0000000001178638

AUTHOR

Heikki Tuononen

Isolation of a Stable, Acyclic, Two-Coordinate Silylene

The synthesis and characterization of a stable, acyclic two-coordinate silylene, Si(SArMe6)2, (ArMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2) by reduction of Br2Si(SArMe6)2 with a magnesium(I) reductant is described. It features a v-shaped silicon coordination with a S-Si-S angle of 90.519(2)° and an average Si-S distance of 2.158(3) Å. Although it reacts readily with an alkyl halide, it does not react with hydrogen under ambient conditions probably as a result of the ca. 4.3 eV energy difference between the frontier silicon lone pair and 3p orbitals. peerReviewed

research product

Isolation of Free Phenylide-like Carbanions with N-Heterocyclic Carbene Frameworks

A series of 1,3-bis(2,6-diisopropylphenyl)-5-methyl-1,3-diaza-4,6-diborabenzenes with methyl, phenyl, and dimethylamino substituents on the ring boron atoms were prepared using the cyclocondensation reaction between N,N′-bis(2,6-diisopropylphenyl)trimethylsilylformamidine and the appropriately substituted 1,1-bis(organochloroboryl)ethane, followed by deprotonation of the cationic ring intermediate. The planar, heterocyclic benzene analogues could be further deprotonated at the other ring carbon using an additional equivalent of potassium hexamethyldisilazide to yield organometallic derivatives akin to the potassium phenylide. The potassium cations could be efficiently sequestered in both so…

research product

Insights into the decomposition pathway of a lutetium alkylamido complex via intramolecular C–H bond activation

Synthesis, characterization and reaction chemistry of lutetium alkylamido LLu(CH2SiMe3)(NHCPh3) (2), L = 2,5-[Ph2P=N(4-iPrC6H4)]2N(C4H2)–, is reported. Complex 2 undergoes cyclometalation of the NHCPh3 ligand at elevated temperatures to produce the orthometalated complex LLu(κ2−N,C-(NHCPh2(C6H4))) (3) which converts to 0.5 equivalents of bis(amido) LLu(NHCPh3)2 (4) upon heating at 80 °C for 24 h. Reaction of complex 2 with 4-dimethylaminopyridine (DMAP) does not promote alkane elimination nor imido formation. A kinetic analysis of the thermal decomposition of complex 2, supported by deuterium labelling studies and computational analysis (PBE0/def2-TZVP/SDD(Lu)), indicate direct Csp2–H activ…

research product

Syntheses and Structures of Magnesium and Zinc Boraamidinates: EPR and DFT Investigations of Li, Mg, Zn, B, and In Complexes of the [PhB(NtBu)2]•- Anion Radical

The first magnesium and zinc boraamidinate (bam) complexes have been synthesized via metathetical reactions between dilithio bams and Grignard reagents or MCl2 (M = Mg, Zn). The following new classes of bam complexes have been structurally characterized:  heterobimetallic spirocycles {(L)μ-Li[PhB(μ-NtBu)2]}2M (6a,b, M = Mg, L = Et2O, THF; 6c, M = Zn, L = Et2O); bis(organomagnesium) complexes {[PhB(μ3-NtBu)2](MgtBu)2(μ3-Cl)Li(OEt2)3} (8) and {[PhB(μ3-NtBu)2](MgR)2(THF)2} (9a, R = iPr; 9b, R = Ph); mononuclear complex {[PhB(μ-NDipp)2]Mg(OEt2)2} (10). Oxidation of 6a or 6c with iodine produces persistent pink (16a, M = Mg) or purple (16b, M = Zn) neutral radicals {Lx-μ-Li[PhB(μ-NtBu)2]2M}• (L …

research product

An Unusual Ditelluride: Synthesis and Molecular and Electronic Structures of the Dimer of the Tellurium-Centered Radical [TePiPr2NiPr2PTe]•

Facile formation of the ditelluride [(TePiPr2NiPr2PTe-)2], which exists as a centrosymmetric dimer (see picture: Te green, P purple, N blue, C gray) with a weak Te[BOND]Te bond, embodies a new feature of the chemistry of dichalcogenoimidodiphosphinate ligands. The monotelluride HPiPr2NiPr2PTe analogue is obtained as the P[BOND]H tautomer. peerReviewed

research product

Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different Reaction Pathways for Alkyl- and Aryl-Substituted Species

Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was…

research product

Structural and Spectroscopic Studies of the PCP-Bridged Heavy Chalcogen-Centered Monoanions [HC(PPh2E)(PPh2)]− (E = Se, Te) and [HC(PR2E)2]− (E = Se, Te, R = Ph; E = Se, R = iPr): Homoleptic Group 12 Complexes and One-Electron Oxidation of [HC(PR2Se)2]−

Selenium- and tellurium-containing bis(diphenylphosphinoyl)methane monoanions were prepared by oxidation of the anion [HC(PPh2)2]− with elemental chalcogens. The selenium-containing isopropyl derivative was synthesized by generating [H2C(PiPr2)2] via a reaction between [H2C(PCl2)2] and 4 equiv of iPrMgCl prior to insitu oxidation with selenium followed by deprotonation with LiNiPr2. The solid-state structures of the lithium salts of the monochalcogeno anions TMEDA·Li[HC(PPh2E)(PPh2)] (E = Se (Li7a), E = Te (Li7b)) and the dichalcogeno anions TMEDA·Li[HC(PR2Se)2] (R = Ph (Li8a), iPr (Li8c)) revealed five- and six-membered LiEPCP and LiSePCPSe rings, respectively. The homoleptic group 12 comp…

research product

Role of Weak Hydrogen Bonds and Halogen Bonds in 5-Halo-1,3-dimethyluracils and Their Cocrystals : A Combined Experimental and Computational Study

Seven single crystals containing either N,N-dimethyluracil (DMHU) or one of its 5-halogenated derivatives (DMXU; X = F, Cl, Br, I) were prepared using N,N-dimethylformamide as the crystallization solvent. Single crystal X-ray diffraction and quantum chemical calculations carried out at the spin component scaled local MP2 level of theory were then used to study the intramolecular halogen and nonconventional hydrogen bonds present in the structures. The results were compared to and contrasted with the previously reported data for uracil and its halogenated derivatives. In particular, the intermolecular interactions in DMIU were compared to the halogen and hydrogen bonds in 5-iodouracil that, …

research product

Synthesis and Structures of Aluminum and Magnesium Complexes of Tetraimidophosphates and Trisamidothiophosphates: EPR and DFT Investigations of the Persistent Neutral Radicals {Me2Al[(μ-NR)(μ-NtBu)P(μ-NtBu)2]Li(THF)2}• (R = SiMe3, tBu)

