0000000001252238

AUTHOR

Anu Kankainen

showing 164 related works from this author

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

2020

Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…

Nuclear and High Energy PhysicsPenning trapAstronomy & Astrophysics01 natural sciencesIonPhysics Particles & Fieldsbeta-decay spectroscopyIsomersShell model0103 physical sciencesPhysics::Atomic and Molecular ClustersNuclear Experiment010306 general physicsSpectroscopyCouplingPhysicsScience & TechnologyNUCLEI010308 nuclear & particles physicsPhysicsPRECISION MASS-SPECTROMETRYNuclear shell modelR-PROCESSshell modelpenning trapRAMSEY METHODPenning traplcsh:QC1-999Physics NuclearExcited stateBeta (plasma physics)Physical SciencesSHELL-MODELTRANSITION-PROBABILITIESisomersAtomic physicsBeta-decay spectroscopylcsh:PhysicsIon cyclotron resonancePhysics Letters B
researchProduct

Total absorption γ -ray spectroscopy of niobium isomers

2019

15 pags. 17 figs., 5 tabs.

spektroskopiaNiobiumchemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structure7. Clean energy01 natural sciences0103 physical sciencesDecay heat010306 general physicsSpectroscopyAbsorption (electromagnetic radiation)Nuclear ExperimentPhysicsZirconiumSpectrometer010308 nuclear & particles physicsPandemonium effectPenning trapnuclear structure and decayschemistry13. Climate actionFísica nuclearbeta decayAtomic physicsisomer decaysydinfysiikka
researchProduct

Penning-trap mass measurements on 92, 94-98, 100Mo with JYFLTRAP

2012

Penning-trap measurements on stable 92, 94-98, 100Mo isotopes have been performed with relative accuracy of \ensuremath1⋅10−8\ensuremath1⋅10−8 with the JYFLTRAP Penning-trap mass spectrometer by using 85Rb as a reference. The Mo isotopes have been found to be about 3keV more bound than given in the Atomic Mass Evaluation 2003 (AME03). The results confirm that the discrepancy between the ISOLTRAP and JYFLTRAP data for 101-105Cd isotopes was due to an erroneous value in the AME03 for 96Mo used as a reference at JYFLTRAP. The measured frequency ratios of Mo isotopes have been used to update mass-excess values of 30 neutron-deficient nuclides measured at JYFLTRAP. peerReviewed

nuclear spectroscopyPhysicsNuclear and High Energy PhysicsMass excessIsotopeaccelerator-based physicsPenning trapMass spectrometrykiihdytinpohjainen fysiikkaISOLTRAPAtomic massNuclear physicsydinrakennenuclear structureydinspektroskopiaNuclear fusionNuclideAtomic physicsydinfysiikkaThe European Physical Journal A
researchProduct

Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculatio…

2018

The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…

Nuclear TheoryastrofysiikkaRare earthnuclear astrophysicsGeneral Physics and AstronomyFOS: Physical sciences7. Clean energy01 natural sciencesbinding energy and massesNuclear Theory (nucl-th)0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Isotopeta114010308 nuclear & particles physicsNuclear structureharvinaiset maametallitPenning trapAtomic mass3. Good healthAstrophysics - Solar and Stellar Astrophysics13. Climate actionPairingr-processAtomic physicsydinfysiikkaAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Excited states in Br87 populated in β decay of Se87

2019

Physics010308 nuclear & particles physicsExcited state0103 physical sciencesAtomic physics010306 general physics01 natural sciencesPhysical Review C
researchProduct

First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments

2018

We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…

Angular momentumResolution (mass spectrometry)Fission01 natural sciencesIonSubatomär fysikydinreaktiotPrimary (astronomy)0103 physical sciencesSubatomic PhysicsPhysics::Atomic and Molecular ClustersfissionYield ratioPhysics::Atomic PhysicsPhysics::Chemical PhysicsNuclear Experiment010306 general physicsnuclear reactionsPhysicsta114010308 nuclear & particles physicsPenning trapfissioYield (chemistry)Atomic physicsisomer decaysydinfysiikka
researchProduct

β decay of Cd127 and excited states in In127

2019

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyvaskyla. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.

