with industrial wastewater treatment: Effects of OLR on process yields, biopolymers characteristics and mixed mi…

2022

The production of polyhydroxyalkanoates (PHA) using industrial wastewaters as feedstocks is a current and challenging topic. This study investigated the production of biopolymers by a mixed microbial culture under different OLRs equal to 1 kgCOD m-3d-1 (Period 1), 2 kgCOD m-3d-1 (Period 2) and 3 kgCOD m-3d-1 (Period 3). The maximum PHA content was achieved in Period 2 (0.38 gPHA gTSS-1), whereas lower values were obtained in Period 1 (0.13 gPHA gTSS-1) and Period 3 (0.26 gPHA gTSS-1). Overall, the maximum PHA productivity resulted equal to 0.08 gPHA L-1h-1 (P2), 0.05 gPHA L-1h-1 (P1) and 0.04 gPHA L-1h-1 (P3), respectively. The molecular weight of the PHA increased from Period 1 (250 kDa) t…

Settore ICAR/03 - Ingegneria Sanitaria-AmbientaleProcess Chemistry and TechnologyIndustrial wastewater Mixed microbial cultures Organic loading rate Polyhydroxybutyrate SBR reactorsSafety Risk Reliability and QualityWaste Management and DisposalBiotechnologyJournal of Water Process Engineering
researchProduct

Physical and antibacterial properties of PLA electrospun mats loaded with carvacrol and nisin

2022

Functional, biopolymeric electrospun structures for the controlled release of antimicrobial agents are gaining in-creasing interest in food packaging applications. In this study, the physical and antibacterial performances of ternary systems composed of polylactic acid (PLA) electrospun mats loaded with 20 wt% of different relative amounts of carvacrol (CRV) and a commercial nisin formulation (Nis) were assessed. Scanning electron micrographs displayed micro-scaled fibers with different diameter size distributions depending on the relative concentrations of the additives. The PLA/CRV/Nis membranes??? wettability was affected by the relative amount of CRV and Nis loaded, switching from hydro…

Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymers and PlasticsGeneral Chemical EngineeringOrganic ChemistryMaterials Chemistrybiopolymers biocomposites biodegradable polymers nanomaterials electrospinning antimicrobial polymersSettore ING-IND/34 - Bioingegneria IndustrialePhysical and Theoretical Chemistry
researchProduct

A Versatile Technique to Produce Porous Polymeric Scaffolds: The Thermally Induced Phase Separation (TIPS) Method

2017

Among the various scaffold fabrication techniques, thermally induced phase separation (TIPS) is one of the most versatile methods to produce porous polymeric scaffold and it has been largely used for its capability to produce highly porous and interconnected scaffolds. The scaffold architecture can be closely controlled by varying the process parameters, including polymer type and concentration, solvent/non-solvent ratio and thermal history. TIPS technique has been widely employed, also, to produce scaffolds with a hierarchical pore structure and composite polymeric matrix/inorganic filler foams.

chemistry.chemical_classificationMaterials scienceComposite numbertechnology industry and agriculturePolymeric matrixNanotechnologyPolymerMicrobiologySolventchemistryHighly porousPolymeric scaffoldScaffold architecturePorosityArchives in Chemical Research
researchProduct

PHEA‐PLLA: A New Polymer Blend For Tissue Engineering Applications

2011

One of most important features that a material should have in order to be utilized for tissue engineering applications is its biocompatibility and its chemical surface. These properties are required for a high degree of cell adhesion on the scaffold. Poly‐L‐lactid acid (PLLA) is a biocompatible synthetic polymer approved by the Food and Drug Administration for human clinical applications. It has been largely employed, in the last years, as a constituent of surgical and implantable devices. PHEA is a biocompatible water‐soluble synthetic polymer, with a protein‐like structure, whose use as a drug carrier and as starting material for many other biomedical and pharmaceutical applications has b…

chemistry.chemical_classificationCloud pointSettore ING-IND/24 - Principi Di Ingegneria ChimicaMaterials scienceBiocompatibilityPolymer-Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymerizationchemistryTissue engineeringChemical engineeringCopolymerPolymer blendDrug carrierBiomedical engineering
researchProduct

Engineered membranes for residual cell trapping on microfluidic blood plasma separation systems. A comparison between porous and nanofibrous membranes

2020

AbstractBlood-based clinical diagnostics require challenging limit-of-detection for low abundance, circulating molecules in plasma. Micro-scale blood plasma separation (BPS) has achieved remarkable results in terms of plasma yield or purity, but rarely achieving both at the same time. Here, we proposed the first use of electrospun polylactic-acid (PLA) membranes as filters to remove residual cell population from continuous hydrodynamic-BPS devices. The membranes hydrophilicity was improved by adopting a wet chemistry approach via surface aminolysis as demonstrated through Fourier Transform Infrared Spectroscopy and Water Contact Angle analysis. The usability of PLA-membranes was assessed th…

education.field_of_studyMaterials scienceChromatographyMicrofluidicsPopulationPlasmaContact angleRed blood cellmedicine.anatomical_structureMembraneBlood plasmamedicineFourier transform infrared spectroscopyeducation
researchProduct

PLLA-fibrin scaffolds for Vascular Tissue Engineering

2013

FibrinSettore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSettore BIO/10 - BiochimicaPoly Lactic AcidVascular Tissue Engineering
researchProduct

Biological characterization of Poly-L-lactic acid (PLLA)/Hydroxyapatite (HA)/Bioglass (BG) composite scaffolds made by Thermally Induced Phase Separa…

In the last few years, Tissue Engineering has focused on the favourable effects that composite scaffolds have on cell adhesion, growth and differentiation. In fact, composite scaffolds, usually composed of a synthetic polymer supplemented with naturally occurring components, display superior mechanical properties and bioconductivity than scaffolds consisting of a single component. Hydroxyapatite (HA) is the major inorganic component of bones. Bioglass (BG) is known to exert stimulatory effects on cells by ion release and hence, could be also advantageous for Bone Tissue Engineering. Poly-L-lactic acid (PLLA) is a versatile synthetic polymer combinable with HA and BG. The aim of this work wa…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaHuman Mesenchymal Stem Cells PLLA bioactive glass Hydroxyapatite
researchProduct

Polylactic acid, a sustainable, biocompatible, transparent substrate material for Organ-On-Chip, and Microfluidic applications

2019

AbstractOrgan-on-chips are miniaturised devices aiming at replacing animal models for drug discovery, toxicology and studies of complex biological phenomena. The field of Organ-On-Chip has grown exponentially, and has led to the formation of companies providing commercial Organ-On-Chip devices. Yet, it may be surprising to learn that the majority of these commercial devices are made from Polydimethylsiloxane (PDMS), a silicone elastomer that is widely used in microfluidic prototyping, but which has been proven difficult to use in industrial settings and poses a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled adsorption of small compounds. T…

chemistry.chemical_classification0303 health sciencesMaterials sciencePolydimethylsiloxaneBiocompatibilityMicrofluidicsNanotechnology02 engineering and technologyPolymer021001 nanoscience & nanotechnologyBiocompatible materialElastomer03 medical and health scienceschemistry.chemical_compoundSiliconechemistryPolylactic acid0210 nano-technology030304 developmental biology
researchProduct

Wearable sensor for real-time monitoring of oxidative stress

Settore ING-IND/23 - Chimica Fisica ApplicataHydrogen peroxide oxidative stress real-time wearable electrochemical sensor exhaled air
researchProduct

Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous ma…

2019

The growing demand for nanofibrous biocomposites able to provide peculiar properties requires systematic investigations of processing-structure-property relationships. Understanding the morpho-mechanical properties of an electrospun scaffold as a function of the filler features and mat microstructure can aid in designing these systems. In this work, the reinforcing effect of micrometric and nanometric hydroxyapatite particles in polylactic acid-based electrospun scaffold presenting random and aligned fibers orientation, was evaluated. The particles incorporation was investigated trough Fourier transform infrared spectroscopy in attenuated total reflectance. The morphology of the nanofibers …

Materials sciencePolyestersNanofibersBiomedical EngineeringBiocompatible Materials02 engineering and technologyBone tissuePolylactic acidHydroxyapatitePre-osteoblatic cellsBiomaterialsMice03 medical and health scienceschemistry.chemical_compoundCrystallinity0302 clinical medicineElectricityPolylactic acidTensile StrengthUltimate tensile strengthmedicineAnimalsParticle SizeComposite materialFourier transform infrared spectroscopyCell ProliferationMechanical PhenomenaElectrospinningGuided Tissue RegenerationViscositySettore ING-IND/34 - Bioingegneria Industriale3T3 Cells030206 dentistry021001 nanoscience & nanotechnologyElectrospinningDurapatitemedicine.anatomical_structurechemistryMechanics of MaterialsAttenuated total reflectionNanofiberAligned fibers0210 nano-technology
researchProduct

Deposition and characterization of Hydroxyapatite-Chitosan coatings on 304 SS for biomedical devices

2019

During the last years biomaterials have been largely investigated in order to perform and improve biomedical devices. As regards orthopedic field, the most common equipment used (such as implants, bone grafts or screws) are constituted by metallic materials (steel and titanium alloys), characterized by low/medium resistance to corrosion and low osteointegration ability. Furthermore, these factors could produce local inflammations of the tissues surrounding the implants, increasing kinetics of corrosion phenomena. Scientific community has focused the attention on biocoatings interposed between metal and aggressive environment in order to inhibit corrosion. Furthermore, these coatings are abl…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/23 - Chimica Fisica ApplicataSettore BIO/10 - BiochimicaSettore ING-IND/34 - Bioingegneria IndustrialeHydroxyapatite Chitosan steel substrates bioactivity galvanic process
researchProduct

Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplement…

2018

Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…

Malecartilage tissue engineering02 engineering and technologyBiochemistrylaw.inventionExtracellular matrixX-Ray DiffractionlawOrthopedics and Sports MedicineGlycosaminoglycansExtracellular Matrix Proteins0303 health sciencesSettore ING-IND/24 - Principi Di Ingegneria ChimicaCalorimetry Differential ScanningTissue ScaffoldsChemistryHyaline cartilageTemperatureSettore ING-IND/34 - Bioingegneria IndustrialeCell DifferentiationMiddle AgedPhenotypemedicine.anatomical_structureBioactive glassFemaleAdultPolyesters0206 medical engineeringType II collagenNoseChondrocyteYoung Adult03 medical and health sciencesChondrocytesRheumatologymedicineHumanspoly(L)lactic acidCollagen Type IIMolecular BiologyAggrecan030304 developmental biologyCartilagenasoseptal chondrocyteCell BiologyChondrogenesis020601 biomedical engineeringBioactive glass 1393Gene Expression RegulationBiophysicschondrogenesiGlassCollagen Type X
researchProduct

Evidence of Mechanisms Occurring in Thermally Induced Phase Separation of Polymeric Systems

2014

Thermally induced phase separation is a fabrication technique for porous polymeric structures. By means of easy-to-tune processing parameters, such as system composition and demixing temperature, a vast latitude of average pore dimensions, pore size distributions, and morphologies can be obtained. The relation between demixing temperature and morphology was demonstrated via cloud point curve measurement and foams fabrication with controlled thermal protocols, for the model system poly-l-lactide–dioxane–water. The morphologies obtained at a temperature lower than cloud point showed a closed-pore architecture, suggesting a “nucleation-and-growth” separation mechanism, which produced larger po…

Pore sizeCloud pointMorphology (linguistics)FabricationMaterials scienceChromatographyPolymers and PlasticsCondensed Matter PhysicsMicrostructureCooling rateChemical engineeringThermalmorphologyMaterials Chemistryphase behaviorPhysical and Theoretical Chemistryphase separationPorosityfoam
researchProduct

Engineered Membranes for Residual Cell Trapping on Microfluidic Blood Plasma Separation Systems: A Comparison between Porous and Nanofibrous Membranes