Reactions of (RNH)3PNSiMe3 (3a, R = tBu; 3b, R = Cy) with trimethylaluminum result in the formation of {Me2Al(μ-NtBu)(μ-NSiMe3)P(NHtBu)2]} (4) and the dimeric trisimidometaphosphate {Me2Al[(μ-NCy)(μ-NSiMe3)P(μ-NCy)2P(μ-NCy)(μ-NSiMe3)]AlMe2} (5a), respectively. The reaction of SP(NHtBu)3 (2a) with 1 or 2 equiv of AlMe3 yields {Me2Al[(μ-S)(μ-NtBu)P(NHtBu)2]} (7) and {Me2Al[(μ-S)(μ-NtBu)P(μ-NHtBu)(μ-NtBu)]AlMe2} (8), respectively. Metalation of 4 with nBuLi produces the heterobimetallic species {Me2Al[(μ-NtBu)(μ-NSiMe3)P(μ-NHtBu)(μ-NtBu)]Li(THF)2} (9a) and {[Me2Al][Li]2[P(NtBu)3(NSiMe3)]} (10) sequentially; in THF solutions, solvation of 10 yields an ion pair containing a spirocyclic tetraimid…

research product

Mechanistic Studies on the Metal-Free Activation of Dihydrogen by Antiaromatic Pentarylboroles

The perfluoro- and perprotiopentaphenylboroles 1 and 2 react with dihydrogen to effect H–H bond cleavage and formation of boracyclopentene products. The mechanism of this reaction has been studied experimentally through evaluation of the kinetic properties of the slower reaction between 2 and H2. The reaction is first-order in both [borole] and [H2] with activation parameters of ΔH⧧ = 34(8) kJ/mol and ΔS⧧ = −146(25) J mol–1 K–1. A minimal kinetic isotope effect of 1.10(5) was observed, suggesting an asynchronous geometry for H–H cleavage in the rate-limiting transition state. To explain the stereochemistry of the observed products, a ring-opening/ring-closing mechanism is proposed and suppo…

research product

The Role of Orbital Symmetries in Enforcing Ferromagnetic Ground State in Mixed Radical Dimers

One of the first steps in designing ferromagnetic (FM) molecular materials of p-block radicals is the suppression of covalent radical–radical interactions that stabilize a diamagnetic ground state. In this contribution, we demonstrate that FM coupling between p-block radicals can be achieved by constructing mixed dimers from different radicals with differing symmetries of their singly occupied molecular orbitals. The applicability of this approach is demonstrated by studying magnetic interactions in organic radical dimers built from different derivatives of the well-known phenalenyl radical. The calculated enthalpies of dimerization for different homo- and heterodimers show that the formati…

research product

New Insights into the Chemistry of Imidodiphosphinates from Investigations of Tellurium-Centered Systems

Dichalcogenido-imidodiphosphinates, [N(PR2E)2]− (R = alkyl, aryl), are chelating ligands that readily form cyclic complexes with main group metals, transition metals, lanthanides, and actinides. Since their discovery in the early 1960s, researchers have studied the structural chemistry of the resulting metal complexes (where E = O, S, Se) extensively and identified a variety of potential applications, including as NMR shift reagents, luminescent complexes in photonic devices, or single-source precursors for metal sulfides or selenides. In 2002, a suitable synthesis of the tellurium analogs [N(PR2Te)2]− was developed. In this Account, we describe comprehensive investigations of the chemistry…

research product

Electrochemical and Electronic Structure Investigations of the [S3N3]• Radical and Kinetic Modeling of the [S4N4]n/[S3N3]n (n = 0, −1) Interconversion

Voltammetric studies of S4N4 employing both cyclic (CV) and rotating disk (RDE) methods in CH2Cl2 at a glassy carbon electrode reveal a one-electron reduction at −1.00 V (versus ferrocene/ferrocenium), which produces a second redox couple at −0.33 V, confirmed to be the electrochemically generated [S3N3]− by CV studies on its salts. Diffusion coefficients (CH2Cl2/0.4 M [nBu4N][PF6]) estimated by RDE methods: S4N4, 1.17 × 10−5 cm2 s−1; [S3N3]−, 4.00 × 10−6 cm2 s−1. Digital simulations of the CVs detected slow rates of electron transfer for both couples and allowed for a determination of rate constants for homogeneous chemical reaction steps subsequent to electron transfer. The common paramet…

research product

Oxidative ortho-C-N Fusion of Aniline by OsO4. Isolation, Characterization of Oxo-Amido Osmium(VI) Complexes, and their Catalytic Activities for Oxidative C−C Bond Cleavage of Unsaturated Hydrocarbons

In an unusual reaction of osmium(VIII) oxide with p-substituted aromatic amines (X-C6H4-NH2, where X = Me, H, Cl) in heptane afforded the brown osmium(VI)-oxo complexes [OsO(L)2] (1a-c, L = N-aryl-1,2-arylenediamide) in moderate yields. The ligand L is formed in situ via oxidative ortho-C-N fusion of arylamines. The reaction occurs in an inert atmosphere, and a part of Os(VIII) is used up for the oxidation of aromatic amine. Single crystal X-ray structure of a representative complex 1a is solved. The structural analysis has authenticated the ortho-C-N fusion of ArNH2 resulting in formation of the diamide ligand, L. The complex as a whole is penta-coordinated, and the coordination sphere has…

research product

Experimental and Theoretical Investigations of the Contact Ion Pairs Formed by Reactions of the Anions [(EPR2)2N]− (R = iPr, tBu; E = S, Se) with the Cations [(TePR2)2N]+ (R = iPr, tBu)

Reactions of the sodium salts [(EPR2)2N]Na(TMEDA) (R = iPr, tBu; E = S, Se) with the iodide salts [(TePR2)2N]I (R = iPr, tBu) in toluene produce the mixed-chalcogen systems [(EPR2)2N][(TePR2)2N] (6b, E = Se, R = tBu; 6c, E = S, R = tBu; 7b, E = Se, R = iPr; 7c, E = S, R = iPr). Compounds 6b, 6c, 7b, and 7c have been characterized in solution by variable-temperature multinuclear (31P, 77Se, and 125Te) NMR spectroscopy and in the solid state by single-crystal X-ray crystallography. The structures are comprised of contact ion pairs linked by bonds between Te and S or Se atoms. For the tert-butyl derivatives 6b and 6c, the anionic half of the molecule is coordinated in a bidentate (E,E′) fashio…

research product

Cleavage of Ge–Ge and Sn–Sn Triple Bonds in Heavy Group 14 Element Alkyne Analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6(C6H3-2,6-iPr2)2) by Reaction with Group 6 Carbonyls

The reactions of heavier group 14 element alkyne analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) with the group 6 transition-metal carbonyls M(CO)6 (M = Cr, Mo, W) under UV irradiation resulted in the cleavage of the E–E triple bond and the formation of the complexes {AriPr4EM(CO)4}2 (1–6), which were characterized by single crystal X-ray diffraction as well as by IR and multinuclear NMR spectroscopy. Single-crystal X-ray structural analyses of 1–6 showed that the complexes have a nearly planar rhomboid M2E2 core with three-coordinate group 14 atoms. The coordination geometry at the group 6 metals is distorted octahedral formed by four carbonyl groups as well as two br…

research product

N-Heterocyclic Carbenes with Inorganic Backbones: Electronic Structures and Ligand Properties