PhysicsDecay scheme010308 nuclear & particles physicsNuclear shell modelPenning trap01 natural sciencesBeta decayMass separationExcited state0103 physical sciencesGamma spectroscopyAtomic physics010306 general physicsGround statePhysical Review C
researchProduct

Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb

2017

Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed

Physicsta114010308 nuclear & particles physicsPhysicsQC1-99901 natural sciencesBeta decayNuclear physicsnuclear massesBeta (plasma physics)0103 physical sciencesstructuredecay data measurementsAtomic physics010306 general physicsAbsorption (electromagnetic radiation)Nuclear ExperimentEPJ Web of Conferences
researchProduct

New accurate measurements of neutron emission probabilities for relevant fission products

2017

We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations. peerReviewed

Neutron emissionQC1-999Nuclear physicsNeutronAstrophysics7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesNeutron010306 general physicsNuclear Experimentastro nuclear physicsPhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]Fission productsPnta114Isotope:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsDetectorBeta (plasma physics)r-processFísica nuclearDelayed neutronNeutron emission
researchProduct

High-precision mass measurement ofS31with the double Penning trap JYFLTRAP improves the mass value forCl32

2010

Nuclear physicsPhysicsNuclear and High Energy PhysicsInternal conversionDecay schemeIsotopes of germaniumDouble beta decayBeta particleAtomic physicsPenning trapMass measurementBeta-decay stable isobarsPhysical Review C
researchProduct

Single and Double Beta-DecayQValues among the TripletZr96,Nb96, andMo96

2016

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16)  keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the…

QuenchingCoupling constantPhysics010308 nuclear & particles physicsQ valueGeneral Physics and AstronomyMass spectrometry7. Clean energy01 natural sciencesAtomic massMain branchDouble beta decay0103 physical sciencesUniquenessAtomic physics010306 general physicsPhysical Review Letters
researchProduct

Penning-trap-assisted study of excitations in Br88 populated in β decay of Se88

2017

Excited levels of $^{88}\mathrm{Br}$ populated in the $\ensuremath{\beta}$ decay of $^{88}\mathrm{Se}$ have been studied by means of $\ensuremath{\beta}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{\gamma}$ spectroscopy methods. Neutron-rich parent $^{88}\mathrm{Se}$ nuclei were produced with proton-induced fission of $^{238}\mathrm{U}$ using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyv\"askyl\"a. The level scheme of $^{88}\mathrm{Br}$ has been constructed and $logft$ values of levels were determined. The ground-state spin o…

Physics010308 nuclear & particles physicsExcited stateSpectroscopy methods0103 physical sciencesAtomic physics010306 general physicsPenning trapSpin (physics)01 natural sciencesPhysical Review C
researchProduct

Signatures of oblate deformation in the ^{111}Tc nucleus

2011

Monoisotopic samples of exotic, neutron-rich ${}^{111}$Mo nuclei, produced in the deuteron-induced fission of ${}^{238}$U and separated using the IGISOL3 isotope separator, coupled to the JYFLTRAP Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of ${}^{111}$Tc. New excited levels in ${}^{111}$Tc populated in ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of ${}^{111}$Mo provide the first indication for an oblate deformation in the mass $A\ensuremath{\approx}110$ region. The wide spin range of levels populated in ${}^{111}$Tc following the decay of ${}^{111}$Mo indicates the existence of two $\ensuremath{\beta}$-decaying levels in ${…

PhysicsNuclear and High Energy Physicsta114010308 nuclear & particles physicsFission[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesmedicine.anatomical_structureDouble beta decayExcited state0103 physical sciencesOblate spheroidmedicineAtomic physicsDeformation (engineering)010306 general physicsSpectroscopyNucleusSpin-½Physical Review C
researchProduct

Study of radial motion phase advance during motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer

2021

Phase-imaging ion-cyclotron-resonance technique has been implemented at the Penning-trap mass spectrometer JYFLTRAP and is routinely employed for mass measurements of stable and short-lived nuclides produced at IGISOL facility. Systematic uncertainties that impose limitations on the accuracy of measurements are discussed. It was found out that the phase evolution of the radial motion of ions in a Penning trap during the application of radio-frequency fields leads to a systematic cyclotron frequency shift when more than one ion species is present in the trap during the cyclotron frequency measurement. An analytic expression was derived to correctly account for the shift. Cross-reference mass…

Nuclear and High Energy PhysicsmassaspektrometriaPhysics - Instrumentation and DetectorsCyclotrontutkimuslaitteetFOS: Physical sciencesnucl-exMass spectrometryResidual01 natural sciencesIonlaw.inventionTrap (computing)lawPhysics::Plasma Physics0103 physical sciencesNuclear fusionNuclear Physics - ExperimentNuclideDetectors and Experimental TechniquesNuclear Experiment (nucl-ex)010306 general physicsNuclear Experimentphysics.ins-detNuclear ExperimentPhysicssyklotronit010401 analytical chemistryInstrumentation and Detectors (physics.ins-det)Penning trap0104 chemical sciencesComputational physicsydinfysiikkaThe European Physical Journal A
researchProduct