2021

Blood-based clinical diagnostics require challenging limit-of-detection for low abundance, circulating molecules in plasma. Micro-scale blood plasma separation (BPS) has achieved remarkable results in terms of plasma yield or purity, but rarely achieving both at the same time. Here, we proposed the first use of electrospun polylactic-acid (PLA) membranes as filters to remove residual cell population from continuous hydrodynamic-BPS devices. The membranes hydrophilicity was improved by adopting a wet chemistry approach via surface aminolysis as demonstrated through Fourier Transform Infrared Spectroscopy and Water Contact Angle analysis. The usability of PLA-membranes was assessed through de…

Materials scienceMicrofluidicsPopulationmicrofluidicsblood-plasma separationFiltration and SeparationbiopolymersTP1-1185clinical applicationsArticleContact angleChemical engineeringBlood plasmamedicineChemical Engineering (miscellaneous)Fourier transform infrared spectroscopyeducationeducation.field_of_studyChromatographyProcess Chemistry and TechnologyChemical technologyPlasmaRed blood cellMembranemedicine.anatomical_structuremembranesTP155-156Membranes
researchProduct

Computational modeling and experimental characterization of fluid dynamics in micro-CT scanned scaffolds within a multiple-sample airlift perfusion b…

2023

The perfusion of flow during cell culture induces cell proliferation and enhances cellular activity. Perfusion bioreactors offer a controlled dynamic environment for reliable in vitro applications in the tissue engineering field. In this work, to evaluate the effects of the operating parameters of a custom-made bioreactor, numerical simulations were performed to solve the fluid velocity profile inside the bioreactor containing multi-grid support that allows allocating of multiple seeded scaffolds at the same time. The perfusion system exhibited a uniform distribution of liquid velocities within the regions, suitable for cell growth on seeded scaffolds. The effects of the porous microstructu…

Micro-computed tomographySettore ING-IND/24 - Principi Di Ingegneria ChimicaEnvironmental EngineeringTissue EngineeringBiomedical EngineeringSettore ING-IND/34 - Bioingegneria IndustrialeDynamic cell cultureBioengineeringAirlift perfusion bioreactorComputational Fluid Dynamics simulationBiotechnologyBiochemical Engineering Journal
researchProduct

A Continuous Pore Size Gradient PLLA Scaffold For Osteochondral Regeneration

2016

Osteochondral (OC) scaffold-based regenerative approaches in the joint are challenging since the scaffold must provide mechanical strength while also mimicking the local cartilage and bone microenvironments. Thermally Induced Phase Separation (TIPS) can produce scaffolds with a wide range of pore size morphologies/distributions. Here, we produced by TIPS a poly-L-lactide (PLL A) scaffold with a continuous pore size gradient along the sample thickness, from ~70μm diameter on one side to ~200 μm diameter on the opposite surface.

ostechondral regenerationPLLAgradient scaffold
researchProduct

Co-Deposition and Characterization of Hydroxyapatite-Chitosan and Hydroxyapatite-Polyvinylacetate Coatings on 304 SS for Biomedical Devices

2019

During the last decades, biomaterials have been deeply studied to perform and improve coatings for biomedical devices. Metallic materials, especially in the orthopedic field, represent the most common material used for different type of devices thanks to their good mechanical properties. Nevertheless, low/medium resistance to corrosion and low osteointegration ability characterizes these materials. To overcome these problems, the use of biocoatings on metals substrate is largely diffused. In fact, biocoatings have a key role to confer biocompatibility properties, to inhibit corrosion and thus improve the lifetime of implanted devices. In this work, the attention was focused on Hydroxyapatit…

010302 applied physicsMaterials scienceMechanical EngineeringCo deposition02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCharacterization (materials science)Chitosanchemistry.chemical_compoundchemistryChemical engineeringMechanics of Materials0103 physical sciencesGeneral Materials Science0210 nano-technologyKey Engineering Materials
researchProduct

A COMPOSITE PLLA SCAFFOLD FOR REGENERATION OF COMPLEX TISSUES

2010

A composite biodegradable scaffold incorporating an integrated network of synthetic blood vessels was designed and prepared, in line with the requirements of a scaffold effectively supporting the regeneration of highly vascularized tissues. In other words, this composite scaffold should allow the regeneration of complex injured tissue (e.g. dermis) and, at the same time, favour the development of a vascular network on its inner, i.e. a 3D polymeric scaffolds embedding synthetic blood vessel-like structures for nutrient supply and metabolite removal. PLLA assures a high degree of biocompatibility and a low level of inflammation response upon implantation, while the embedded tubular vessel-li…

ScaffoldSettore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceBiocompatibilityRegeneration (biology)Composite numberPlla scaffoldPhase separation tissue engineering Poly-L-Lactic acidmedicine.anatomical_structureDermisTissue engineeringBiodegradable scaffoldSettore BIO/10 - BiochimicaTissue engineering vasculogenesis Poly-lactic acidmedicineGeneral Materials ScienceBiomedical engineering
researchProduct

Solution-Based Processing for Scaffold Fabrication in Tissue Engineering Applications: A Brief Review

2021

The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time- and cost-effective assets. This is necessary for easy processability, which is associated with the large …

ScaffoldFabricationPolymers and PlasticsComputer scienceProcess (engineering)media_common.quotation_subjectOrganic chemistryNanotechnologyReview02 engineering and technologyscaffold010402 general chemistry01 natural sciencesQD241-441Tissue engineeringFunction (engineering)electrospinningmedia_commonSettore ING-IND/24 - Principi Di Ingegneria Chimicatechnology industry and agricultureSettore ING-IND/34 - Bioingegneria IndustrialeGeneral Chemistry021001 nanoscience & nanotechnologyElectrospinning0104 chemical sciencesCharacterization (materials science)Scaffold fabricationElectrospinning Freeze-drying Phase separation Processing Scaffold Tissue engineeringtissue engineeringfreeze-dryingprocessingphase separation0210 nano-technologyPolymers
researchProduct

Poly-left-lactic acid tubular scaffolds via diffusion induced phase separation: Control of morphology

2013

n this work, tubular poly-left-lactic acid scaffolds for vascular tissue engineering applications were produced by an innovative two-step method. The scaffolds were obtained by performing a dip-coating around a nylon fiber, followed by a diffusion induced phase separation process. Morphological analysis revealed that the internal lumen of the as-obtained scaffold is equal to the diameter of the fiber utilized; the internal surface is homogeneous with micropores 1–2 μm large. Moreover, a porous open structure was detected across the thickness of the walls of the scaffold. An accurate analysis of the preparation process revealed that it is possible to tune up the morphology of the scaffold (w…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaScaffoldMaterials sciencescaffold poly-lactic acid tissue engineeringDiffusion Induced Phase separationPolymers and PlasticsPhase separation processPoly-left lactic acidvascular tissue engineeringGeneral ChemistryLactic acidchemistry.chemical_compoundSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryTissue engineeringHomogeneousSettore BIO/10 - BiochimicaMaterials ChemistryComposite materialPorosityWall thicknessIn vitro cell culturePolymer Engineering & Science
researchProduct

PLLA scaffolds with controlled architecture as potential microenvironment for in vitro tumor model

2019

Abstract The "microenvironment" where a tumor develops plays a fundamental role in determining its progression, the onset of metastasis and, eventually, its resistance to therapies. Tumor cells can be considered more or less invasive depending both on the nature of the cells and on the site where they are located. Commonly adopted laboratory culture protocols for the investigation of tumor cells take usually place on standard two-dimensional supports. However, such cultures do not allow for reproduction of the biophysical properties of the tumor’s microenvironment, thus causing the cells to lose most of their relevant characteristics. In this work MDA-MB 231 breast cancer cells were cultiva…

3D tumor modelPolyestersCellBreast Neoplasms02 engineering and technologyBiologyModels BiologicalMetastasis03 medical and health scienceschemistry.chemical_compoundCell Line TumorTumor MicroenvironmentmedicineHumansViability assayDAPICell adhesion030304 developmental biologySettore ING-IND/24 - Principi Di Ingegneria Chimica0303 health sciencesTissue ScaffoldsSettore ING-IND/34 - Bioingegneria IndustrialeBreast cancer cellCell BiologyGeneral Medicine021001 nanoscience & nanotechnologymedicine.diseaseIn vitroLactic acidStainingmedicine.anatomical_structurechemistryBiophysicsFemaleThermally induced phase separation0210 nano-technologyPoly-L-Lactic acidDevelopmental BiologyTissue and Cell
researchProduct

Combining carvacrol and nisin in biodegradable films for antibacterial packaging applications

2021

Abstract In this work, the feasibility of antibacterial biopolymeric films containing carvacrol (CRV) and a nisin commercial formulation (Nis) for potential food packaging applications was investigated. As polymer matrix, a commercial biodegradable polymer formulation of Mater-Bi (MB) was chosen due to its significant food packaging applications. CRV and Nis were chosen due to their well-established antibacterial properties and their potential synergistic effect. MB/CRV, MB/Nis, and MB/CRV/Nis systems were produced by melt mixing and compression molding. The mechanical properties of the films were evaluated by tensile tests. Differential scanning calorimetry was assessed aiming at investiga…

Materials sciencePolymersCompression moldingBiochemistryAntibacterial propertiesEssential oilchemistry.chemical_compoundFood packagingDifferential scanning calorimetryStructural BiologyBiopolymeric filmCarvacrolMolecular Biologyhealth care economics and organizationsNisinNisinchemistry.chemical_classificationBacteriaGeneral MedicinePolymerBiodegradable polymerAnti-Bacterial AgentsFood packagingchemistryCymenesAntibacterial activityNuclear chemistry
researchProduct

Polmunary epithelial barrier formation on biodegradable poly-L-lactic-acid (PLLA) membrane

2016

Aims: Investigation of epithelial barrier formation using PLLA membranes for application in bioengineering. Background: The development of functional and biocompatible substitutes for damaged tissue or organs is a major challenge in biomedical engineering. The epithelial barrier plays a central role in tissue homeostasis and immunity preventing damage and contamination of the interstitial tissues. Different in vitro models of the lung and intestinal epithelial barriers have been well characterized, however these tend to use non-biodegradable and/or poorly biocompatible scaffolds. Therefore, there is a need for better supports for epithelial cells for future applications in tissue engineerin…

Epithelial barrierPoly l lactic acidTight junctionbusiness.industryPolmunaryepithelial barrierAnatomyIn vitroMembraneTissue engineeringBiophysicsMedicinebusinessIntracellularTissue homeostasis3.2 Airway Cell Biology and Immunopathology
researchProduct

Realizzazione ed impiego di Scaffold polimerici per le applicazioni dell’Ingegneria tessutale

2004

researchProduct

Physical and biological properties of electrospun poly( d , l ‐lactide)/nanoclay and poly( d , l ‐lactide)/nanosilica nanofibrous scaffold for bone t…

2021

Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrations of n…

NanocompositeMaterials science0206 medical engineeringtechnology industry and agricultureMetals and AlloysBiomedical Engineering02 engineering and technology021001 nanoscience & nanotechnologyBone tissue020601 biomedical engineeringBiomaterialsContact anglechemistry.chemical_compoundCrystallinitymedicine.anatomical_structureDifferential scanning calorimetryPolylactic acidchemistryChemical engineeringTissue engineeringNanofiberCeramics and Compositesmedicine0210 nano-technologyJournal of Biomedical Materials Research Part A
researchProduct

3D polymeric supports promote the growth and progression of anaplastic thyroid carcinoma.