The electronic structures of known N-heterocyclic carbenes (NHCs) with boron, nitrogen, and phosphorus backbones are examined using quantum chemical methods and compared to the experimental results and to the computational data obtained for a classical carbon analogue, imidazol-2-ylidene. The σ-donor and π-acceptor abilities of the studied NHCs in selected transition-metal complexes are evaluated using a variety of approaches such as energy and charge decomposition analysis, as well as calculated acidity constants and carbonyl stretching frequencies. The study shows that the introduction of selected heteroatoms into the NHC backbone generally leads to stronger metal−carbene bonds and theref…

research product

Characterization of β-B-Agostic Isomers in Zirconocene Amidoborane Complexes

The reaction of Cpx2ZrCl2 (Cpx = Cp, Cp*) with ammonia borane in presence of n-butyllithium yielded Cp2Zr(Cl)NH2BH3 and Cpx2Zr(H)NH2BH3. These derivatives are isoelectronic with the ethyl zirconocene chloride and hydride, respectively, and feature a chelating amidoborane ligand coordinating through a Zr−N bond and a Zr−H−B bridge. In solution, each of the complexes consists of an equilibrium mixture of two isomers differing in the orientation of the amidoborane ligand with respect to the Zr−X bond (X = H, Cl), while in the solid state, only one isomer was observed. Such isomers have not been characterized for any metal complexes containing the isoelectronic β-agostic ethyl ligand or any oth…

research product

Stable spirocyclic neutral radicals: aluminum and gallium boraamidinates

Stable dark red (M = Al) or dark green (M = Ga) neutral radicals {[PhB(μ-NtBu)2]2M}˙ are obtained by the oxidation of their corresponding anions with iodine, and EPR spectra supported by DFT calculations show that the spin density is equally delocalized over all four nitrogen atoms in these spiroconjugated systems. peerReviewed

research product

Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]-: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes

A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn–S(C) and Zn–S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(II) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S′,S′′) mode to the Ni(II) centre with three distinctl…

research product

Experimental and Theoretical Investigations of Structural Trends for Selenium(IV) Imides and Oxides: X-ray Structure of Se3(NAd)2

The thermal decomposition of Se(NAd)2 (Ad = 1-adamantyl) in THF was monitored by 77Se NMR and shown to give the novel cyclic selenium imide Se3(NAd)2 as one of the products. An X-ray structural determination showed that Se3(NAd)2 is a puckered five-membered ring with d(Se−Se) = 2.404(1) Å and |d(Se−N)| = 1.873(4) Å. On the basis of 77Se NMR data, other decomposition products include the six-membered ring Se3(NAd)3, and the four-membered rings AdNSe(μ-NAd)2SeO and OSe(μ-NAd)2SeO. The energies for the cyclodimerization of E(NR)2 and RNEO (E = S, Se; R = H, Me, tBu, SiMe3), and the cycloaddition reactions of RNSeO with E(NR)2, RNSO2 with Se(NR)2, and S(NR)2 with Se(NR)2 have been calculated at…

research product

Phospha-Fischer Carbenes: Synthesis, Structure, Bonding, and Reactions of Pd(0)− and Pt(0)−Phosphenium Complexes

The analogy between cationic group 10 metal−phosphenium complexes and Fischer carbenes has been formalized through structural and reactivity studies and by energy decomposition analysis (EDA) of the M−P bond. The studied compounds were the three-coordinate, 16-electron species [(NHPMes)M(PPh3)2]OTf (M = Pt (1) and Pd (2); [NHPMes]+ is the N-heterocyclic phosphenium (NHP) cation, [tiebar above startPN(2,4,6-Me3-C6H2)CH2CH2tiebar above endN(2,4,6-Me3-C6H2)]+, OTf = trifluoromethanesulfonate); these were made by reaction of [NHPMes]OTf with M(PPh3)4. The metal−phosphenium bond in both compounds was dominated by metal-to-ligand π-donation. This differed from the M−C bonds in the analogous N-het…

research product

Cubic and Spirocyclic Radicals Containing a Tetraimidophosphate Dianion [P(NR)3(NR‘)]•2-

The reaction of Cl3PNSiMe3 with 3 equiv of LiHNR (R = iPr, Cy, tBu, Ad) in diethyl ether produces the corresponding tris(amino)(imino)phosphoranes (RNH)3PNSiMe3 (1a, R = iPr; 1b, R = Cy; 1c, R = tBu; 1d, R = Ad); subsequent reactions of 1b−d with nBuLi yield the trilithiated tetraimidophosphates {Li3[P(NR)3(NSiMe3)]} (2a, R = Cy; 2b, R = tBu; 2c, R = Ad). The reaction of [(tBuNH)4P]Cl with 1 equiv of nBuLi results in the isolation of (tBuNH)3PNtBu (1e); treatment of 1e with additional nBuLi generates the symmetrical tetraimidophosphate {Li3[P(NtBu)4]} (2d). Compounds 1 and 2 have been characterized by multinuclear (1H, 13C, and 31P) NMR spectroscopy; X-ray structures of 1b,c were also obtai…

research product

Paramagnetic aluminium β-diketiminate

The β-diketiminate ligand framework is shown to undergo reduction to form a neutral main group radical stabilized by spiroconjugation of the unpaired electron over the group 13 element centre. The synthesized paramagnetic complex was characterized by EPR spectroscopy and computational chemistry. peerReviewed

research product

Computational Analysis of n→π* Back-Bonding in Metallylene-Isocyanide Complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph)

A detailed computational investigation of orbital interactions in metal–carbon bonds of metallylene–isocyanide adducts of the type R2MCNR′ (M = Si, Ge, Sn; R, R′ = alkyl, aryl) was performed using density functional theory and different methods based on energy decomposition analysis. Similar analyses have not been carried out before for metal complexes of isocyanides, even though the related carbonyl complexes have been under intense investigations throughout the years. The results of our work reveal that the relative importance of π-type back-bonding interactions in these systems increases in the sequence Sn < Ge ≪ Si, and in contrast to some earlier assumptions, the π-component cannot be …

research product

Electronic Structures of Main-Group Carbene Analogues

The electronic structures of 15 group 13−16 carbene analogues are analyzed using various quantum chemical methods and compared to the data obtained for the parent N-heterocyclic carbene (NHC), imidazol-2-ylidene. The results of this study present a uniform analysis of the similarities and differences in the electronic structures of p-block main-group carbene analogues. Though all systems are formally isovalent, the theoretical analyses unambiguously indicate that their electronic structures run the gamut from CC localized (group 13) to CN localized (group 16) via intermediate, more delocalized, systems. In particular, neither the stibenium ion nor any of the chalcogenium dications is a dire…

research product

Weak Interactions between Trivalent Pnictogen Centers: Computational Analysis of Bonding in Dimers X3E···EX3 (E = Pnictogen, X = Halogen)

The nature of weak interactions in dimers X3E···EX3 (E = N−Bi, X = F−I) was investigated by wave function and density functional theory (DFT)-based methods. Out of the 20 systems studied, 10 are found to be bound at the CP-MP2 and LMP2 levels of theory. Detailed partition of the interaction energy into different components revealed that dispersion is the primary force holding the dimers together but there also exists an important ionic component whose contribution increases with increasing halogen size. As expected, standard density functionals fail to describe bonding in the studied systems. However, the performance of DFT methods can be easily improved via empirical dispersion correction …

research product

Electronic Structures and Spectroscopic Properties of 6π-Electron Ring Molecules and Ions E2N2 and E42+ (E = S, Se, Te)