Multi-nucleon transfer reactions at ion catcher facilities : a new way to produce and study heavy neutron-rich nuclei

2020

Abstract The production of very neutron-rich nuclides heavier than fission fragments is an ongoing experimental challenge. Multi-nucleon transfer reactions (MNT) have been suggested as a method to produce these nuclides. By thermalizing the reaction products in gas-filled stopping cells, we can deliver them as cooled high-quality beams to decay, laser and mass spectrometry experiments. High precision mass spectrometry will allow for the first time to universally and unambiguously identify the atomic and proton numbers of the ions produced in MNT reactions. In this way their ground and isomeric state properties can be studied in high-precision measurements. In experiments at IGISOL, Finland …

PhysicsHistory010308 nuclear & particles physics01 natural sciences7. Clean energyComputer Science ApplicationsEducationIonNuclear physics0103 physical sciencesNeutron010306 general physicsNucleonydinfysiikka
researchProduct

Mass ofAl23for testing the isobaric multiplet mass equation

2009

The mass excess of the proton-rich nucleus $^{23}\mathrm{Al}$ has been measured with the JYFLTRAP Penning trap setup. As a result of our experiment we obtain a mass excess of 6748.07(34) keV, and by combining the value to existing experimental data we have tested the validity of the isobaric multiplet mass equation $(\mathrm{IMME})$ for the $T=3/2$ quartet in the $A=23$ isobar. The fit to the IMME results in a vanishing cubic term equivalent to zero with high precision [$0.22(42)$ keV].

PhysicsNuclear physicsMass formulaNuclear and High Energy PhysicsMass excessNuclear TheoryZero (complex analysis)IsobarIsobaric processAtomic physicsNuclear ExperimentPenning trapMultipletPhysical Review C
researchProduct

Nuclear Data and Experiments for Astrophysics

2022

Nuclear astrophysics aims to understand the origin of elements and the role of nuclear processes in astrophysical events. Nuclear reactions and reaction rates depend strongly on nuclear properties and on the astrophysical environment. Nuclear inputs for stellar reaction rates involve a variety of nuclear properties, theoretical models, and experimental data. Experiments providing data for nuclear astrophysics range from stable ion beam direct measurements to radioactive beam experiments employing inverse kinematics or indirect methods. Many properties relevant for astrophysical calculations, such as nuclear masses and β-decays, have also been intensively studied. This contribution shortly i…

radioaktiiviset aineetydinreaktiotastrofysiikkaalkuaineetydinfysiikkamittausmenetelmät
researchProduct

Discovery of an Exceptionally Strong β -Decay Transition of F20 and Implications for the Fate of Intermediate-Mass Stars

2019

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupte…

PhysicsSolar massThermonuclear fusionElectron captureDegenerate energy levelsGeneral Physics and AstronomyAstrophysics01 natural sciencesStarsNeutron starSupernovaOrders of magnitude (time)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physicsPhysical Review Letters
researchProduct

Towards commissioning the new IGISOL-4 facility

2013

Abstract The Ion Guide Isotope Separator On-Line facility at the Accelerator Laboratory of the University of Jyvaskyla is currently being re-commissioned as IGISOL-4 in a new experimental hall. Access to intense beams of protons and deuterons from a new MCC30/15 cyclotron, with continued possibility to deliver heavy-ion beams from the K = 130 MeV cyclotron, offers extensive opportunities for long periods of fundamental experimental research, developments and applications. A new layout of beam lines with a considerable increase in floor space offers new modes of operation at the facility, as well as a possibility to incorporate more complex detector setups. We present a general overview of I…

Radioactive ion beamsNuclear and High Energy Physicsta114Project commissioningComputer scienceNuclear engineeringDetectorCyclotronExperimental researchlaw.inventionNuclear physicslawNeutronInstrumentationBeam (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Ion traps in nuclear physics—Recent results and achievements

2016

Abstract Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purifi…

Condensed Matter::Quantum GasesPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsBinding energyNuclear structure01 natural sciencesAtomic massIonNuclear physics0103 physical sciencesNuclear astrophysicsPhysics::Atomic PhysicsNeutrino010306 general physicsSpectroscopyProgress in Particle and Nuclear Physics
researchProduct