2020

Abstract Anaplastic thyroid carcinoma (ATC) is a rare and aggressive malignancy that accounts for the majority of deaths from all thyroid cancers. ATC exhibits invasiveness and highly resistance to conventional therapies which include cytotoxic chemotherapy, the combination of BRAF and MEK inhibition and, more recently, immunotherapies, that have shown promising but still limited results. A growing knowledge on ATC tumor biology is needed for developing more effective therapies with significant better survival. Researchers have begun to utilize 3D models to culture cancer cells for in vitro studies. In this work, C643 ATC cell line was cultured on polymeric scaffolds with high-interconnecte…

0301 basic medicinePolymersBiophysicsMalignancyStem cell markerThyroid Carcinoma AnaplasticBiochemistryMetastasis03 medical and health sciences0302 clinical medicineCancer stem cellCell Line TumormedicineBiomarkers TumorHumansDoxorubicin3D tumor model Anaplastic thyroid carcinoma Doxorubicin Polymeric scaffold Stem cell markersMolecular BiologyThyroid cancerCell ShapeCell ProliferationTissue Scaffoldsbusiness.industryThyroidCell Biologymedicine.disease030104 developmental biologymedicine.anatomical_structureDoxorubicin030220 oncology & carcinogenesisCancer cellCancer researchDisease ProgressionNeoplastic Stem Cellsbusinessmedicine.drugBiochemical and biophysical research communications
researchProduct

Phase separation of polymer blends in solution: A case study

2016

Abstract The phase behavior and phase separation features of the quaternary system poly- l -lactide (PLLA)/poly-rac-lactide (PLA)/dioxane/water were investigated. Experiments were performed with fixed total polymer concentration of 6 wt%, by varying the PLLA/PLA weight ratio. Blend weight compositions examined were 100/0, 80/20, 50/50, 20/80 and 0/100, at fixed dioxane/water weight ratio (87/13). Cloud point measurements reported that the demixing temperatures of blends are close to PLLA in the same mixed solvent, in line with the calculated spinodals. As regards to foam preparation, above the PLA cloud point, morphology is similar to pure PLLA foams; conversely, below PLA cloud point, the …

MorphologyMorphology (linguistics)Materials sciencePolymers and PlasticsPhase separationGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundPhysics and Astronomy (all)Phase (matter)Materials ChemistryComposite materialchemistry.chemical_classificationCloud pointSettore ING-IND/24 - Principi Di Ingegneria ChimicaLactidePolymers and PlasticEquilibrium conditionsOrganic ChemistryPolymerPolymer blend021001 nanoscience & nanotechnology0104 chemical sciencesPolymer solutionSolventSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringPolymer blend0210 nano-technology
researchProduct

Chitosan-Coating Deposition via Galvanic Coupling

2019

A galvanic method to deposit chitosan coatings on stainless steel substrate is reported. Deposition of suitable coatings is desired to improve biocompatibility and corrosion resistance of metallic medical devices to be implanted in human body. In the present work, a thin hydrogel layer of chitosan was deposited on 304SS by a galvanic displacement reaction, which is advantageous first as it does not require external power supply. 304SS was immersed into an aqueous solution of chitosan/lactic acid and electrochemically coupled with magnesium acting as a sacrificial anode. SEM images showed the formation of a uniform layer of chitosan with a thickness controlled by deposition time. Corrosion t…

Materials scienceBiocompatibilityGalvanic anodegalvanic deposition0206 medical engineeringBiomedical Engineeringmacromolecular substances02 engineering and technologyengineering.materialCorrosionBiomaterialsChitosanchemistry.chemical_compoundCoatingGalvanic cellSettore ING-IND/24 - Principi Di Ingegneria ChimicaAqueous solutiontechnology industry and agriculturemedical devices biomaterialbiocoatingSettore ING-IND/34 - Bioingegneria Industriale021001 nanoscience & nanotechnology020601 biomedical engineering304SS stainless steelBiomaterialSettore ING-IND/23 - Chimica Fisica ApplicatachemistryChemical engineeringengineeringcytotoxicitychitosan0210 nano-technologyLayer (electronics)
researchProduct

Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and prol…

2019

Target of this work was to prepare a RGDC functionalized hybrid biomaterial via TIPS technique to achieve a more efficient control of osteoblast adhesion and diffusion on the three-dimensional (3D) scaffolds. Starting from a crystalline poly(l-lactic acid) (PLLA) and an amorphous alpha,beta-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-d,l-aspartamide-graft-polylactic acid (PHEA-EDA-g-PLA) copolymer, blend scaffolds were characterized by an appropriate porosity and pore interconnection. The PHEA-EDA-PLA interpenetration with PLLA improved hydrolytic susceptibility of hybrid scaffolds. The presence of free amino groups on scaffolds allowed to tether the cyclic RGD peptide (RGDC) via Michael…

Materials sciencePolyesters0206 medical engineeringBiomedical EngineeringBiocompatible Materialscyclic RGDC02 engineering and technologyPeptides CyclicPLLACell LineBiomaterialsMiceHydrolysischemistry.chemical_compoundCell AdhesionCopolymerAnimalsCell adhesionMaleimideporous scaffoldCell ProliferationOsteoblastsTissue ScaffoldsMetals and AlloysBiomaterialPHEA021001 nanoscience & nanotechnology020601 biomedical engineeringPolyesterChemical engineeringchemistryCeramics and CompositesMichael reactionSurface modificationTIPSPeptides0210 nano-technology
researchProduct

Mathematical and numerical modeling of an airlift perfusion bioreactor for tissue engineering applications

2022

The Tissue Engineering (TE) strategy is widely focused on the development of perfusion bioreactors to promote the production of three-dimensional (3D) functional tissues. To optimize tissue production, it is worth investigating the engineering parameters of a bioreactor system for identifying a beneficial range of operation variables. Mathematical and numerical modeling of a perfusion bioreactor is capable to provide relevant insights into the fluid flow and nutrients transport while predicting experimental data and exploring the impact of changing operating parameters, such as fluid velocities. In this work, the hydrodynamic parameters and oxygen transport were investigated using mathemati…

Environmental EngineeringFlow rate and mass transport mathematical modelBiomedical EngineeringComputational fluid dynamics simulationBioengineeringDynamic cell cultureTissue engineeringBiotechnology
researchProduct

Engineering approaches in siRNA delivery.

2017

siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management ca…

0301 basic medicine3003siRNAs Delivery vectors in vitro models Mathematical modeling Physical modelingDelivery vectors; In vitro models; Mathematical modeling; Physical modeling; SiRNAs; 3003Pharmaceutical ScienceNanotechnology02 engineering and technologyComputational biologyBiology03 medical and health sciencesDrug Delivery SystemsHumanssiRNAs; Delivery vectors; in vitro models; Mathematical modeling; Physical modelingRNA Small Interferingin vitro modelsPhysical modelingSettore ING-IND/34 - Bioingegneria IndustrialeHydrogelsDelivery vectorsModels Theoretical021001 nanoscience & nanotechnologyDelivery vectorsiRNAsClinical PracticeHydrogel030104 developmental biologyin vitro modelsiRNAMathematical modeling0210 nano-technologyBlood streamDrug Delivery SystemClearanceHumanInternational journal of pharmaceutics
researchProduct

Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: A Review on Processing and Applications

2022

Synthetic biopolymers are effective cues to replace damaged tissue in the tissue engineering (TE) field, both for in vitro and in vivo application. Among them, poly-l-lactic acid (PLLA) has been highlighted as a biomaterial with tunable mechanical properties and biodegradability that allows for the fabrication of porous scaffolds with different micro/nanostructures via various approaches. In this review, we discuss the structure of PLLA, its main properties, and the most recent advances in overcoming its hydrophobic, synthetic nature, which limits biological signaling and protein absorption. With this aim, PLLA-based scaffolds can be exposed to surface modification or combined with other bi…

Polymers and Plasticstissue engineeringPoly-L-lactic acid (PLLA)regenerative medicineGeneral ChemistryPolymers
researchProduct

A High-Throughput Mechanical Activator for Cartilage Engineering Enables Rapid Screening of in vitro Response of Tissue Models to Physiological and S…

2021

Articular cartilage is crucially influenced by loading during development, health, and disease. However, our knowledge of the mechanical conditions that promote engineered cartilage maturation or tissue repair is still incomplete. Current in vitro models that allow precise control of the local mechanical environment have been dramatically limited by very low throughput, usually just a few specimens per experiment. To overcome this constraint, we have developed a new device for the high throughput compressive loading of tissue constructs: the High Throughput Mechanical Activator for Cartilage Engineering (HiT-MACE), which allows the mechanoactivation of 6 times more samples than current tech…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaHistologyAnabolismActivator (genetics)ChemistryCartilageCartilage In vitro model Mechanical activation Mechanobiology Post-traumatic osteoarthritisSettore ING-IND/34 - Bioingegneria IndustrialeOsteoarthritismedicine.diseaseIn vitroIn vitro modelMechanobiologymedicine.anatomical_structuremedicineAnatomyThroughput (business)Biomedical engineeringCells, tissues, organs
researchProduct

Behavior of Calcium Phosphate–Chitosan–Collagen Composite Coating on AISI 304 for Orthopedic Applications

2022

Calcium phosphate/chitosan/collagen composite coating on AISI 304 stainless steel was investigated. Coatings were realized by galvanic coupling that occurs without an external power supply because it begins with the coupling between two metals with different standard electrochemical potentials. The process consists of the co-deposition of the three components with the calcium phosphate crystals incorporated into the polymeric composite of chitosan and collagen. Physical-chemical characterizations of the samples were executed to evaluate morphology and chemical composition. Morphological analyses have shown that the surface of the stainless steel is covered by the deposit, which has a very r…

collagencorrosionPolymers and PlasticsAISI 304galvanic depositioncoatinghydroxyapatiteSettore ING-IND/34 - Bioingegneria IndustrialeGeneral Chemistrycoating; corrosion; galvanic deposition; hydroxyapatite; chitosan; collagen; AISI 304; cytotoxicitySettore ING-IND/23 - Chimica Fisica ApplicataSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialicytotoxicitychitosanPolymers
researchProduct

Occurrence of Microplastics in Waste Sludge of Wastewater Treatment Plants: Comparison between Membrane Bioreactor (MBR) and Conventional Activated S…

2022

In this study, the presence of microplastics in the sludge of three wastewater treatment plants (WWTPs) was examined. The investigated WWTPs operated based on a conventional activated sludge (CAS) process, with (W1) or without (W2) primary clarification, and a membrane bioreactor process (MBR) (W3). The microplastics (MPs) concentration in the samples of W3 was approximately 81.1 ± 4.2 × 103 particles/kg dry sludge, whereas MPs concentrations in W1 and W2 were 46.0 ± 14.8 × 103 particles/kg dry sludge and 36.0 ± 5.2 × 103 particles/kg dry sludge, respectively. Moreover, MPs mainly consisted of fragments (66–68%) in the CAS plants, whereas the fra…

membrane bioreactors microplastics waste sludge wastewater treatment plantSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleProcess Chemistry and TechnologySettore ING-IND/34 - Bioingegneria IndustrialeChemical Engineering (miscellaneous)Filtration and Separationmembrane bioreactors; microplastics; waste sludge; wastewater treatment plantMembranes
researchProduct

A dynamic air–liquid interface system for in vitro mimicking of the nasal mucosa

2022

The development of an in vitro 3D model for the growth of the nasal mucosa cells can improve the therapy and the study of pathological states for subjects with chronic airway conditions. We have previously characterized a system consisting of a scaffold with an internal channel and a perfusion bioreactor with two independent flows provided by an external and an internal circuit, respectively. In this paper, this system was designed as a model of the nasal cavity, in which cells, grown on the inner surface of the scaffold channel, would be in contact at the same time with both culture medium, supplied by the external circuit, and air, provided with the internal flow. To ensure adequate nutri…

DiffusionNasal MucosaBioreactorsHumansCell CountALI culture bioreactor nasal mucosa pore diffusionBioengineeringPorosityApplied Microbiology and BiotechnologyBiotechnologyBiotechnology and Bioengineering
researchProduct

Study on heat transfer coefficients during cooling of PET bottles for food beverages

2015

The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.