The electronic structures and molecular properties of square-planar 6π-electron ring molecules and ions E2N2 and E42+ (E = S, Se, Te) were studied using various ab initio methods and density functionals. All species were found to contain singlet diradical character in their electronic structures. Detailed analysis of the CAS wave function of S2N2 in terms of different valence bond structures gives the largest weight for a Lewis-type singlet diradical VB structure in which the two unpaired electrons reside on nitrogen atoms, though the relative importance of the different VB structures is highly dependent on the level of theory. The diradical character in both E2N2 and E42+ was found to incr…

research product

A σ-Donor with a Planar Six-π-Electron B2N2C2 Framework: Anionic N-Heterocyclic Carbene or Heterocyclic Terphenyl Anion?

NB! The anionic ligand 2 was synthesized through deprotonation of a planar, formally zwitterionic diazadiborine precursor, isolated as a lithium salt, and structurally characterized. According to experimental evidence and theoretical calculations, 2 can be considered as an intermediate between two classical classes of ligands: N-heterocyclic carbenes 1 and terphenyls 3. peerReviewed

research product

Extending the Series: Synthesis and Characterization of a Dicationic N-Heterocyclic Selenium Carbene Analogue

The room-temperature reaction between the Dipp2DAB ligand, SnCl2, and SeCl4 results in the quantitative formation of a dicationic N-heterocyclic “carbenoid”. This represents the first example of a chalcogenium dication that mimics the ubiquitous Arduengo-type carbenes; however, the electronic structure is significantly different. peerReviewed

research product

Reaction of LiArMe6 (ArMe6ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) with indium(I)chloride yields three m-terphenyl stabilized mixed-valent organoindium subhalides

Indium(I)chloride reacts with LiArMe6 (ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) in THF to give three new mixed-valent organoindium subhalides. While the 1:1 reaction of InCl with LiArMe6 yields the known metal-rich cluster In8(ArMe6)4 (1), the use of freshly prepared LiArMe6 led to incorporation of iodide, derived from the synthesis of LiArMe6, into the structures, to afford In4(ArMe6)4I2 (2) along with minor amounts of In3(ArMe6)3I2 (3). When the same reaction was performed in 4:3 stoichiometry, the mixed-halide compound In3(ArMe6)3ClI (4) was obtained. Further increasing the chloride:aryl ligand ratio resulted in the formation of the known mixed-halide species In4(ArMe6)4Cl2I2 that can also be…

research product

A Germanium Isocyanide Complex Featuring (n → π*) Back-Bonding and Its Conversion to a Hydride/Cyanide Product via C-H Bond Activation under Mild Conditions

Reaction of the diarylgermylene Ge(ArMe6)2 [ArMe6 = C6H3-2,6-(C6H2-2,4,6-(CH3)3)2] with tert-butyl isocyanide gave the Lewis adduct species (ArMe6)2GeCNBut, in which the isocyanide ligand displays a decreased C–N stretching frequency consistent with an n → π* back-bonding interaction. Density functional theory confirmed that the HOMO is a Ge–C bonding combination between the lone pair of electrons on the germanium atom and the C–N π* orbital of the isocyanide ligand. The complex undergoes facile C–H bond activation to produce a new diarylgermanium hydride/cyanide species and isobutene via heterolytic cleavage of the N–But bond. peerReviewed

research product

Theoretical investigation of paramagnetic group 13 diazabutadiene radicals: insights into the prediction and interpretation of EPR spectroscopy parameters

The electronic structures and the spin density distributions of the group 13 1,4-diaza(1,3)butadiene (DAB) radicals [(R-DAB)2M]˙, [(R-DAB)MX2]˙ and {[(R-DAB)MX]2}˙˙ (M = Al, Ga, In; X = F, Cl, Br, I; R = H, Me, tBu, Ph) are studied using density functional theory at both non-relativistic and relativistic levels of theory. The calculations demonstrate that all systems share a qualitatively similar electronic structure and are primarily ligand centred π-radicals. The calculated metal, nitrogen and hydrogen hyperfine couplings are found to be independent of the identity of the R-group and the halogen atom. They are, however, dependent on the geometry and oxidation state of the metal centre. Bo…

research product

Experimental and Theoretical Investigations of Structural Isomers of Dichalcogenoimidodiphosphinate Dimers: Dichalcogenides or Spirocyclic Contact Ion Pairs?

A synthetic protocol for the tert-butyl-substituted dichalcogenoimidodiphosphinates [Na(tmeda){(EPtBu2)2N}] (3 a, E=S; 3 b, E=Se; 3 c, E=Te) has been developed. The one-electron oxidation of the sodium complexes [Na(tmeda){(EPR2)2N}] with iodine produces a series of neutral dimers (EPR2NPR2E[BOND])2 (4 b, E=Se, R=iPr; 4 c, E=Te, R=iPr; 5 a, E=S, R=tBu; 5 b, E=Se, R=tBu; 5 c, E=Te, R=tBu). Attempts to prepare 4 a (E=S, R=iPr) in a similar manner produced a mixture including HN(SPiPr2). Compounds 4 b, 4 c and 5 a–c were characterised by multinuclear NMR spectra and by X-ray crystallography, which revealed two alternative structures for these dimeric molecules. The derivatives 4 b, 4 c, 5 a an…

research product

Counterintuitive Mechanisms of the Addition of Hydrogen and Simple Olefins to Heavy Group 13 Alkene Analogues

The mechanism of the reaction of olefins and hydrogen with dimetallenes ArMMAr (Ar = aromatic group; M = Al or Ga) was studied by density functional theory calculations and experimental methods. The digallenes, for which the most experimental data are available, are extensively dissociated to gallanediyl monomers, :GaAr, in hydrocarbon solution, but the calculations and experimental data showed also that they react with simple olefins, such as ethylene, as intact ArGaGaAr dimers via stepwise [2 + 2 + 2] cycloadditions due to their considerably lower activation barriers vis-à-vis the gallanediyl monomers, :GaAr. This pathway was preferred over the [2 + 2] cycloaddition of olefin to monomeric…

research product

Synthesis, X-ray structures and redox behaviour of the group 14 bis-boraamidinates M[PhB(μ-N-t-Bu)2]2 (M = Ge, Sn) and Li2M[PhB(μ-N-t-Bu)2]2 (M = Sn, Pb)