Precision mass measurements of neutron-rich Tc, Ru, Rh, and Pd isotopes

2007

The masses of neutron-rich $^{106\ensuremath{-}112}\mathrm{Tc}$, $^{106\ensuremath{-}115}\mathrm{Ru}$, $^{108\ensuremath{-}118}\mathrm{Rh}$, and $^{112\ensuremath{-}120}\mathrm{Pd}$ produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. The measured isotopic chains include a number of previously unmeasured nuclei. Typical precisions on the order of 10 keV or better were achieved, representing a factor of 10 improvement over earlier data. In many cases, significant deviations from the earlier measurements were found. The obtained data set of 39 masses is compared with different mass predictions and analyzed for global trends in the nuclear…

PhysicsMass numberNuclear and High Energy PhysicsIsotopeFissionNuclear structureAnalytical chemistryOrder (ring theory)chemistry.chemical_elementUraniumPenning trapNuclear physicschemistryNeutronNuclear ExperimentPhysical Review C
researchProduct

Developments for neutron-induced fission at IGISOL-4

2016

At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at di↵erent angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with prelimi…

Nuclear and High Energy Physicsta114010308 nuclear & particles physicsNeutron emissionChemistryXenon-135Astrophysics::High Energy Astrophysical Phenomenatarget and ion source techniquesNuclear Theoryion guideFission product yield01 natural sciencesFast fissionNuclear physicslow-energy separators0103 physical sciencesneutron-induced fissionNeutron cross sectionNeutron sourceNeutron010306 general physicsLong-lived fission productNuclear Experimentisotope productionInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

High-precision mass measurement of $^{168}$Yb for verification of nonlinear isotope shift

2020

The absolute mass value of $^{168}$Yb has been directly determined with the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. A more precise value of the mass of $^{168}$Yb is needed to extract possible signatures of beyond standard model physics from high-precision isotope shift measurements of Yb atomic transition frequencies. The measured mass-excess value, ME($^{168}$Yb) = $-$61579.846(94) keV, is 12 times more precise and deviates from the Atomic Mass Evaluation 2016 value by 1.7$\sigma$. The impact on precision isotope shift studies of the stable Yb isotopes is discussed.

TechnologyPenning trapFOS: Physical sciencesPhysics Atomic Molecular & Chemical[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]010402 general chemistryMass spectrometry01 natural sciencesIonHigh-precision mass spectrometryPhysics::Atomic PhysicsPhysical and Theoretical ChemistryNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationNuclear ExperimentSpectroscopyScience & TechnologyIsotopeChemistryPhysics010401 analytical chemistryCondensed Matter PhysicsPenning trapMass measurementAtomic mass0104 chemical sciencesNonlinear systemIsotope shiftPhysical SciencesAtomic physics
researchProduct

Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95

2019

The decays of the β-delayed neutron emitters I137 and Rb95 have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…

PhysicsSpectrometer010308 nuclear & particles physicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaPenning trap01 natural sciencesNuclear physics13. Climate action0103 physical sciencesNeutronGamma spectroscopyNuclear Experiment010306 general physicsSpectroscopyAbsorption (electromagnetic radiation)Delayed neutronPhysical Review C
researchProduct

Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb

2017

The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…

FissionNeutron emissionQC1-999Astrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNuclear physicsNeutronAstrophysics7. Clean energy01 natural sciencesNuclear physicsEmission0103 physical sciencesNeutronDecay heat010306 general physicsNuclear Experimentastro nuclear physicsPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPnIsotopeta114:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsBranching fractionPhysicsNeutron capture13. Climate actionr-processPhysics::Accelerator PhysicsFísica nuclearAtomic physics
researchProduct

On the resonant neutrinoless double-electron-capture decay of ^{136}Ce

2011

Abstract The double-electron-capture Q value for the 136Ce decay to 136Ba has been determined at JYFLTRAP. The measured value 2378.53(27) keV excludes the energy degeneracy with the 0 + excited state of the decay daughter 136Ba at 2315.32(7) keV in a resonant 0 ν ECEC decay by 11.67 keV. The new Q value differs from the old adopted value 2419(13) keV (Atomic Mass Evaluation 2003) by 40 keV and is 50 times more precise. Our calculations show that the precise Q value renders the resonant 0 ν ECEC decay of 136Ce undetectable by the future underground detectors. We measured also the double-β decay Q value of 136Xe to be 2457.86(48) keV which agrees well with the value 2457.83(37) keV measured a…

PhysicsNuclear and High Energy PhysicsIon beamta114Physics::Instrumentation and DetectorsQ valueElectron captureAstrophysics::High Energy Astrophysical PhenomenaHalf-lifePenning trapAtomic massNuclear physicsExcited stateAtomic physicsPhysics Letters B
researchProduct

Determination of β -decay ground state feeding of nuclei of importance for reactor applications

2020

12 pags., 6 figs., 3 tabs.