Fluid Flow and Transfer ProcessesRange (particle radiation)Natural convectionMaterials sciencebusiness.product_category020209 energyThermodynamics02 engineering and technologyHeat transfer coefficientCondensed Matter PhysicCondensed Matter PhysicsHeat transfer0202 electrical engineering electronic engineering information engineeringFluid dynamicsBottlebusiness
researchProduct

Core-shell PLA/Kef hybrid scaffolds for skin tissue engineering applications prepared by direct kefiran coating on PLA electrospun fibers optimized v…

2021

Abstract Over the recent years, there is a growing interest in electrospun hybrid scaffolds composed of synthetic and natural polymers that can support cell attachment and proliferation. In this work, the physical and biological properties of polylactic acid (PLA) electrospun mats coated with kefiran (Kef) were evaluated. Gravimetric, spectroscopic (FTIR-ATR) and morphological investigations via scanning electron microscopy confirmed the effective formation of a thin kefiran layer wrapped on the PLA fibers with an easy-tunable thickness. Air plasma pre-treatment carried out on PLA (P-PLA) affected both the morphology and the crystallinity of Kef coating as confirmed by differential scanning…

Materials sciencePolyestersBioengineeringmacromolecular substances02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesPolylactic acidBiomaterialschemistry.chemical_compoundCrystallinityDifferential scanning calorimetrystomatognathic systemPolylactic acidTissue engineeringCoatingPolysaccharidesCold plasma treatmentElectrospinningTissue EngineeringTissue Scaffoldstechnology industry and agricultureKefiranequipment and supplies021001 nanoscience & nanotechnologyElectrospinning0104 chemical sciencesPolyesterchemistryChemical engineeringMechanics of MaterialsKefiranengineeringlipids (amino acids peptides and proteins)Fibroblast cells0210 nano-technology
researchProduct

GENERATION OF PREVASCULARIZED PLLA BIODEGRADABLE SCAFFOLDS BY DIP DRAWING AND DIFFUSION INDUCED PHASE SEPARATION (DIPS).

2009

A critical obstacle in tissue engineering is to develop a massive structure of living cells upon transfer from the in vitro culture conditions into the host in vivo. A vascular network is required to supply essential nutrients, including oxygen, remove metabolic waste products and provide a biochemical communication “highway”. For these reasons to build an implantable structure in which vessel formation (angiogenesis) take place is mandatory. PLLA scaffolds usable in vascular tissue engineering were generated by dip-coating via Diffusion Induced Phase Separation (DIPS) technique. The scaffolds, with a vessel-like shape, were obtained by performing a DIPS process around a nylon fibre whose d…

ScaffoldAngiogenesiSettore BIO/10 - BiochimicaTissue regenerationPLLA
researchProduct

Preparation and properties of poly(L-lactic acid) scaffolds by thermally induced phase separation from a ternary polymer-solvent system

2004

Poly(L-lactic acid) (PLLA) foams for tissue engineering were prepared via thermally induced phase separation of a ternary system PLLA/dioxane/tetrahydrofuran (THF) followed by double solvent exchange (water and ethyl alcohol) and drying. An extension to solidification from solution of a previously developed method for solidification from the melt was adopted. The technique is based on a continuous cooling transformation (CCT) approach, consisting in recording the thermal history experienced by rapidly cooled samples and then analyzing the resulting sample morphology. Different foams were produced by changing the relative amount of dioxane and THF in the starting solution while the amount of…

Ternary numeral systemMaterials scienceTissue EngineeringPolymers and PlasticsOrganic ChemistryPorosimetrylaw.inventionSolventCrystallinitychemistry.chemical_compoundchemistryChemical engineeringlawSpecific surface areaPolymer chemistryMaterials ChemistrySolvent effectsCrystallizationTetrahydrofuranPolymer International
researchProduct

The use of the indentation test for studying the solidification behaviour of different semicrystalline polymers during injection moulding

2005

Summary: An in-line method for monitoring the solid-ificationprocess during injection molding of semicrystallinepolymers (demonstrated previously in J. Appl. Polym. Sci.2003, 89, 3713) is based on a simple device, where anadditional ejector pin is pushed on the injection molded partatdifferenttimesduringthesolidificationphase.The‘inden-tation depth profile’, i.e., residual deformation as a functionoftime,wasobtainedandallowedtodeterminetheevolutionof the solidification front in the mold as a function of thecooling time. The present work shows the reliability andthe powerfulness of the aforementioned method for a largevariety of different semicrystalline polymers (PET, PBT,polyamide-6 PA6, isota…

chemistry.chemical_classificationWork (thermodynamics)Materials sciencePolymers and PlasticsGeneral Chemical EngineeringOrganic ChemistryMolding (process)InjectorPolymermedicine.disease_causelaw.inventionCrystallinitychemistrylawTacticityMoldIndentationMaterials ChemistrymedicineComposite material
researchProduct

Procedimento di preparazione di scaffolds polimerici preangiogenizzati.

2009

AngiogenesiSettore ING-IND/24 - Principi Di Ingegneria ChimicaECMIngeneria tessutaleRigenerazionePolimeriPLLA
researchProduct

Establishment of a pulmonary epithelial barrier on biodegradable poly-L-lactic-acid membranes

2019

Development of biocompatible and functional scaffolds for tissue engineering is a major challenge, especially for development of polarised epithelia that are critical structures in tissue homeostasis. Different in vitro models of the lung epithelial barrier have been characterized using non-degradable polyethylene terephthalate membranes which limits their uses for tissue engineering. Although poly-L-lactic acid (PLLA) membranes are biodegradable, those prepared via conventional Diffusion Induced Phase Separation (DIPS) lack open-porous geometry and show limited permeability compromising their use for epithelial barrier studies. Here we used PLLA membranes prepared via a modification of the…

PhysiologyCell MembranesCell Culture TechniquesBiocompatible Materials02 engineering and technologyEpitheliumTissue engineeringAnimal CellsAbsorbable ImplantsMaterials TestingElectric ImpedanceMedicine and Health SciencesLungTissue homeostasisBarrier functionStaining0303 health sciencesMultidisciplinaryTissue ScaffoldsTight junctionPolyethylene TerephthalatesChemistryQRCell Staining021001 nanoscience & nanotechnologyMembrane StainingElectrophysiologyMembranePhysical SciencesMedicineCytokinesBiological CulturesCellular Structures and OrganellesJunctional ComplexesCellular TypesAnatomy0210 nano-technologyResearch ArticleCell PhysiologySciencePolyestersMaterials ScienceMaterial PropertiesResearch and Analysis MethodsMembrane PotentialPermeabilityCell LineTight Junctions03 medical and health sciencesCell AdhesionHumans030304 developmental biologyBiochemistry Genetics and Molecular Biology (all)Tissue EngineeringBiology and Life SciencesEpithelial CellsMembranes ArtificialCell BiologyCell CulturesBiological TissueAgricultural and Biological Sciences (all)Specimen Preparation and TreatmentCell culturePermeability (electromagnetism)BiophysicsCytokine secretionPLOS ONE
researchProduct

Optical characterization of phase transitions in pure polymers and blends

2015

To study the optical properties of polymeric samples, an experimental apparatus was designed on purpose and set up. The sample is a thin film enclosed between two glass slides and a PTFE frame, with a very thin thermocouple placed on sample for direct temperature measurement. This sample holder was placed between two aluminum slabs, equipped with a narrow slit for optical measurements and with electrical resistances for temperature control. Sample was enlightened by a laser diode, whereas transmitted light was detected with a photodiode. Measurements were carried out on polyethylene-terephtalate (PET) and two different polyamides, tested as pure polymers and blends. The thermal history impo…

Physics and Astronomy (all)Temperature controlMaterials scienceLaser diodelawThermocoupleAnalytical chemistryMelting pointThin filmLaserTemperature measurementlaw.inventionPhotodiode
researchProduct

Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends

2012

Blends of poly-l-lactic acid with two different types of polylactic acid with different average molecular weights (50,000 and 175,000 g/mol, respectively) in different proportions (90/10, 80/20 and 70/30) were utilized in order to produce biodegradable and biocompatible scaffolds for soft tissue engineering applications. The scaffolds were produced via thermally induced phase separation starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology (average pore size and interconnection) was evaluated by scanning electron microscopy. Foams apparent density was also evaluated (porosity ranges from 87% to 92%). Moreover, a differential scanning calorimetry …

Materials scienceMorphology (linguistics)Polymers and PlasticsMolecular massGeneral ChemistryScaffoldchemistry.chemical_compoundPolylactic acidchemistryThermalMaterials Chemistrypolymer blendingComposite materialphase separationpolylactic acid
researchProduct

Synthesis, characterization and foaming of PHEA-PLLA, a new graft copolymer for biomedical engineering

2014

Abstract In this study a chemical grafting procedure was set up in order to link high molecular weight poly L-lactic acid (PLLA) chains to the hydrophilic α,β-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) backbone. A graft copolymer named PHEA-g-PLLA (or simply PHEA–PLLA) was obtained bearing a degree of derivatization of 1.0 mol.% of PLLA as grafted chain. This new hybrid derivative offers both the opportune crystallinity necessary for the production of scaffolds trough a thermally induced phase separation (TIPS) technique and the proper chemical reactivity to perform further functionalizations with bio-effectors and drugs. PHEA–PLLA porous scaffolds for tissue engineering applications were…

ScaffoldMaterials sciencePolyestersBioengineeringBiocompatible MaterialsScaffoldBiomaterialschemistry.chemical_compoundCrystallinityTissue engineeringCopolymerComposite materialPorosityDerivatizationDrug CarriersCalorimetry Differential ScanningTissue EngineeringTemperatureProteinsPolymer graftCharacterization (materials science)chemistryMechanics of MaterialsPoly-L-lactic acidThermally induced phase separationPorosityDerivative (chemistry)
researchProduct

Porous biomaterials and scaffolds for tissue engineering

2019

In the present article, an overview of the definition of tissue engineering and scaffold requirements is reported. In particular, scaffold porosity and its relevance for several tissue target regeneration is highlighted. Different scaffold fabrication techniques are reported and explained in details, highlighting advantages and disadvantages for all of these techniques, regarding the specific final applications.

Scaffold fabricationScaffoldsScaffoldMaterials scienceTissue engineeringScaffold fabrication techniquesRegeneration (biology)Settore ING-IND/34 - Bioingegneria IndustrialeNanotechnologyTissue engineeringPorosityPorosity
researchProduct

Sistema biocompatibile di supporto per la piantumazione di organismi vegetali in ambiente marino

2010

Il brevetto consiste in un sistema a basso impatto ambientale, realizzato interamente in bioplastica, per il fissaggio sul fondo marino in forma rapida ed efficace di organismi vegetali, allo scopo di garantirne l'attecchimento e la crescita, assecondandone la dinamica naturale di sviluppo.

Settore BIO/07 - EcologiaRipristino fondali riforestazione organismi vegetali Posidonia oceanica plastica biodegradabile tecniche di ancoraggio geometrie bioispirate
researchProduct

Influence of“controlled processing conditions” on the solidification of iPP, PET and PA6

2002

In this work reliable experimental data for three semicrystalline polymers (iPP, PA6, PET) crystallised under pressure and high cooling rates are supplied. These results were achieved on the basis of a model experiment where drastic controlled solidification conditions are applied. The final objective was to quantify the effect of two typical operating conditions (pressure and cooling rate) on the final properties and morphology of the obtained product. The influence of processing conditions on some macroscopically relevant properties, such as density and micro hardness is stressed, together with the influence of processing conditions on the product morphology, investigated by means of Wide…

chemistry.chemical_classificationWork (thermodynamics)Materials scienceMorphology (linguistics)Polymers and PlasticsScatteringOrganic ChemistryMineralogyPolymerCondensed Matter PhysicsIndentation hardnessCrystallinityCooling ratechemistryPressure increaseMaterials ChemistryComposite materialMacromolecular Symposia
researchProduct

Characterization of PLLA scaffolds for biomedical applications

2017

The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.