The solid-state structures of the complexes M[PhB(μ-N-t-Bu)2]2 (1a, M= Ge; 1b, M = Sn) were determined to be spirocyclic with two orthogonal boraamidinate (bam) ligands N,N′-chelated to the group 14 centre. Oxidation of 1b with SO2Cl2 afforded the thermally unstable, blue radical cation {Sn[PhB(μ-N-t-Bu)2]2}•+, identified by electron paramagnetic resonance (EPR) spectroscopy supported by density functional theory (DFT) calculations, whereas the germanium analogue 1a was inert towards SO2Cl2. The reaction between Li2[PhB(μ-N-t-Bu)2]2 and SnCl2 or PbI2 in 2:1 molar ratio in diethyl ether produced the novel heterotrimetallic complexes Li2Sn[PhB(μ-N-t-Bu)2]2 (2b) and (Et2O·Li)LiPb[PhB(μ-N-t-Bu)…

research product

Bond Stretching and Redox Behavior in Coinage Metal Complexes of the Dichalcogenide Dianions [(SPh2P)2CEEC(PPh2S)2]2− (E=S, Se): Diradical Character of the Dinuclear Copper(I) Complex (E=S)

The metathetical reactions of a) [Li(tmeda)]2[(S)C(PPh2S)2] (Li2⋅3 c) with CuCl2 and b) [Li(tmeda)]2[(SPh2P)2CSSC(PPh2S)2] (Li2⋅4 c) with two equivalents of CuCl both afford the binuclear CuI complex {Cu2[(SPh2P)2CSSC(PPh2S)2]} (5 c). The elongated (C)S[BOND]S(C) bond (ca. 2.54 and 2.72 Å) of the dianionic ligand observed in the solid-state structure of 5 c indicate the presence of diradical character as supported by theoretical analyses. The treatment of [Li(tmeda)]2[(SPh2P)2CSeSeC(PPh2S)2] (Li2⋅4 b) and Li2⋅4 c with AgOSO2CF3 produce the analogous AgI derivatives, {Ag2[(SPh2P)2CEEC(PPh2S)2]} (6 b, E=Se; 6 c, E=S), respectively. The diselenide complex 6 b exhibits notably weaker Ag[BOND]Se…

research product

Synthesis, structure and photophysical properties of a highly luminescent terpyridine-diphenylacetylene hybrid fluorophore and its metal complexes

A new fluorescent terpyridyl-diphenylacetylene hybrid fluorophore 4′-[4-{(4-methoxyphenyl)ethynyl}phenyl]-2,2′:6′,2′′-terpyridine, L, was synthesized via Sonogashira cross-coupling of 4′-(4-bromophenyl)-2,2′:6′,2′′-terpyridine and 4-ethynylanisole in the presence of Pd(PPh3)4/CuI as a catalyst. The solid state structure of L shows a trans arrangement of pyridine nitrogen atoms along the interannular bond in the terpyridine domain. Five transition metal complexes of L, {[FeL2](CF3SO3)2 (1), [ZnL2](ClO4)2 (2), [CdL2](ClO4)2 (3), [RuL2](PF6)2 (4), and PtMe3IL (5)}, have also been synthesized and characterized by spectroscopic methods and single crystal X-ray analysis. The X-ray crystal structu…

research product

Tellurium(II)-Centered Dications from the Pseudohalide “Te(OTf)2”

Te for two: Supported by pyridine- or carbene-based ligands, tellurium-centered dications are prepared in high yield and include a dicationic tellurium analogue of the recently synthesized “carbodicarbene”. The key to accessing these compounds is the isolation of a base-stabilized form of TeOTf2 (see structure), a new highly electrophilic reagent for tellurium chemistry. peerReviewed

research product

First Ruthenium Complex of Glyoxalbis(N-phenyl)osazone (LNHPhH2): Synthesis, X-ray Structure, Spectra, and Density Functional Theory Calculations of (LNHPhH2)Ru(PPh3)2Cl2

The first ruthenium complex containing the parent osazone ligand, glyoxalbis(N-phenyl)osazone (LNHPhH2), is reported. The complex (LNHPhH2)Ru(PPh3)2Cl2 (1) was characterized with mass, IR, 1H NMR, and UV−vis spectroscopy as well as with theoretical calculations. Density functional theory calculations on the model compound (LNHPhH2)Ru(PMe3)2Cl2 (2) reproduce the geometrical features observed for 1 and verify that it formally contains a ruthenium(II) metal center coordinated by a neutral osazone. Subsequent bonding analyses identify π-interactions between the occupied orbitals of the metal fragment and the LUMO of the osazone, which results in transfer of approximately 0.3 electrons from the …

research product

Direct observation of a borane–silane complex involved in frustrated Lewis-pair-mediated hydrosilylations

Perfluorarylborane Lewis acids catalyse the addition of silicon–hydrogen bonds across C=C, C=N and C=O double bonds. This ‘metal-free’ hydrosilylation has been proposed to occur via borane activation of the silane Si–H bond, rather than through classical Lewis acid/base adducts with the substrate. However, the key borane/silane adduct had not been observed experimentally. Here it is shown that the strongly Lewis acidic, antiaromatic 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene forms an observable, isolable adduct with ​triethylsilane. The equilibrium for adduct formation was studied quantitatively through variable-temperature NMR spectroscopic investigations. The interacti…

research product

Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dimethylimidazolium) by combined application of Raman spectroscopy and solid-state DFT calculations

The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2− anions …

research product

Mechanistic Study of Stepwise Methylisocyanide Coupling and C-H Activation Mediated by a Low-Valent Main Group Molecule

An experimental and DFT investigation of the mechanism of the coupling of methylisocyanide and C–H activation mediated by the germylene (germanediyl) Ge(ArMe6)2 (ArMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2) showed that it proceeded by initial MeNC adduct formation followed by an isomerization involving the migratory insertion of the MeNC carbon into the Ge–C ligand bond. Addition of excess MeNC led to sequential insertions of two further MeNC molecules into the Ge–C bond. The insertion of the third MeNC leads to methylisocyanide methyl group C–H activation to afford an azagermacyclopentadienyl species. The X-ray crystal structures of the 1:1 (ArMe6)2GeCNMe adduct, the first and final insertion produc…

research product

Experimental and Theoretical Investigations of Tellurium(IV) Diimides and Imidotelluroxanes: X-ray Structures of B(C6F5)3 Adducts of OTe(μ-NtBu)2TeNtBu, [OTe(μ-NtBu)2Te(μ-O)]2 and tBuNH2

The hydrolysis of tBuNTe(μ-NtBu)2TeNtBu (1) with 1 or 2 equiv of (C6F5)3B·H2O results in the successive replacement of terminal imido groups by oxo ligands to give the telluroxane-Lewis acid adducts (C6F5)3B·OTe(μ-NtBu)2TeNtBu (2) and [(C6F5)3B·OTe(μ-NtBu)2Te(μ-O)]2 (3), which were characterized by multinuclear NMR spectroscopy and X-ray crystallography. The TeO distance in 2 is 1.870(2) Å. The di-adduct 3 involves the association of four tBuNTeO monomers to give a tetramer in which both terminal TeO groups [d(TeO) = 1.866(3) Å] are coordinated to B(C6F5)3. The central Te2O2 ring in 3 is distinctly unsymmetrical [d(TeO) = 1.912(3) and 2.088(2) Å]. The X-ray structure of (C6F5)3B·NH2tBu (4),…

research product

Benson group additivity values of phosphines and phosphine oxides : Fast and accurate computational thermochemistry of organophosphorus species