PhysicsWork (thermodynamics)Fission products010308 nuclear & particles physicsNuclear structureFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structure7. Clean energy01 natural sciencesSynthetic dataNuclear physics13. Climate actionRobustness (computer science)0103 physical sciencesNeutronHigh Energy Physics::ExperimentDecay heatNuclear Experiment (nucl-ex)010306 general physicsGround stateNuclear Experiment
researchProduct

Independent Isotopic Product Yields in 25 MeV and 50 MeV Charged Particle Induced Fission of 238U and 232Th

2014

Abstract Independent isotopic yields for most elements from Zn to La in 25-MeV proton-induced fission of 238U and 232Th have been determined at the IGISOL facility in the University of Jyvaskyla. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in 50-MeV proton-induced fission of 238U and for Zn, Ga, Rb, Sr, Cd and In in 25-MeV deuterium-induced fission of 238U have been measured. The utilised technique recently developed at the University of Jyvaskyla, is based on a combination of the ion guide technique and the ability of a Penning trap to unambiguously identify the isotopes by their atomic mass. Since the yields are determined by ion counting, no prior knowledge beyond the …

Nuclear physicsPhysicsNuclear and High Energy Physicsta114IsotopeFissionProduct (mathematics)Nuclear dataPenning trapCharged particleAtomic massIonNuclear Data Sheets
researchProduct

Mass measurements in the vicinity of the doubly magic waiting pointNi56

2010

Masses of $^{56,57}\mathrm{Fe}$, $^{53}\mathrm{Co}$${}^{m}$, $^{53,56}\mathrm{Co}$, $^{55,56,57}\mathrm{Ni}$, $^{57,58}\mathrm{Cu}$, and $^{59,60}\mathrm{Zn}$ have been determined with the JYFLTRAP Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line facility with a precision of $\ensuremath{\delta}m/m\ensuremath{\leqslant}3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$. The ${Q}_{\mathrm{EC}}$ values for $^{53}\mathrm{Co}$, $^{55}\mathrm{Ni}$, $^{56}\mathrm{Ni}$, $^{57}\mathrm{Cu}$, $^{58}\mathrm{Cu}$, and $^{59}\mathrm{Zn}$ have been measured directly with a typical precision of better than $0.7 \mathrm{keV}$ and Coulomb displacement energies have been dete…

Nuclear reactionPhysicsNuclear and High Energy PhysicsProton010308 nuclear & particles physicsQ valueHadronElementary particle01 natural sciencesBaryon0103 physical sciencesAtomic physics010306 general physicsNucleonEnergy (signal processing)Physical Review C
researchProduct

High-precision mass measurements for the isobaric multiplet mass equation atA= 52

2017

Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…

massaspektrometriaNuclear and High Energy Physicsisobaric multipletProtonCo-52Proton decayastrofysiikkaPenning trapFOS: Physical scienceskupariQuadratic form (statistics)atomipainot114 Physical sciences01 natural sciences7. Clean energyPENNING TRAPS0103 physical sciencesNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentMultipletmass measurementPhysicsisotoopitSPECTROSCOPY010308 nuclear & particles physicsMIRROR NUCLEIRAMSEY METHODPenning trapMN-52Mass formulaANALOG STATESPROTON RADIOACTIVITYCOULOMB DISPLACEMENT ENERGIESIsobaric processBETA-RAYAtomic physicsydinfysiikkaDECAYExcitationJournal of Physics G: Nuclear and Particle Physics
researchProduct

Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates

2017

J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

Physicsta114010308 nuclear & particles physicsBranching fractionNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaPhysicsQC1-999Nuclear Theory7. Clean energy01 natural sciences3. Good health0103 physical sciencesr-processNeutronAtomic physics010306 general physicsSpectroscopyNucleonNuclear ExperimentDelayed neutronRadioactive decayastro nuclear physics
researchProduct

High-precision measurement of the mass difference between 102Pd and 102Ru

2019

Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…

ta114010308 nuclear & particles physicsChemistryElectron captureneutrinoless double-electron capturepenning trapQ-valuesCondensed Matter PhysicsPenning trap01 natural sciencesAtomic massNuclear physics0103 physical sciencesPhysical and Theoretical Chemistryydinfysiikka010306 general physicshigh-precision mass spectrometryInstrumentationSpectroscopyReliability (statistics)Ion cyclotron resonanceInternational Journal of Mass Spectrometry
researchProduct