Pore sizeScaffoldMaterials sciencePolymers and PlasticsGeneral Chemical EngineeringNanotechnology02 engineering and technologyscaffold010402 general chemistry01 natural sciencesPLLAAnalytical ChemistryTissue engineeringpore size distributionChemical Engineering (all)PorositySettore ING-IND/24 - Principi Di Ingegneria Chimicaintegumentary systemLow-field NMR; phase separation; PLLA; pore size distribution; scaffold; Analytical Chemistry; Chemical Engineering (all); Polymers and Plastics021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiWound dressingDrug deliveryphase separation0210 nano-technologyLow-field NMR
researchProduct

The solidification behavior of a PBT/PET blend over a wide range of cooling rate

2009

In recent years, much attention has been paid to the development of high-performance polyester blends, among which blends of polybutylene terephthalate/polyethylene terephthalate (PBT/PET) are expected to exhibit remarkable properties as far as their crystallization behavior is concerned. Through trial and error, appropriate commercial compositions have been chosen which could not be otherwise explained by a suitable interpretation of the mechanisms determining their solidification behavior. The solidification behavior of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a continuous cooling transformation (CCT) procedure developed previously, aiming …

Materials sciencePolymers and Plastics02 engineering and technologyContinuous cooling transformation010402 general chemistry01 natural sciencesIndentation hardnesslaw.inventionchemistry.chemical_compoundlawPolymer chemistryMaterials ChemistryPolyethylene terephthalatePhysical and Theoretical ChemistryComposite materialCrystallizationchemistry.chemical_classificationPolymer021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesPolyesterPolybutylene terephthalatechemistryPolymer blend0210 nano-technologyJournal of Polymer Science Part B: Polymer Physics
researchProduct

Double Flow Bioreactor for In Vitro Test of Drug Delivery.

2015

In this work, double-structured polymeric scaffolds were produced, and a double flow bioreactor was designed and set up in order to create a novel system to carry out advanced in vitro drug delivery tests. The scaffolds, consisting of a cylindrical porous matrix, are able to host cells, thus mimicking a three-dimensional tumor mass: moreover, a “pseudo-vascular” structure was embedded into the matrix, with the aim of allowing a flow circulation. The structure that emulates a blood vessel is a porous tubular-shaped scaffold prepared by Diffusion Induced Phase Separation (DIPS), with an internal lumen of 2 mm and a wall thickness of 200 micrometers. The as-prepared vessel was incorporated…

3003ScaffoldMaterials scienceIn vitro testPharmaceutical PreparationPolymersSurface PropertiesSurface PropertieBioreactorPhase separationDrug Evaluation PreclinicalVascular tissue engineeringPharmaceutical ScienceNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesFluid dynamicBioreactorsDrug Delivery SystemsBioreactorHumansParticle SizePolymerPorositychemistry.chemical_classificationFluid dynamic Vascular Tissue EngineeringMedicine (all)PolymerEquipment Design021001 nanoscience & nanotechnology0104 chemical sciencesShear strechemistryPharmaceutical PreparationsPoly-L-lactic acidDrug deliveryParticle size0210 nano-technologyDrug Delivery SystemHumanLumen (unit)Biomedical engineeringCurrent drug delivery
researchProduct

PLLA/Fibrin Tubular Scaffold: A New Way for Reliable Endothelial Cell Seeding

2014

In the present work a simple and quick technique for cell seeding into tubular-shaped scaffolds, which allows a homogeneous cell distribution, was tested. The poly-L-lactide (PLLA) scaffolds, prepared via diffusion induced phase separation (DIPS), were filled with fibrin gel in order to obtain a hybrid scaffold for Vascular Tissue Engineering applications. The formation of immobilized fibrin networks on the inner surface of the tubular scaffolds was observed using confocal microscopy and SEM. Morphological analysis of the so-obtained scaffold revealed that the fibrin gel is uniformly distributed on the internal surface of the scaffold, leading to an organized structure. Moreover a penetrati…

FibrinScaffoldMaterials sciencebiologyCell growthGeneral MedicinePenetration (firestop)Fibrinlaw.inventionEndothelial stem cellPhase SeparationTubular scaffoldConfocal microscopylawbiology.proteinSeedingVascular Tissue EngineeringBiomedical engineeringConference Papers in Science
researchProduct

Patent number PA2010 A 000023: Sistema biocompatibile di supporto per la piantumazione di organismi vegetali in ambiente marino

2010

Il brevetto consiste in un sistema a basso impatto ambientale, realizzato interamente in bioplastica, per il fissaggio sul fondo marino in forma rapida ed efficace di organismi vegetali, allo scopo di garantirne l'attecchimento e la crescita, assecondandone la dinamica naturale di sviluppo.

Ripristino fondali — riforestazione — organismi vegetali — Posidonia oceanica plastica biodegradabile — tecniche di ancoraggio — geometrie bioispirate —
researchProduct

PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on p…

2016

Damage of hyaline cartilage species such as nasoseptal or joint cartilage requires proper reconstruction, which remains challenging due to the low intrinsic repair capacity of this tissue. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. The aim of this work was to assess the viability, attachment, morphology, extracellular matrix (ECM) production of human articular and nasoseptal chondrocytes cultured in vitro in porous poly(L-lactic) (PLLA) scaffolds of two selected pore sizes (100 and 200 μm). The PLLA scaffolds with 100 and 200 μm pore sizes were prepared via ternary thermally induced ph…

Cartilage ArticularMaterials sciencePolyesters0206 medical engineeringType II collagenBioengineeringCondensed Matter Physic02 engineering and technologyChondrocyteBiomaterialsExtracellular matrixChondrocytesTissue engineeringmedicineHumansMechanics of MaterialCells CulturedAggrecanType II collagenSettore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTissue ScaffoldsHyaline cartilageMechanical EngineeringCartilageSettore ING-IND/34 - Bioingegneria IndustrialeAnatomy021001 nanoscience & nanotechnology020601 biomedical engineeringExtracellular MatrixArticular chondrocyteCartilagemedicine.anatomical_structureMechanics of MaterialsBiophysicsPoly(L)lactic acidMaterials Science (all)0210 nano-technologyPorosityNasoseptal chondrocyteType I collagenMaterials Science and Engineering: C
researchProduct

Novel dual-flow perfusion bioreactor for in vitro pre-screening of nanoparticles delivery: design, characterization and testing

2021

An advanced dual-flow perfusion bioreactor with a simple and compact design was developed and evaluated as a potential apparatus to reduce the gap between animal testing and drug administration to human subjects in clinical trials. All the experimental tests were carried out using an ad hoc Poly Lactic Acid (PLLA) scaffold synthesized via Thermally Induced Phase Separation (TIPS). The bioreactor shows a tunable radial flow throughout the microporous matrix of the scaffold. The radial perfusion was quantified both with permeability tests and with a mathematical model, applying a combination of Darcy's Theory, Bernoulli's Equation, and Poiseuille's Law. Finally, a diffusion test allowed to in…

ScaffoldMaterials sciencePolymersDiffusionNanoparticleBiocompatible MaterialsBioengineeringIn Vitro Techniques3D ScaffoldBioreactorsFluid dynamicsPolymeric fluorescent nanoparticlesBioreactorAnimalsHumansDual-flow perfusion bioreactorPorosityDrug CarriersSettore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTunable radial flowSettore ING-IND/34 - Bioingegneria IndustrialeGeneral MedicineMicroporous materialHagen–Poiseuille equationSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPermeability (electromagnetism)Microscopy Electron ScanningNanoparticlesBiotechnologyBiomedical engineeringBioprocess and Biosystems Engineering
researchProduct

Patent number RM2009A000073: Procedimento di preparazione di scaffold polimerici preangiogenizzati

2009

Classe proposta A61F - Filtri da inserire nei vasi sanguigni; protesi; apparecchi ortopedici e curativi per contraccezione; fomentazione; trattamento o protezione degli occhi e delle orecchie; bendaggi, garze per medicazioni e assorbenti; necessario per il pronto soccorso

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSettore BIO/10 - BiochimicaScaffold Ingegneria tissutale polimeri biodegradabili angiogenesi
researchProduct

Poly lactic acid based foams prepared via thermally induced phase separation (TIPS): A method to tune the crystallinity

2012

Blends of Poly-L-Lactic Acid (PLLA) with two Poly-Lactic Acid (PLA) in different proportions (90/10 and 70/30) were utilized in order to produce biodegradable and biocompatible scaffolds for soft tissue engineering applications. The scaffolds were produced via thermally induced phase separation (TIPS) starting from ternary systems where dioxane was the solvent and water the non-solvent. Morphology was evaluated by Scanning Electron Microscopy (average pore size and interconnection). Moreover a DSC analysis was carried out on the as-obtained scaffold in order to obtain information about theirs thermal properties (enthalpy of melt and crystallization). The results showed that is possible to p…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaMorphology (linguistics)Materials scienceScanning electron microscopetechnology industry and agriculturelaw.inventionSolventScaffold phase separation polymer blending poly lactic acidCrystallinitySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiDifferential scanning calorimetrylawPolymer blendCrystallizationComposite materialTernary operationAIP Conference Proceedings
researchProduct

PROCEDIMENTO DI PREPARAZIONE DI SCAFFOLD POLIMERICI PREANGIOGENIZZATI

2009

Tissue Engineering TIPS DIPS Phase Separation Biomedical Devices
researchProduct

Una Metodologia Sperimentale per lo Studio della Cristallizzazione dei Polimeri in Condizioni di Processo. L'Influenza della Velocità di Raffreddamen…

2006

researchProduct

Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering.

2018

Abstract In this work, the possibility to produce composite Poly-L-lactic acid (PLLA)/Hydroxyapatite (HA) porous scaffolds via Thermally Induced Phase Separation (TIPS) for bone tissue engineering applications was investigated. Several PLLA/HA wt/wt ratios (95/5, 90/10, 70/30, 50/50, 34/66) were tested and the as-obtained scaffolds were characterized via Scanning Electron Microscopy, Wide Angle X-Ray Diffraction, Thermogravimetric analysis, Gas Pycnometry, Differential Scanning Calorimetry and mechanical compression test. Morphological analysis revealed an open structure with interconnected pores and HA particles embedded in the polymer matrix. Finally, cell cultures were carried out into t…

Thermogravimetric analysisMaterials scienceScanning electron microscopeCell SurvivalPolyestersComposite numberPolyesterBiocompatible Materials02 engineering and technologyMatrix (biology)010402 general chemistry01 natural sciencesBiochemistryBone and BonesHydroxyapatiteCell LineScaffoldMiceDifferential scanning calorimetryTissue ScaffoldTissue engineeringStructural BiologyMaterials TestingAnimalsMolecular BiologyMechanical PhenomenaBiocompatible Materialchemistry.chemical_classificationOsteoblastsCalorimetry Differential ScanningTissue EngineeringTissue ScaffoldsAnimalOsteoblastBiomarkerGeneral MedicinePolymer021001 nanoscience & nanotechnology0104 chemical sciencesPolyesterDurapatiteChemical engineeringchemistryThermogravimetry0210 nano-technologyPorosityBiomarkersBone and BoneInternational journal of biological macromolecules
researchProduct

Peltier cells as temperature control elements: Experimental characterization and modeling

2014

Abstract The use of Peltier cells to realize compact and precise temperature controlled devices is under continuous extension in recent years. In order to support the design of temperature control systems, a simplified modeling of heat transfer dynamics for thermoelectric devices is presented. By following a macroscopic approach, the heat flux removed at the cold side of Peltier cell can be expressed as Q ˙ c = γ ( T c − T c eq ) , where γ is a coefficient dependent on the electric current, Tc and T c eq are the actual and steady state cold side temperature, respectively. On the other hand, a microscopic modeling approach was pursued via finite element analysis software packages. To validat…

Materials scienceTemperature controlSteady stateHeat fluxHeat transferThermoelectric effectEnergy Engineering and Power TechnologyThermodynamicsTransient (oscillation)Electric currentThermoelectric materialsIndustrial and Manufacturing EngineeringApplied Thermal Engineering
researchProduct

Modulation of physical and biological properties of a composite PLLA and polyaspartamide derivative obtained via thermally induced phase separation (…