Composite quantum chemical methods W1X-1 and CBS-QB3 are used to calculate the gas phase standard enthalpy of formation, entropy and heat capacity of 38 phosphines and phosphine oxides for which reliable experimental thermochemical information is limited or simply nonexistent. For alkyl phosphines and phosphine oxides, the W1X-1 and CBS-QB3 results are mutually consistent and in excellent agreement with available G3X values and empirical data. In the case of aryl-substituted species, different computational methods show more variation, with G3X enthalpies being furthest from experimental values. The calculated thermochemical data are subsequently used to determine Benson group additivity co…

research product

Oligoamide Foldamers as Helical Chloride Receptors : the Influence of Electron-Withdrawing Substituents on Anion-Binding Interactions

The anion‐binding properties of three closely related oligoamide foldamers were studied using NMR spectroscopy, isothermal titration calorimetry and mass spectrometry, as well as DFT calculations. The 1H NMR spectra of the foldamers in [D6]acetone solution revealed partial preorganization by intramolecular hydrogen bonding, which creates a suitable cavity for anion binding. The limited size of the cavity, however, enabled efficient binding by the inner amide protons only for the chloride anion resulting in the formation of a thermodynamically stable 1:1 complex. All 1:1 chloride complexes displayed a significant favourable contribution of the entropy term. Most likely, this is due to the re…

research product

77Se NMR Spectroscopic, DFT MO, and VBT Investigations of the Reversible Dissociation of Solid (Se6I2)[AsF6]2•2SO2 in Liquid SO2 to Solutions Containing 1,4-Se6I22+ in Equilibrium with Sen2+ (n = 4, 8, 10) and Seven Binary Selenium Iodine Cations: Preliminary Evidence for 1,1,4,4-Se4Br42+ and cyclo-Se7Br+

The composition of a complex equilibrium mixture formed upon dissolution of (Se6I2)[AsF6]2·2SO2 in SO2(l) was studied by 77Se NMR spectroscopy at −70 °C with both natural-abundance and enriched 77Se-isotope samples (enrichment 92%). Both the natural-abundance and enriched NMR spectra showed the presence of previously known cations 1,4-Se6I22+, SeI3+, 1,1,4,4-Se4I42+, Se102+, Se82+, and Se42+. The structure and bonding in 1,4-Se6I22+ and 1,1,4,4-Se4I42+ were explored using DFT calculations. It was shown that the observed Se−Se bond alternation and presence of thermodynamically stable 4pπ−4pπ Se−Se and 4pπ−5pπ Se−I bonds arise from positive charge delocalization from the formally positively c…

research product

Dispersion Forces and Counterintuitive Steric Effects in Main Group Molecules: Heavier Group 14 (Si-Pb) Dichalcogenolate Carbene Analogues with Sub-90° Interligand Bond Angles

The synthesis and spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand, including two new acyclic silylenes) are described. They were found to possess several unusual features—the most notable of which is their strong tendency to display acute interligand, Ch–M–Ch, bond angles that are often well below 90°. Furthermore, and contrary to normal steric expectations, the interligand angles were found to become narrower as the size of the ligand was increased. Experimental and structural data in conjunction with high-level DFT calculations, in…

research product

In Search of the [PhB(μ-NtBu)2]2As• Radical: Experimental and Computational Investigations of the Redox Chemistry of Group 15 Bis-boraamidinates

DFT calculations for the group 15 radicals [PhB(μ-NtBu)2]2M• (M = P, As, Sb, Bi) predict a pnictogen-centered SOMO with smaller contributions to the unpaired spin density arising from the nitrogen and boron atoms. The reactions of Li2[PhB(μ-NR)2] (R = tBu, Dipp) with PCl3 afforded the unsolvated complex LiP[PhB(μ-NtBu)2]2 (1a) in low yield and ClP[PhB(μ-NDipp)2] (2), both of which were structurally characterized. Efforts to produce the arsenic-centered neutral radical, [PhB(μ-NtBu)2]2As•, via oxidation of LiAs[PhB(μ-NtBu)2]2 with one-half equivalent of SO2Cl2, yielded the Zwitterionic compound [PhB(μ-NtBu)2As(μ-NtBu)2B(Cl)Ph] (3) containing one four-coordinate boron center with a B−Cl bond.…

research product

Structurally simple complexes of CO2

The ability to bind CO2 through the formation of low-energy, easily-broken, bonds could prove invaluable in a variety of chemical contexts. For example, weak bonds to CO2 would greatly decrease the cost of the energy-intensive sorbent-regeneration step common to most carbon capture technologies. Furthermore, exploration of this field could lead to the discovery of novel CO2 chemistry. Reduction of complexed carbon dioxide might generate chemical feedstocks for the preparation of value-added products, particularly transportation fuels or fuel precursors. Implementation on a large scale could help to drastically reduce CO2 concentrations in the atmosphere. However, literature examples of weak…

research product

The Nature of Transannular Interactions in E4N4 and E82+ (E = S, Se)

The electronic structures of tetrachalcogen tetranitrides, E4N4, and octachalcogen dications, E82+, and the nature of their intramolecular E···E interactions (E = S, Se) was studied with high-level theoretical methods. The results reveal that the singlet ground states of both systems have a surprisingly large correlation contribution which functions to weaken and therefore lengthen the cross-ring E–E bond. The observed correlation effects are primarily static in E4N4, whereas in E82+ the dynamic part largely governs the total correlation contribution. The presented description of bonding is the first that gives an all-inclusive picture of the origin of cross-ring interactions in E4N4 and E8…

research product

Synthesis, Spectroscopic, and Structural Investigation of the Cyclic [N(PR2E)2]+ Cations (E = Se, Te; R = iPr, Ph): the Effect of Anion and R-Group Exchange

Two-electron oxidation of the [N(PiPr2E)2]- anion with iodine produces the cyclic [N(PiPr2E)2]+ (E = Se, Te) cations, which exhibit long E−E bonds in the iodide salts [N(PiPr2Se)2]I (4) and [N(PiPr2Te)2]I (5). The iodide salts 4 and 5 are converted to the ion-separated salts [N(PiPr2Se)2]SbF6 (6) and [N(PiPr2Te)2]SbF6 (7) upon treatment with AgSbF6. Compounds 4−7 were characterized in solution by multinuclear NMR, vibrational, and UV−visible spectroscopy supported by DFT calculations. A structural comparison of salts 4−7 and [N(PiPr2Te)2]Cl (8) confirms that the long E−E bonds in 4, 5, and 8 can be attributed primarily to the donation of electron density from a lone pair of the halide count…

research product

Nature of Bonding in Group 13 Dimetallenes: a Delicate Balance between Singlet Diradical Character and Closed Shell Interactions