Precision mass measurements of Fe67 and Co69,70 : Nuclear structure toward N=40 and impact on r -process reaction rates

2020

Accurate mass measurements of neutron-rich iron and cobalt isotopes $^{67}\mathrm{Fe}$ and $^{69,70}\mathrm{Co}$ have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the $^{69,70}\mathrm{Co}$ ground states and the $1/{2}^{\ensuremath{-}}$ isomer in $^{69}\mathrm{Co}$ have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond $N=40$. The moderate $N=40$ subshell gap has been found to weaken below $^{68}\mathrm{Ni}$, a region known for shape coexistence and increased collectivity. The excitation energy for…

Physics010308 nuclear & particles physicsNuclear structureMass spectrometry7. Clean energy01 natural sciencesIntruder stateReaction rate13. Climate actionYield (chemistry)0103 physical sciencesr-processAtomic physics010306 general physicsExcitationEnergy (signal processing)Physical Review C
researchProduct

Precision Ga71–Ge71 mass-difference measurement

2016

Abstract The Ga 71 ( ν e , e − ) Ge 71 reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla to Q  = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in Ga 71 .

Physics010308 nuclear & particles physicsQ valueSolar neutrinoContext (language use)Condensed Matter PhysicsMass spectrometry01 natural sciencesNuclear physics0103 physical sciencesPhysical and Theoretical ChemistryAtomic physics010306 general physicsInstrumentationSpectroscopyInternational Journal of Mass Spectrometry
researchProduct

Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

2015

Volume: 111 Host publication title: WONDER-2015 Host publication sub-title: 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS Isbn(print): 978-2-7598-1970-6 Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properti…

Total absorption spectroscopyFissionQC1-999[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciences7. Clean energy01 natural sciencesPhysics::GeophysicsNuclear physicsrubidium0103 physical sciencesfission productsDecay heatNuclear Experiment010306 general physicsFission productsDecay schemeta114010308 nuclear & particles physicsChemistryPhysicsXenon-135Beta decay13. Climate actiondecay heatHigh Energy Physics::Experimentbeta decayantineutrino emissionNeutrinoEPJ Web of Conferences
researchProduct

r -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

2018

This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will s…

Nuclear and High Energy PhysicsNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsKilonova01 natural sciences7. Clean energyNuclear Theory (nucl-th)Nucleosynthesis0103 physical sciencesBinary starddc:530Nuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentStellar evolutionNuclear ExperimentSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysicsmedia_commonPhysics010308 nuclear & particles physicsAstronomyUniverseNeutron starSupernovaAstrophysics - Solar and Stellar Astrophysicsr-processJournal of Physics G: Nuclear and Particle Physics
researchProduct

Production of Exotic Nuclei via MNT Reactions Using Gas Cells

2020

The use of multi-nucleon transfer (MNT) reactions to produce neutron-rich nuclei in the heavy region has received an increased attention in the last decade. The feasibility of employing such reactions at the FRS Ion Catcher facility at GSI and the IGISOL facility at JYFL is studied using a combination of theoretical calculations and experiment simulations. The reactions are computed within a Langevin-type model, and the Geant program is used to simulate the transport of the resulting products within the experimental setups of the above-mentioned facilities. The angular distribution of ion release, possible target choices and target-to-beam-dump distances are discussed. peerReviewed

PhysicsRadiochemistryGeneral Physics and AstronomyProduction (economics)Physics::Accelerator Physicsddc:530Nuclear Experimentydinfysiikka
researchProduct

Electron-capture branch ofTc100and tests of nuclear wave functions for double-βdecays

2008

We present a measurement of the electron-capture branch of $^{100}\mathrm{Tc}$. Our value, $B(\mathrm{EC})=(2.6\ifmmode\pm\else\textpm\fi{}0.4)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$, implies that the $^{100}\mathrm{Mo}$ neutrino absorption cross section to the ground state of $^{100}\mathrm{Tc}$ is roughly 50% larger than previously thought. Disagreement between the experimental value and QRPA calculations relevant to double-$\ensuremath{\beta}$ decay matrix elements persists. We find agreement with previous measurements of the 539.5- and 590.8-keV $\ensuremath{\gamma}$-ray intensities.