2016

Abstract In the present study, blend of poly l -lactic acid (PLLA) with a graft copolymer based on α,β-poly(N-hydroxyethyl)- dl -aspartamide and PLA named PHEA-PLA, has been used to design porous scaffold by using Thermally Induced Phase Separation (TIPS) technique. Starting from a homogeneous ternary solution of polymers, dioxane and deionised water, PLLA/PHEA-PLA porous foams have been produced by varying the polymers concentration and de-mixing temperature in metastable region. Results have shown that scaffolds prepared with a polymer concentration of 4% and de-mixing temperature of 22.5 °C are the best among those assessed, due to their optimal pore size and interconnection. SEM and DSC…

ScaffoldMaterials sciencePolyestersComposite numberBioengineering02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural sciencesChondrocytes attachmentlaw.inventionChondrocytes attachment; Composite biomaterials; TIPS; Materials Science (all); Condensed Matter Physics; Mechanical Engineering; Mechanics of MaterialsBiomaterialsHydrolysisChondrocytesstomatognathic systemlawMaterials TestingCopolymerAnimalsCrystallizationComposite materialCells Culturedchemistry.chemical_classificationTissue ScaffoldsMechanical EngineeringExtraction (chemistry)technology industry and agriculturePolymerAdhesionequipment and supplies021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringMechanics of MaterialsTIPSlipids (amino acids peptides and proteins)CattleMaterials Science (all)Composite biomaterial0210 nano-technologyPeptidesMaterials scienceengineering. C, Materials for biological applications
researchProduct

Orientation and Crystallinity Measurements in Film Casting Products

2003

Film casting experiments were carried out with iPP under processing conditions causing the crystallization process to occur under orienting flow. Draw ratio and cooling rates were changed by varying mass flow rates and die thickness. The effect of processing conditions on film crystallinity was investigated by combining WAXS and FT-IR transmission methods, while orientation of both phases was measured by IR dichroism (according to Fraser's method) and successfully compared to birefringence measurements on final films. Crystallinity appears to be almost insensitive to draw ratio and cooling rate. Moreover the crystallinity profile turned out to be also constant along the transverse film dire…

Film castingSettore ING-IND/24 - Principi Di Ingegneria Chimicabusiness.product_categoryBirefringencePolymers and PlasticsChemistrybusiness.industryMass flowGeneral ChemistryDichroismCondensed Matter PhysicsCastinglaw.inventionTransverse planeCrystallinityOpticslawMaterials ChemistryDie (manufacturing)Composite materialCrystallizationbusiness
researchProduct

Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules

2018

In a large number of medical devices, a key feature of a biomaterial is the ability to successfully bond to living tissues by means of engineered mechanisms such as the enhancement of biomineralization on a bone tissue engineering scaffold or the mimicking of the natural structure of the extracellular matrix (ECM). This ability is commonly referred to as "bioactivity". Materials sciences started to grow interest in it since the development of bioactive glasses by Larry Hench five decades ago. As the main goal in applications of biomedical devices and tissue scaffolds is to obtain a seamless tissue-material interface, achieving optimal bioactivity is essential for the success of most biomate…

ScaffoldMaterials sciencePolyestersInterface (computing)Materials SciencePolyesterCompositeBioengineeringNanotechnologyCondensed Matter Physic02 engineering and technology010402 general chemistryBioactivity01 natural sciencesPolylactic acidBone tissue engineeringScaffoldBiomaterialsTissue ScaffoldTissue engineeringIntercellular Signaling Peptides and ProteinAnimalsHumansMechanics of Materialchemistry.chemical_classificationTissue ScaffoldsTissue EngineeringAnimalMechanical EngineeringBiomoleculeBiomedical polymersBiomaterialExtracellular matrix021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of MaterialsIntercellular Signaling Peptides and ProteinsTissue materialMaterials Science (all)0210 nano-technologyTissue-material interfaceHumanMaterials Science and Engineering: C
researchProduct

Valorisation of Dairy Wastes Through Kefir Grain Production

2019

The main aim of this work was to investigate on kefir grains (KGs) increase using different dairy by-products. To this purpose, whey and deproteinized whey from cow, goat and sheep milk were compared to the pasteurized milk of the corresponding animal species. Each substrate was inoculated with 3% (w/v) of KGs cultivated in ultra-high temperature cow milk and evalu- ated for pH decrease, total titratable acidity increase and development of lactic acid bacteria (LAB) and yeasts released in the matrices after 24 h incubation at three different temperatures (20, 25 and 30 °C). The genotypic characterization of the dominating microbial populations resulted in the identification of two LAB belon…

0106 biological sciencesEnvironmental Engineering020209 energyDairy wastes Kefir grains Lactic acid bacteria Milk Whey YeastsPasteurizationTitratable acid02 engineering and technology01 natural scienceslaw.inventionchemistry.chemical_compoundSettore AGR/17 - Zootecnica Generale E Miglioramento Geneticofluids and secretionsKluyveromyces marxianuslaw010608 biotechnology0202 electrical engineering electronic engineering information engineeringFood scienceSheep milkWaste Management and DisposalbiologyRenewable Energy Sustainability and the EnvironmentLactococcus lactisfood and beveragesbiology.organism_classificationLactic acidchemistryLeuconostoc mesenteroidesFermentationSettore AGR/16 - Microbiologia Agraria
researchProduct

Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat

2022

Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of co…

SilverPolyestersSettore ING-IND/34 - Bioingegneria IndustrialeBiosensing TechniquesElectrochemical TechniquesBiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryWearable Electronic DevicesSettore ING-IND/23 - Chimica Fisica ApplicataSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiChloridesSettore ING-IND/17 - Impianti Industriali MeccaniciHumansElectrical and Electronic Engineeringelectrochemical sensors; wearable sensor; chloride detection; electrolyte assisted electrospinning; environmental-friendly; laser cuttingSweatchloride detection electrochemical sensors electrolyte assisted electrospinning environmental-friendly laser cutting wearable sensor Humans Sweat Chlorides Silver Polyesters Electrochemical Techniques Wearable Electronic Devices Biosensing TechniquesInstrumentation
researchProduct

Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defe…

2020

Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano- hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differen- tiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic…

0106 biological sciences0301 basic medicine3D cultureScaffoldCellular differentiationBioreactorBioengineeringBone tissue01 natural sciencesApplied Microbiology and BiotechnologyBone and BonesCell Line03 medical and health sciencesBioreactorsTissue engineeringPolylactic Acid-Polyglycolic Acid CopolymerPoly-L-lactic-acid/nano-hydroxyapatiteOsteogenesis010608 biotechnologyOsteogenic differentiation w/o growth factorsmedicineHumansBone regenerationCell ProliferationComposite scaffoldSettore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTissue ScaffoldsChemistryMesenchymal stem cell3D culture; Bioreactor; Composite scaffold; Osteogenic differentiation w/o growth factors; Poly-L-lactic-acid/nano-hydroxyapatite; Bioreactors; Bone and Bones; Cell Differentiation; Cell Line; Cell Proliferation; Durapatite; Humans; Mesenchymal Stem Cells; Osteogenesis; Polylactic Acid-Polyglycolic Acid Copolymer; Tissue Engineering; Tissue ScaffoldsSettore ING-IND/34 - Bioingegneria IndustrialeCell DifferentiationMesenchymal Stem CellsCell biologyRUNX2030104 developmental biologymedicine.anatomical_structureDurapatiteCell cultureBiotechnologyJournal of bioscience and bioengineering
researchProduct

The use of master curves to describe the simultaneous effect of cooling rate and pressure on polymer crystallization

2003

In a previous work a master-curve approach was applied to experimental density data to explain isotactic polypropylene (iPP) behaviour under pressure and high cooling rates. Suitable samples were prepared by solidification from the melt under various cooling rate and pressure conditions with the help of a special apparatus based on a modified injection moulding machine. The approach here reported is more general than the case study previously shown, and is suitable to be applied to several materials and for different measures related to crystalline content. The proposed simple model is able to predict successfully the final polymer properties (density, micro-hardness, crystallinity) by supe…

chemistry.chemical_classificationWork (thermodynamics)Settore ING-IND/24 - Principi Di Ingegneria ChimicaMaterials sciencePolymers and PlasticsCrystallization of polymersOrganic ChemistrySettore ING-IND/34 - Bioingegneria IndustrialePolymerCrystallization Kineticslaw.inventionCrystallinitySuperposition principlechemistrylawTacticityMaterials ChemistryInjection mouldingComposite materialCrystallization
researchProduct

Coagulation bath composition and desiccation environment as tuning parameters to prepare skinless membranes via diffusion induced phase separation

2015

Diffusion Induced Phase Separation (DIPS) is a currently used technique to produce porous membranes for a large variety of applications. A strong limitation is represented by the occurrence of a dense skin, which is formed during the process, highly reducing the membrane permeability. To overcome this issue, two modifications of the standard DIPS protocol were investigated: the use of coagulation baths composed by a solvent/nonsolvent mixture and the desiccation in a controlled environment, by modulating the partial pressure of nonsolvent vapor. An appropriate choice of coagulation bath composition, together with an appropriate desiccation protocol (i.e., the use of a nonsolvent vapor), wil…

Materials Chemistry2506 Metals and AlloyMaterials scienceChromatographyPolymers and PlasticPolymers and PlasticsMembrane permeabilityDiffusionChemistry (all)Surfaces Coatings and FilmGeneral ChemistryPartial pressureSurfaces Coatings and FilmsSolventMembraneChemical engineeringmorphologyMaterials Chemistryphase behaviorCoagulation (water treatment)porous materialPorous mediumDesiccationmembrane
researchProduct

Polylactic is a Sustainable, Low Absorption, Low Autofluorescence Alternative to Other Plastics for Microfluidic and Organ-on-Chip Applications

2020

Organ-on-chip (OOC) devices are miniaturized devices replacing animal models in drug discovery and toxicology studies. The majority of OOC devices are made from polydimethylsiloxane (PDMS), an elastomer widely used in microfluidic prototyping, but posing a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled absorption of small compounds. Here we assess the suitability of polylactic acid (PLA) as a replacement material to PDMS for microfluidic cell culture and OOC applications. We changed the wettability of PLA substrates and demonstrated the functionalization method to be stable over a time period of at least 9 months. We successfully cultured …

BiocompatibilityPolydimethylsiloxane010401 analytical chemistryMicrofluidicstechnology industry and agricultureSettore ING-IND/34 - Bioingegneria IndustrialeNanotechnologymacromolecular substancesengineering.material010402 general chemistryElastomerSettore ING-INF/0701 natural sciences0104 chemical sciencesAnalytical Chemistrychemistry.chemical_compoundAutofluorescenceCoatingPolylactic acidchemistryBiocompatibility Cell culture Diseases Elastomers Microchannels Microfluidics Polydimethylsiloxane Silicones TransparencyengineeringSurface modificationAnalytical Chemistry
researchProduct

Laser Ablation of Poly(lactic acid) Sheets for the Rapid Prototyping of Sustainable, Single-Use, Disposable Medical Microcomponents

2018

The employment of single-use, disposable medical equipment has increased the amount of medical waste produced and the advent of point-of-care diagnostics in lab-on-chip format is likely to add further volume. Current materials used for the manufacture of these devices are derived from petroleum sources and are, therefore, unsustainable. In addition, disposal of these plastics necessitates combustion to reduce infection risk, which has, depending on material composition, an undesirable environmental impact. To address these issues, we have developed a general approach for the rapid prototyping of single-use point-of-care cartridges prepared from poly(lactic acid), a sustainable material whic…

Rapid prototypingInfection riskMaterials sciencePoly(methyl methacrylate)General Chemical EngineeringSacrificial layer assisted manufacturingMicrofluidicsNanotechnology02 engineering and technology01 natural scienceschemistry.chemical_compoundkerfMedical wastePoly(lactic acid)Environmental ChemistryChemical Engineering (all)Laser ablationSingle useLayer by layerRapid prototypingRenewable Energy Sustainability and the Environment010401 analytical chemistryChemistry (all)Settore ING-IND/34 - Bioingegneria IndustrialeGeneral ChemistryCO2 laser cut021001 nanoscience & nanotechnologyPoly(methyl methacrylate)0104 chemical sciencesLactic acidPoint of careMicromachiningchemistryMicrofluidicvisual_artvisual_art.visual_art_medium0210 nano-technology
researchProduct