The nature of metal−metal bonding in group 13 dimetallenes REER (E = Al, Ga, In, Tl; R = H, Me, tBu, Ph) was investigated by use of quantum chemical methods that include HF, second order Møller−Plesset perturbation theory (MP2), coupled cluster (CCSD(T)), complete active space with (CASPT2) and without (CAS) second order perturbation theory, and two density functionals, namely, B3LYP and M06-2X. The results show that the metal−metal interaction in group 13 dimetallenes stems almost exclusively from static and dynamic electron correlation effects: both dialuminenes and digallenes have an important singlet diradical component in their wave function, whereas the bonding in the heavier diindene…

research product

Bi-, Tetra-, and Hexanuclear AuI and Binuclear AgI Complexes and AgI Coordination Polymers Containing Phenylaminobis(phosphonite), PhN{P(OC6H4OMe-o)2}2, and Pyridyl Ligands

The reactions of phenylaminobis(phosphonite), PhN{P(OC6H4OMe-o)2}2 (1) (PNP), with [AuCl(SMe2)] in appropriate ratios, afford the bi- and mononuclear complexes, [(AuCl)2(µ-PNP)] (2) and [(AuCl)(PNP)]2 (3) in good yield. Treatment of 2 with 2 equiv of AgX (X = OTf or ClO4) followed by the addition of 1 or 2,2′-bipyridine affords [Au2(µ-PNP)2](OTf)2 (4) and [Au2(C10H8N2)2(µ-PNP)](ClO4)2 (5), respectively. Similarly, the macrocycles [Au4(C4H4N2)2(µ-PNP)2](ClO4)4 (6), [Au4(C10H8N2)2(µ-PNP)2](ClO4)4 (7), and [Au6(C3H3N3)2(µ-PNP)3](ClO4)6 (8) are obtained by treating 2 with pyrazine, 4,4′-bipyridine, or 1,3,5-triazine in the presence of AgClO4. The reaction of 1 with AgOTf in a 1:2 molar ratio pr…

research product

New Tetraphosphane Ligands {(X2P)2NC6H4N(PX2)2} (X = Cl, F, OMe, OC6H4OMe-o): Synthesis, Derivatization, Group 10 and 11 Metal Complexes and Catalytic Investigations. DFT Calculations on Intermolecular P···P Interactions in Halo-Phosphines

The reaction of p-phenylenediamine with excess PCl3 in the presence of pyridine affords p-C6H4[N(PCl2)2]2 (1) in good yield. Fluorination of 1 with SbF3 produces p-C6H4[N(PF2)2]2 (2). The aminotetra(phosphonites) p-C6H4[N{P(OC6H4OMe-o)2}2]2 (3) and p-C6H4[N{P(OMe)2}2]2 (4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H2O2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C6H4[N{P(O)(OC6H4OMe-o)2}2]2 (5), p-C6H4[N{P(S)(OMe)2}2]2 (6), and p-C6H4[N{P(Se)(OMe)2}2]2 (7) in good yield. Reactions of 3 with [M(COD)Cl2] (M = Pd or Pt) (COD = cycloocta-1,5-diene)…

research product

Structures and EPR spectra of binary sulfur−nitrogen radicals from DFT calculations

he scattered electron paramagnetic resonance (EPR) spectroscopic data for binary sulfur–nitrogen (S,N) radicals have been compiled and critically assessed.Many of these are inorganic rings or cages.For each species, possible equilibrium structures in the gas phase and the EPR hyperfine coupling (hfc) constants have been calculated with DFT using the B3LYP functional and basis sets of triple-ζ (or better) quality.Good agreement is obtained between calculated and measured values for the well characterized [S3N2]+radical dot, a planar π-radical for which the s-component of the orbitals is likely to be reasonably independent of minor geometrical changes between gas-phase and condensed-phase sta…

research product

Dihydrogen Activation by Antiaromatic Pentaarylboroles

Facile metal-free splitting of molecular hydrogen (H2) is crucial for the utilization of H2 without the need for toxic transition-metal-based catalysts. Frustrated Lewis pairs (FLPs) are a new class of hydrogen activators wherein interactions with both a Lewis acid and a Lewis base heterolytically disrupt the hydrogen−hydrogen bond. Here we describe the activation of hydrogen exclusively by a boron-based Lewis acid, perfluoropentaphenylborole. This antiaromatic compound reacts extremely rapidly with H2 in both solution and the solid state to yield boracyclopent-3-ene products resulting from addition of hydrogen atoms to the carbons α to boron in the starting borole. The disruption of antiar…

research product

Homoleptic Pnictogen-Chalcogen Coordination Complexes

The synthesis and structural characterization of dicationic selenium and tellurium analogues of the carbodiphosphorane and triphosphenium families of compounds are reported. These complexes, [Ch(dppe)][OTf]2 [Ch = Se, Te; dppe = 1,2-bis(diphenylphosphino)ethane; OTf = trifluoromethanesulfonate], are formed using [Ch]2+ reagents via a ligand-exchange protocol and represent extremely rare examples of homoleptic pnictogen → chalcogen coordination complexes. The corresponding arsenic compounds were also prepared, [Ch(dpAse)][OTf]2 [Ch = Se, Te; dpAse = 1,2-bis(diphenylarsino)ethane], exhibiting the first instance of an arsenic → chalcogen dative bond. The electronic structures of these unique c…

research product

Assembly of a planar, tricyclic B4N8 framework with s-indacene structure

A neutral, formally 16π-electron, tricyclic tetrahydrazidotetraborane was obtained in a two-step procedure involving self-assembly of a dilithiodiborate with B4N8 framework and subsequent oxidation of the phenylborate moieties to boranes and biphenyl using Fe(II) as an oxidant. peerReviewed

research product

Experimental and Theoretical Investigations of the Redox Behavior of the Heterodichalcogenido Ligands [(EPiPr2)(TePiPr2)N]− (E = S, Se): Cyclic Cations and Acyclic Dichalcogenide Dimers

The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [(EPiPr2)(TePiPr2)N]− (1a, E = S; 1b, E = Se) with iodine yields cyclic cations [(EPiPr2)(TePiPr2)N]+ as their iodide salts [(SPiPr2)(TePiPr2)N]I (2a) and [(SePiPr2)(TePiPr2)N]I (2b). The five-membered rings in 2a and 2b both display an elongated E−Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers (EPiPr2NPiPr2Te−)2 (3a, E = S; 3b, E = Se), which are connected exclusively through a Te−Te bond. Two-electron reduction of 2a and 2b with 2 equiv of cobaltocene regenerates the corresp…

research product

Comment on "Crystallographic Snapshot of an Arrested Intermediate in the Biomimetic Activation of CO2"

Out of focus: A recent Communication published in this journal describes the synthesis of [nBu4N]HCO3. The authors performed a single-crystal X-ray study that revealed a putative species described as an incipient hydroxide ion engaging in a long, and presumably weak, interaction with CO2. Our recent exploration of the coordination chemistry of CO2 with small ions leads us to believe that such an exceptional bonding situation is unlikely. Instead, we argue that the crystal structure is that of [nBu4N]O2CCH3 and therefore not representative of the bulk powder from the synthesis. peerReviewed

research product

The Instability of Ni{N(SiMe3)2}2: A Fifty Year Old Transition Metal Silylamide Mystery