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsElectron captureElementary particle01 natural sciencesDouble beta decay0103 physical sciencesAbsorption (logic)Atomic physicsNeutrino010306 general physicsGround stateRadioactive decayLeptonPhysical Review C
researchProduct

Excited states in 31S studied via beta decay of 31Cl

2006

The beta decay of 31Cl has been studied with a silicon detector array and a HPGe detector at the IGISOL facility. Previously controversial proton peaks have been confirmed to belong to 31Cl and a new proton group with an energy of 762(14) keV has been found. Proton captures to this state at 6921(15) keV in 31S can have an effect on the reaction rate of 30P(p,γ) in ONe novae. Gamma rays of 1249.1(14) keV and 2234.5(8) keV corresponding to the de-excitations of the first two excited states in 31S have been measured. No beta-delayed protons from the IAS have been observed. peerReviewed

PhysicsNuclear and High Energy PhysicsprotonitProtonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHadronGamma rayNova (laser)Beta decaybeetahajoaminenNuclear physicsExcited stateNuclear fusionbeta decayProton emissionAtomic physicsNuclear Experiment
researchProduct

Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

2014

To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyvaskyla in Finland) using Total Absorption -ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn. © Owned by the authors, published by EDP Sciences, 2014.

PhysicsNeutron emissionPhysicsQC1-999Binding energyNuclear TheoryNuclear physicsNuclear astrophysicsGamma spectroscopyNeutronNucleonNuclear ExperimentDelayed neutronRadioactive decayEPJ Web of Conferences
researchProduct

$Q$-value of the superallowed $\beta$ decay of 62Ga

2006

Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.

Nuclear and High Energy PhysicsMass excessQ valuePenning trapCyclotronFOS: Physical sciences27.50.+e; 23.40.-s; 24.80.+g; 21.10.Dr[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyIonlaw.inventionNuclear physicslawDouble beta decayFt value0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsRadionuclide010308 nuclear & particles physicsBeta decayQ-valueAtomic massAtomic mass
researchProduct

Production of pure samples of 131mXe and 135Xe

2011

Pure samples of (131m)Xe, (133m)Xe, (133)Xe and (135)Xe facilitate the calibration and testing of noble gas sampler stations and related laboratory instrumentation. We have earlier reported a Penning trap-based production method for pure (133m)Xe and (133)Xe samples. Here we complete the work by reporting the successful production of pure (131m)Xe and (135)Xe samples using the same technique. In addition, we present data on xenon release from graphite.

RadiationXenonchemistryta114Analytical chemistryNoble gaschemistry.chemical_elementGraphitePenning trapApplied radiation and isotopes
researchProduct

Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

2016

International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…

Total absorption spectroscopyFissionQC1-999CHOOZ[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energy114 Physical sciencesSpectral linelaw.inventionPhysics::GeophysicsNuclear physicslawnuclear masses0103 physical sciencesstructure[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physicsPhysicsFission productsta114010308 nuclear & particles physicsPhysicsPressurized water reactorNuclear dataPandemonium effectPRODUCTS13. Climate actiondecay data measurements
researchProduct

Low-spin excitations in the 109Tc nucleus

2012

Monoisotopic samples of ${}^{109}$Mo nuclei, produced in the deuteron-induced fission of ${}^{238}$U and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of ${}^{109}$Tc. Spin and parity 5/2${}^{+}$ for the ground state of ${}^{109}$Mo, proposed earlier, are supported in the present work. Three new low-energy levels observed in ${}^{109}$Tc are interpreted as bandheads of the $\ensuremath{\pi}3/{2}^{\ensuremath{-}}$[301], $\ensuremath{\pi}5/{2}^{\ensuremath{-}}$[303], and $\ensuremath{\pi}1/{2}^{+}$[431] configurations, respectively. A further three levels observed around 0.4 Me…

Nuclear and High Energy PhysicsFissionProlate spheroid[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]kiihdytinpohjainen fysiikka01 natural sciencesydinrakenneDouble beta decay0103 physical sciencesmedicine010306 general physicsSpectroscopynuclear spectroscopyPhysicsta114accelerator-based physics010308 nuclear & particles physicsParity (physics)medicine.anatomical_structurenuclear structureydinspektroskopiaAtomic physicsydinfysiikkaGround stateNucleusExcitation
researchProduct

Radioactive ion beam manipulation at the IGISOL-4 facility

2020

The IGISOL-4 facility in the JYFL Accelerator Laboratory of the University of Jyvaskyla (JYFL-ACCLAB) produces low-energy radioactive ion beams, primarily for nuclear spectroscopy, utilizing an ion guide-based, ISOL-type mass separator. Recently, new ion manipulation techniques have been introduced at the IGISOL-4 including the application of the PI-ICR (Phase-Imaging Ion Cyclotron Resonance) technique at the JYFLTRAP Penning trap, as well as commissioning of a Multi-Reflection Time-Of-Flight (MR-TOF) separator/spectrometer. The successful operation of the MR-TOF also required significant improvement of the Radio-Frequency Quadrupole (RFQ) cooler and buncher device beam pulse time structure…