In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions

2017

The objective of this study was to compare the effect of two bioglass (BG) compositions 45S5 and 1393 in poly-l-lactic composite scaffolds in terms of morphology, mechanical properties, biodegradation, water uptake and bioactivity. The scaffolds were produced via thermally induced phase separation starting from a ternary polymer solution (polymer/solvent/non-solvent). Furthermore, different BG to polymer ratios have been selected (1, 2.5, 5% wt/wt) to evaluate the effect of the amount of filler on the composite structure. Results show that the addition of 1393BG does not affect the scaffold morphology, whereas the 45S5BG at the highest amount tends to appreciably modify the scaffold archite…

Materials scienceMorphology (linguistics)Scanning electron microscopeComposite number02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionlawGeneral Materials ScienceMechanics of MaterialFourier transform infrared spectroscopyComposite materialchemistry.chemical_classificationSettore ING-IND/24 - Principi Di Ingegneria ChimicaMechanical EngineeringSettore ING-IND/34 - Bioingegneria IndustrialePolymerBiodegradation021001 nanoscience & nanotechnology0104 chemical sciencesSolventchemistryChemical engineeringMechanics of MaterialsBioactive glassMaterials Science (all)0210 nano-technology
researchProduct

Rapid prototyping for micro-engineering and microfluidic applications: Recycled pmma, a sustainable substrate material

2018

Poly(methylmethacrylate), PMMA, is one of the most commonly used thermoplastics for the manufacture of micromechanical and microfluidic devices, due to its optical transparency, rigid mechanical properties, low cost and good workability in conjunction with its rapid prototyping and mass manufacturing. Recent advances in the rapid-prototyping fields have allowed the production of precise features compatible with microfluidic structures and accelerated the conversion process from bench-side to mass market. For example, to address the need for fast design cycles using material compatible with mass manufacturing, we have developed an ultrafast prototyping technique for the manufacture of multil…

Strategy and Management1409 Tourism Leisure and Hospitality ManagementAlgebra and Number TheoryMicrofluidicRapid prototypingRecycledComputer Science Applications1707 Computer Vision and Pattern RecognitionDesign for sustainabilityPMMAIndustrial and Manufacturing EngineeringSoftware
researchProduct

Kefiran-based Scaffolds For Biomedical Applications

2018

Kefiran is an exopolysaccharide produced by microorganisms present in kefir grains, with several health promoting properties. A optimized protocol was developed for the separation of kefiran from kefir grains, allowing to reach a yield 4÷5 % without using toxic or expensive chemicals. The capability of kefiran to produce scaffold via Thermally Induced Phase Separation (TIPS) technique was investigated and porous scaffolds structure was obtained. Separated kefiran and scaffolds were analyzed via DSC and different thermal properties between purified kefiran and scaffold were revealed. XRD analysis revealed different structure between kefiran and scaffolds. The porous scaffold structure can be…

lcsh:Computer engineering. Computer hardwarelcsh:TP155-156Chemical Engineering (all)lcsh:TK7885-7895Settore CHIM/07 - Fondamenti Chimici Delle Tecnologielcsh:Chemical engineeringChemical Engineering Transactions
researchProduct

PLLA Scaffold with Gradient pore size in microphysiological tissue system bioreactor for Osteochondral regeneration

2015

Cartilage and bone tissues in the joints are intimately linked and form the osteochondral unit. A better understanding of both disease and regenerative processes of bone and cartilage requires the study of both tissues together, as part of the osteochondral unit to account for their mutual interactions. However, the production of scaffolds for osteochondral tissue regeneration is a challenging task, since scaffolds must mimic the differents morphologies of cartilage and bone. Thermally Induced Phase Separation (TIPS) is one of the most adaptable techniques to produce porous scaffold for Tissue Engineering applications. A wide range of morphologies in terms of both pore size and distribution…

Gradient Scaffold Bioreactor
researchProduct

A Poly-L-Lactide scaffold with continuous gradient pore size for osteochondral regeneration validated in a microphysiological tissue system bioreactor

2016

A microphysiological tissue system (MPS) bioreactor has been developed to replicate in vitro the in vivo OC physiological conditions. The MPS allows separate control of the chondral and osseous environment while permitting communication between chondrocytes and osteoblasts across the OC junction, similar to the conditions of OC tissue in vivo. We have used here our MPS system to validate the TIPS -generated pore-gradient PLLA scaffold.

Bioreactor Phase Separation Gradient
researchProduct

Crystallization kinetics of a PBT/PET blend according to a Continuous Cooling Transformation (CCT) approach

2005

researchProduct

CRYSTALLIZATION OF PBT/PET BLENDS UNDER LOW AND HIGH COOLING RATES: THERMODYNAMICS AND KINETICS CONSIDERATIONS

2008

researchProduct

Modeling and experimental approaches for the characterization of phase equilibria in polymer solutions

2012

thermodynamicoptical measurementsliquid-liquid phase separationPolymer solution
researchProduct

Anisotropic scaffold for Bone Tissue Engineering

2014

Bone Tissue EngineeringSeparazione di fase
researchProduct

Polyactide Biodegradable Scaffolds for Tissue Engineering Applications: Phase Separation-Based Techniques

2011

One of the most reliable techniques for the preparation of biodegradable scaffolds suitable for tissue engineering applications (e.g. regeneration of wounded/damaged tissues) is based on liquid/liquid phase separation of ternary solvent/antisolvent/polymer solutions. In particular, two phase separation protocols are examined here: Thermally Induced Phase Separation (TIPS) and Diffusion Induces Phase Separation (DIPS). According to the former protocol, a thermodynamically stable polymeric ternary solution is brought below its metastability/instability point (spinodal/binodal curve) by quench in a cooling medium: under opportune conditions, a foam-like structure is formed by nucleation and 3-…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiTissue EngineeringSettore BIO/10 - BiochimicaPhase separation Scaffolds
researchProduct

Theoretical Predictions and experimental determination of cloud point curves for polymeric solutions: an application to the ternary system Poly-lacti…

2011

The lattice fluid model with specific interactions was applied to the ternary system Poly-L-lactic-acid (PLLA)-dioxane-water. Model parameters were determined by fitting experimental data. The as-obtained parameters were used to calculate the complete phase diagram. An experimental apparatus for cloud point measurements, which is under construction, is presented.

Settore ING-IND/24 - Principi Di Ingegneria ChimicaPolymeric solutions phase diagrams phase separationSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali
researchProduct

A survey on models for the prediction of phase equilibria in polymer solutions

2011

polymer solutionphase separationphase diagram
researchProduct

Membrane porose in PLLA per la rigenerazione di mucosa bronchiale umana ottenute mediante DIPS

2014

Separazione di faseMembrane porose
researchProduct

An Innovative Method to Produce Scaffolds with a Pore Size Gradient for Tissue Engineering Applications

2014

Thermally Induced Phase Separation (TIPS) is a technique for the production of porous scaffold for Tissue Engineering applications. A wide range of microporous morphologies, in terms of pore size and distribution, can be obtained by tuning TIPS processing parameters, especially thermal history. The production of scaffolds for bone tissue regeneration is a challenging target: as a matter of fact, scaffolds must mimic the bone morphology, thus requiring a gradient of pore dimension and morphology along one dimension. To attain this goal, an experimental apparatus capable to impose different thermal histories on the two sides of a sample was designed, set up and tested. The sample (35x35 mm su…

TIPS ScaffoldGradient Pore Size
researchProduct

The concept and the application of no-flow temperature (NFT) in simulation of injection moulding

2009

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiNo-Flow temperature Injection Moulding Simulation
researchProduct

Determination of the volumetric thermal expansion coefficient of glass fiber reinforced (GFR) thermoplastics through Pressure-Volume-Temperature (PVT…

2005

researchProduct

Determination of the crystallization kinetics of a PBT/PET blend in relation to the behaviour of the constituents

2005

researchProduct

PLLA scaffolds based on thermally induced phase separation: morphology, cell seeding and proliferation

2009

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSettore BIO/10 - BiochimicaPLLA Thermally Induced phase separation scaffold tissue engineering
researchProduct

Blending PLLA with PLA so as to tune the biodegradabilty of polymeric scaffolds for soft tissue engineering

2008

BiodegradationPolymer blendPolylactic acid
researchProduct

SOLIDIFICATION BEHAVIOUR OF PBT/PET BLENDS UNDER PROCESSING CONDITIONS

2007

researchProduct

Synthesis of PLLA scaffolds for tissue engineering via phase separation

2006

researchProduct

AN EXPERIMENTAL APPARATUS TO CHARACTERIZE PHASE SEPARATION IN POLYMER SOLUTIONS

2013

Polymer solution liquid-liquid phase separation phase equilibrium data
researchProduct

Solidification of sindiotactic polystyrene (sPS) under drastic conditions by CCT

2004

researchProduct

CLOUD POINT MEASUREMENTS IN MEMBRANE FORMING SYSTEMS

2012

polymer solutionliquid-liquid phase separation
researchProduct

Structure and Morphology Control in Polymer Forming Through the Thermal History

2011

Two examples of the application of the Continuous Cooling Transformation (CCT) method for investigating polymer solidification under processing conditions are illustrated. One example concerns the solidification behaviour of syndiotactic polystyrene (sPS) from the melt, showing an anomalous trend of density versus cooling rate, exhibiting a minimum around 1 °C/s. Once phase composition is obtained from WAXD deconvolution, density can be closely predicted, its minimum depending on the competition among crystalline phases upon increasing cooling rate. Another example regards the formation of Poly-Left Lactic Acid (PLLA) foams via Thermally Induced Phase Separation (TIPS) by starting from ther…

Polymer solidification structure controlSettore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali
researchProduct

Studio della solidificazione durante lo stampaggio ad iniezione mediante un test di indentazione

2004

researchProduct

Il concetto di "no-flow temperature" e il problema della solidificazione in flusso durante lo stadio di riempimento nel processo di stampaggio ad ini…

2012

Durante la fase di riempimento del processo di stampaggio ad iniezione, il flusso del materiale polimerico può fermarsi a causa della sua elevata viscosità, nonostante non sia avvenuta la solidificazione tramite transizione vetrosa o cristallizzazione. La no-flow temperature (NFT) è un parametro che rappresenta la "temperatura di solidificazione reologica" di un polimero, ed è utilizzata in molti software di simulazione del processo di stampaggio ad iniezione. L'estrapolazione della viscosità a basse temperature tramite modelli reologici può introdurre errori considerevoli nelle simulazioni, poichè le misure di viscosità sono usualmente effettuate ad alte temperature: in tal modo, i modelli…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiStampaggio ad iniezione polimeri amorfi polimeri semicristallini simulazione
researchProduct

Metastability and Post-forming behaviour of semi-crystalline polymers

2004

researchProduct

Pre-vascularized PLLA scaffolds: A new approcah to develop deep tissue regeneration

2010

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSettore BIO/10 - Biochimica-
researchProduct

Scaffolds biodegradabili in PLLA con gradiente di porosità per rigenerazione ossea

2014

gradiente di dimensione dei poriSeparazione di fase
researchProduct

PLLA biodegradable scaffolds for Vascular Tissue Engineering (VTE) applications via dip drawing and Diffusion Induced Phase Separation (DIPS)

2009

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiTissue engineering vascular grafts scaffold Diffusion Induced Phase Separation (DIPS)Settore BIO/10 - Biochimica
researchProduct

Dependence of Coefficient of volumetric thermal expansion (CVTE) of glass fiber reinforced (GFR) polymers on the glass fiber content

2005

researchProduct

Temperature influence on the morphology of porous structures prepared via Thermally Induced Phase Separation (TIPS)

2013

polymer solutionphase separationfoam
researchProduct

TISSUE ENGINEERING FOR THE DEVELOPMENT OF THREE-DIMENSIONAL INVITRO MODELS OF HUMAN MUCOSAE

2014

Traditional two-dimensional (2D) cell cultures only partially reflect the morpho-molecular pattern of human cells in tissues, and they are also unable to fully mimic the complexity of the in vivo microenvironment. Cell development in in vivo systems differs significantly from classical 2D cell culture models, especially with regard to the morphology, growth kinetics, gene expression and the degree of differentiation. Tissue engineering allows the reproduction of tissues by cell seeding on biocompatible scaffolds, to form a homogenous ...