The characterization of the unstable NiII bis(silylamide) Ni{N(SiMe3)2}2 (1), its THF complex Ni{N(SiMe3)2}2(THF) (2), and the stable bis(pyridine) derivative trans-Ni{N(SiMe3)2}2(py)2 (3), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric NiI species, [Ni{N(SiMe3)2}]4 (4), also obtainable from LiN(SiMe3)2 and NiCl2(DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of NiII to NiI and the stabilization of 4 through dispersion forces. peerReviewed

research product

Hydrogen activation with perfluorinated organoboranes: 1,2,3- tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene

The perfluorinated boraindene 3 was synthesized and fully characterized. Both computational and crystallographic data show that 3 is antiaromatic. Compound 3 was shown to react reversibly with H2 and to catalyse the hydrogenation of cyclohexene. The mechanism of catalysis was probed experimentally and computationally. peerReviewed

research product

Tridentate C–I⋯O−–N+ halogen bonds

The X-ray structures of the first co-crystals where the three oxygen lone pairs in N-oxides are fully utilized for tridentate C–I⋯O−–N+ halogen bonding with 1,ω-diiodoperfluoroalkanes are reported, studied computationally, and compared with the corresponding silver(I) N-oxide complexes. peerReviewed

research product

Theoretical Investigation of Paramagnetic Diazabutadiene Gallium(III)−Pnictogen Complexes: Insights into the Interpretation and Simulation of Electron Paramagnetic Resonance Spectra

The electronic structures and the spin density distributions of the paramagnetic gallium 1,4-diaza(1,3)butadiene (DAB) model systems {(tBu-DAB)Ga(I)[Pn(SiH3)2]}• and the related dipnictogen species {(tBu-DAB)Ga[Pn(SiH3)2]2}• (Pn = N, P, As) were studied using density functional theory. The calculations demonstrate that all systems share a qualitatively similar electronic structure and are primarily ligand-centered π-radicals. The calculated electron paramagnetic resonance (EPR) hyperfine coupling constants (HFCCs) for these model systems were optimized using iterative methods and were used to create accurate spectral simulations of the parent radicals {(tBu-DAB)Ga(I)[Pn(SiMe3)2]}• (Pn = N, …

research product

Synthesis, Reactivity, and Computational Analysis of Halophosphines Supported by Dianionic Guanidinate Ligands

The reported chemistry and reactivity of guanidinate supported group 15 elements in the +3 oxidation state, particularly phosphorus, is limited when compared to their ubiquity in supporting metallic elements across the periodic table. We have synthesized a series of chlorophosphines utilizing homo- and heteroleptic (dianionic)guanidinates and have completed a comprehensive study of their reactivity. Most notable is the reluctancy of these four-membered rings to form the corresponding N-heterocyclic phosphenium cations, the tendency to chemically and thermally eliminate carbodiimide, and the scarcely observed ring expansion by insertion of a chloro(imino)phosphine into a P–N bond of the P–N–…

research product

Reactions of Terphenyl-Substituted Digallene AriPr4GaGaAriPr4 (AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) with Transition Metal Carbonyls and Theoretical Investigation of the Mechanism of Addition

The neutral digallene AriPr4GaGaAriPr4 (AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) was shown to react at ca. 25 °C in pentane solution with group 6 transition metal carbonyl complexes M(CO)6 (M = Cr, Mo, W) under UV irradiation to afford compounds of the general formula trans-[M(GaAriPr4)2(CO)4] in modest yields. The bis(gallanediyl) complexes were characterized spectroscopically and by X-ray crystallography, which demonstrated that they were isostructural. In each complex, the gallium atom is two-coordinate with essentially linear geometry, which is relatively rare for gallanediyl-substituted transition metal species. The experimental data show that the gallanediyl ligand :GaAriPr4 behaves as a g…

research product

A Cation-Captured Palladium(0) Anion: Synthesis, Structure, and Bonding of [PdBr(PPh3)2]− Ligated by an N-Heterocyclic Phosphenium Cation

Unsaturated N-heterocyclic phosphenium cations (uNHP) stabilize the [Pd0(PR3)2X]− anion proposed over the past decade to be the crucial but elusive intermediate in palladium-catalyzed cross-coupling reactions (X = halide). Insertion of metal into the P−Br bond of the precursor mesityl-substituted bromophosphine gives the structurally characterized Pd(0)-phosphenium complex (uNHPMes)Pd(PPh3)2Br, which features a long Pd−Br bond (2.7240(9) Å) and the shortest known Pd−P bond (2.1166(17) Å). The reaction is proposed to proceed by an associative pathway involving a Pd-bromophosphine complex that undergoes P-to-Pd bromide transfer. peerReviewed

research product

New tellurium-containing ring systems

The recent discovery of a suitable synthesis of the monoanionic ditelluroimidodiphosphinate ligands [TePR2NPR2Te]− (R = Ph, iPr, tBu) has facilitated investigations of the fundamental chemistry of these chelating inorganic ligands. This article is focused on aspects of that chemistry in which the behaviour of this ditelluro PNP ligand differs from that of the well-studied dithio and diseleno congeners. The emphasis is on new tellurium-containing ring systems formed in: (a) redox transformations and (b) the synthesis of metal complexes. peerReviewed

research product

NMR Spectroscopic Evidence for the Intermediacy of XeF3– in XeF2/F– Exchange, Attempted Syntheses and Thermochemistry of XeF3– Salts, and Theoretical Studies of the XeF3– Anion

The existence of the trifluoroxenate(II) anion, XeF3−, had been postulated in a prior NMR study of the exchange between fluoride ion and XeF2 in CH3CN solution. The enthalpy of activation for this exchange, ΔH⧧, has now been determined by use of single selective inversion 19F NMR spectroscopy to be 74.1 ± 5.0 kJ mol−1 (0.18 M) and 56.9 ± 6.7 kJ mol−1 (0.36 M) for equimolar amounts of [N(CH3)4][F] and XeF2 in CH3CN solvent. Although the XeF3− anion has been observed in the gas phase, attempts to prepare the Cs+ and N(CH3)4+ salts of XeF3− have been unsuccessful, and are attributed to the low fluoride ion affinity of XeF2 and fluoride ion solvation in CH3CN solution. The XeF3− anion would rep…

research product

More electron rich than cyclopentadienyl: 1,2-diaza-3,5-diborolyl as a ligand in ferrocene and ruthenocene analogs

Ruthenium and iron sandwich complexes incorporating cyclopentadienyl analogs with CB2N2− skeletons were characterized. Electrochemical measurements supported by computational studies revealed that in combination with larger metal ions such as Ru the CB2N2− ligand can be more electron-rich than its organic counterpart. peerReviewed

research product

CCDC 1573808: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product

CCDC 1573801: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product

CCDC 1573806: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product

CCDC 1573805: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product

CCDC 1573807: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product

CCDC 1573804: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product

CCDC 1573802: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product

CCDC 1573803: Experimental Crystal Structure Determination

Related Article: Paul J. Ragogna, Cameron Graham, Clement Millet, Amy N Price, Juuso Valijus, Michael J Cowley, Heikki Tuononen|2017|Chem.-Eur.J.|24|672|doi:10.1002/chem.201704337

research product