Settore BIO/16 - Anatomia Umanatissue engineering human mucosae 3d models cunt scaffolds
researchProduct

PLA/PLLA scaffold for vascular tissue engineering applications

2011

A critical obstacle encountered by tissue engineering is the inability to maintain large masses of living cells upon transfer from the in vitro culture conditions to host in vivo. Capillaries, and the vascular system, are required to supply essential nutrients, including oxygen, remove waste products and provide a biochemical communication “highway”. Another task in this research field is the possibility to tune the biodegradability of the scaffold. After implantation, the scaffold must be gradually populated by cells and replaced by extra cellular matrix; with this respect, it is crucial that this replacement takes place with appropriate dynamics and a well-defined timescale. A premature d…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali-
researchProduct

PLLA scaffolds for tissue engineering prepared via thermally induced phase separation

2006

researchProduct

Thermal expansion of Glass fibre reinforced (GRF) thermoplastics: influence of the nature of the polymer matrix and of the fibre content

2009

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiThermal expansion warpage shrinkage injection moulding
researchProduct

Solidification of Syndiotactic Polistyrene (sPS) under Pressure and High Cooling Rate

2006

researchProduct

Use of Modified 3D Scaffolds to Improve Cell Adhesion and Drive Desired Cell Responses.

2012

In the most common approach of tissue engineering, a polymeric scaffold with a well-defined architecture has emerged as a promising platform for cells adhesion and guide their proliferation and differentiation into the desired tissue or organ. An ideal model for the regeneration should mimic clinical conditions of tissue injury, create a permissive microenvironment for diffusion of nutrients, gases and growth factors and permit angiogenesis. In this work, we used a 3D support made of synthetic resorbable polylactic acid (PLLA), which has considerable potential because of its well-known biocompatibility and biodegradability. One of the factors that influence cell adhesion to the scaffold is …

Settore BIO/10 - Biochimicascaffold plasma treatment surface modification
researchProduct

Solidification of Polypropylene Under Processing Conditions – Relevance of Cooling Rate, Pressure and Molecular Parameters

2012

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSolidification polypropylene polymer processing crystallization kinetics
researchProduct

A6 stem cells culture into a biodegradable PLLA scaffold

2006

researchProduct

Solidification of sindiotactic polystyrene (sPS) under drastic conditions by Continuous Cooling Transformation (CCT)

2004

researchProduct

Peltier cells as temperature control elements: Experimental characterization and modelling

2014

Thermoelectrics Transient heat conduction Modeling
researchProduct

Process-morphology relationships on injection moulding of isotactic polypropylene in standard steel tool and rapid epoxy tooling

2007

researchProduct

Poly lactic acid based scaffolds as graft for small-diameter arterial replacement.

2012

Vascular Tissue engineering (VTE) has emerged as a promising approach to develop blood vessel substitutes. Investigators have explored the use of arterial tissue cells combined with various types of natural and synthetic scaffolds to make tubular constructs in order to develop a functional small-diameter arterial replacement graft. The grafts must mimic the unique viscoelastic nature of an artery and be non-disruptive to blood ?ow. Moreover, after implantation, the scaffold must be gradually populated by cells and replaced by extra cellular matrix; with this respect, it is crucial that this replacement takes place with a well-defined timescale. In this work tubular scaffolds for VTE were pr…

Settore BIO/10 - Biochimicatubular graftblood vessel substitutes
researchProduct

Characterization of commercial polymeric membranes for membrane distillation processes

2011

desalinationmembrane distillationhydrophobic membrane
researchProduct

POROUS SCAFFOLDS BASED ON PLLA/FUNCTIONALISED POLYMERS BLENDS PRODUCED BY THERMALLY INDUCED PHASE SEPARATION

2014

Scaffold polymers PLLA thermally induced phase separation
researchProduct

Synthesis of a porous and biodegradable PLLA scaffold for application of tissue engineering

2005

researchProduct

Effect of pressure and high cooling rates on the solidification behaviour of sindiotactic polystryrene (sPS)

2006

researchProduct

An Innovative Method to Produce Scaffolds with a Pore Size Gradient for Tissue Engineering

2015

Gradient TIPS scaffold
researchProduct

Measurement of cloud point temperature in polymer solutions

2013

Polymer solutions Phase separation Phase diagram
researchProduct

Injection moulding of thin and thick iPP parts in epoxy resin and steel moulds: a comparative study on properties development

2006

researchProduct

Ultra-fast-prototyping of PMMA structures for micro-engineering applications: Choosing the right material

2017

Machining of poly(methyl methacrylate) (PMMA) by laser has been extensively studied in engineering research for several applications including microfluidic manufacturing and rapid prototyping. However, very few investigations have taken into consideration the wide range of physico-chemical characteristics of commercially available PMMA that can often affect the quality of the laser-machined structures. These characteristics are often ignored, with many manufacturing publications focusing on a single source of PMMA. To understand the different bonding strengths and laser-cut qualities in the context of our ultra-fast prototyping technique, four types of PMMA have been examined. Molecular wei…

Laser-matter interactionSettore ING-IND/24 - Principi Di Ingegneria ChimicaPoly(methyl methacrylate)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMicrofluidicRapid-prototypingLaser ablation
researchProduct

Hydrophobic polymeric membranes: experimental characterization for membrane distillation applications

2013

-
researchProduct

The solidification behavior of a PBT/PET blend over a wide range of cooling rate

2009

In recent years, much attention has been paid to the development of high-performance polyester blends, among which blends of polybutylene terephtha- late/polyethylene terephthalate (PBT/PET) are expected to exhibit remarkable prop- erties as far as their crystallization behavior is concerned. Through trial and error, appropriate commercial compositions have been chosen which could not be otherwise explained by a suitable interpretation of the mechanisms determining their solidifica- tion behavior. The solidification behavior of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a continuous cooling transforma- tion (CCT) procedure developed previously,…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaPETSettore ING-IND/22 - Scienza E Tecnologia Dei Materialicrystallization[CHIM]Chemical Sciencespolyestersolidification[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]blendPBTComputingMilieux_MISCELLANEOUSpolymer solidification
researchProduct

Preparation and characterization of PLLA-HA scaffolds for bone tissue engineering

2013

In this work, the possibility to produce composite - Poly-L-lactic acid (PLLA) and Hydroxyapatite (HA) - porous scaffolds via Thermally Induced Phase Separation for bone tissue engineering applications was investigated. Several PLLA/HA ratios were tested (70/30, 50/50, 30/70 and 20/80 wt/wt) and the as-obtained scaffolds were characterized via Scanning Electron Microscopy (SEM), Wide Angle X-Ray Diffraction (WAXD) and compression test. The results showed that the presence of HA does not influence the phase separation process. Morphological analysis revealed an open structure with interconnected pores and HA embedded in the polymer matrix. This evidence was confirmed by WAXD analysis; where …

ScaffoldSettore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPhase separationPoly Lactic acid
researchProduct

Porous PLLA scaffolds are optimal substrates for internal colonization by A6 mesoangioblasts and immunocytochemical analyses

2009

In the present paper, mouse mesoangioblasts were seeded onto bidimensional matrices and within three-dimensional porous scaffolds of poly(L-lactic acid) (PLLA), in the presence or absence of type I collagen coating, observed under the scanning electron microscope, and tested for their adhesion, survival and proliferation. Immunolocalization of Hsp70, an abundant and ubiquitous intracellular protein in these cells, was also performed in sectioned cell-containing scaffolds under the confocal fluorescence microscope to check whether "in situ" analysis of intracellular constituents was feasible. The data obtained show that PLLA films allow direct cell adhesion and represent an optimal support f…

PLLA mesoangioblastsSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Galvanic Deposition of Calcium Phosphate/Bioglass Composite Coating on AISI 316L

2023

Calcium phosphate/Bioglass composite coatings on AISI 316L were investigated with regard to their potential role as a beneficial coating for orthopedic implants. These coatings were realized by the galvanic co-deposition of calcium phosphate compounds and Bioglass particles. A different amount of Bioglass 45S5 was used to study its effect on the performance of the composite coatings. The morphology and chemical composition of the coatings were investigated before and after their aging in simulated body fluid. The coatings uniformly covered the AISI 316L substrate and consisted of a brushite and hydroxyapatite mixture. Both phases were detected using X-ray diffraction and Raman spectroscopy.…

Settore ING-IND/24 - Principi Di Ingegneria ChimicacorrosionSettore ING-IND/23 - Chimica Fisica Applicatagalvanic depositionAISI 316LcoatingcytotoxicityhydroxyapatiteSettore ING-IND/34 - Bioingegneria IndustrialeBioglass 45S5Settore ING-IND/32 - Convertitori Macchine E Azionamenti Elettriciorthopedic implant
researchProduct

Crystallization behaviour of PBT-rich PBT/PET blends according to a Continuous Cooling Transformation (CCT) protocol

2006

researchProduct

Solidification during the filling stage of injection molding: a simulation-oriented study

2011

filling stageinjection molding simulationsolidification
researchProduct

Composites poly-lactic acid - hydroxyapatite scaffolds prepared via Thermally Induced Phase Separation

2013

Poly Lactic Acid Tissue Engineering Phase Separation
researchProduct

Membrane biodegradabili in PLLA preparate mediante DIPS (Diffusion Induced Phase Separation) come supporto per la rigenerazione di mucosa bronchiale …

2014

membraneSeparazione di fase
researchProduct

PREPARATION AND HYDROLYTIC DEGRADATION OF POLY LACTIC ACID BASED SCAFFOLDS

2012

-

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali-
researchProduct

Comparison of the solidification of a commercial PBT-PET blend with the behaviour of the constituents

2009

Settore ING-IND/24 - Principi Di Ingegneria ChimicaSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPolymer blends crystallization modelling
researchProduct

The use of Diffusion Induced Phase Separation (DIPS) technique for the preparation of biodegradable scaffolds for angiogenesis

2008

DIPSPhase separationAngiogenesis
researchProduct

Membrane Distillation for a solar powered desalination pilot unit

2009

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSolar membran distillation desalination
researchProduct

A study via simulation of solidification during injection molding

2011

The final properties of an injection-molded part are strictly dependent on the solidification dynamics occurring during the processing. The experimental derivation of information about polymer solidification throughout the injection molding cycle is still an open challenge. To overcome the practical issues, the process simulation is proposed as a mean to derive useful data, and especially for identifying the most influencing parameters. The no-flow temperature (NFT) is a parameter used in most of injection molding simulation packages as a mean to determine whether the polymer flows or it is solid. With this simple parameter it is possible to take into account the rheological solidification …

Settore ING-IND/24 - Principi Di Ingegneria ChimicaNFT injection moldingSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali
researchProduct

Comparison of thin-wall injection moulding of isotactic polypropylene in standard steel tool and rapid epoxy tooling

2007

researchProduct

Characterization of PLLA scaffolds for biomedical applications

2020

The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.

researchProduct

Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplement…

2018

Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or…

researchProduct

Tissue engineered vascular grafts based on poly-lactic acid blends

2013

A great deal of research has been pursued in the last decade with the goal of developing blood vessel substitutes. Tissue engineering has emerged as a promising approach to address the shortcomings of current options. One of the major tasks in this research field is the possibility to tune the biodegradability of the implantable devices (scaffolds). After implantation, the scaffold has to be replaced by extra cellular matrix; with this respect, it is crucial that this replacement takes place with appropriate dynamics and a well-defined timescale. In this work tissue-engineered vascular graft were produced, utilizing several PLLA/PLA blends (100/0, 90/10, 75/25 wt/wt) in order to tune their …

ScaffoldPolymer BlendsVascular Tissue Engineering
researchProduct