Materials scienceSpectrometerIon beamPhysicsQC1-999tutkimuslaitteethiukkaskiihdyttimetPenning trapIon sourceIonNuclear physicsBeamlineIonizationPhysics::Accelerator PhysicsydinfysiikkaNuclear ExperimentIon cyclotron resonanceEPJ Web of Conferences
researchProduct

Upgrade and yields of the IGISOL facility

2008

The front end of the Jyvaskyla IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penn…

Nuclear physicsFront and back endsNuclear and High Energy PhysicsUpgradeRadiation shieldingChemistryFissionMass spectrometryPenning trapInstrumentationIonSeparator (electricity)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

High-Precision Q -Value Measurement Confirms the Potential of Cs135 for Absolute Antineutrino Mass Scale Determination

2020

The ground-state-to-ground-state $\ensuremath{\beta}$-decay $Q$ value of $^{135}\mathrm{Cs}(7/{2}^{+})\ensuremath{\rightarrow}^{135}\mathrm{Ba}(3/{2}^{+})$ has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between $^{135}\mathrm{Cs}(7/{2}^{+})$ and $^{135}\mathrm{Ba}(3/{2}^{+})$. With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted $Q$ value in the Atomic Mass Evaluation 2016. The measurement confirms that the f…

PhysicsQ value0103 physical sciencesGeneral Physics and AstronomyResonanceMass scaleNeutrinoAtomic physics010306 general physics01 natural sciencesOrder of magnitudeAtomic massPhysical Review Letters
researchProduct

Characterization of a neutron-beta counting system with beta-delayed neutron emitters

2016

Abstract A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β–neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on …

Nuclear and High Energy PhysicsNeutron emissionAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryMontecarlo Mètode de01 natural sciencesSelf-triggered digital data acquisition systemNuclear physicsNeutron and beta counters0103 physical sciencesGeant4 simulationsNeutron cross sectionNeutron detectionNeutronself-triggered digital data acquisition system010306 general physicsNuclear ExperimentInstrumentationBeta-delayed neutron emission probabilityPhysicsBonner spherebeta-delayed neutron emission probability:Energies::Energia nuclear [Àrees temàtiques de la UPC]Neutronsta114ta213010308 nuclear & particles physicsNeutron stimulated emission computed tomographyNeutron temperatureMonte Carlo method:Física::Física molecular [Àrees temàtiques de la UPC]Delayed neutronneutron and beta counters
researchProduct

Mass measurements of neutron-deficient nuclei and their implications for astrophysics

2012

During the years 2005-2010 the double-Penning-trap mass spectrometer JYFLTRAP has been used to measure the masses of 90 ground and 8 isomeric states of neutron-deficient nuclides with a typical precision of better than 10keV. The masses of 14 nuclides -- 84Zr , 88, 89Tc , 90-92Ru , 92-94Rh , 94, 95Pd , 106, 108, 110Sb -- have been experimentally determined for the first time. This article gives an overview on these measurements and their impact on the modeling of the astrophysical rp -process. peerReviewed

nuclear spectroscopyPhysicsNuclear and High Energy PhysicsMass excessaccelerator-based physicsHadronMeasure (physics)Mass spectrometrykiihdytinpohjainen fysiikkaMass measurementNuclear physicsydinrakennenuclear structureydinspektroskopiaNuclear fusionNeutronNuclideydinfysiikkaThe European Physical Journal A
researchProduct

Isomer and decay studies for the rp process at IGISOL

2012

This article reviews the decay studies of neutron-deficient nuclei within the mass region \ensuremathA=56--100 performed at the Ion-Guide Isotope Separator On-Line (IGISOL) facility in the University of Jyväskylä over last 25 years. Development from He-jet measurements to on-line mass spectrometry, and eventually to atomic mass measurements and post-trap spectroscopy at IGISOL, has yielded studies of around 100 neutron-deficient nuclei over the years. The studies form a solid foundation to astrophysical rp -process path modelling. The focus is on isomers studied either via spectroscopy or via Penning-trap mass measurements. The review is complemented with recent results on the ground and is…

Physicsnuclear spectroscopyNuclear and High Energy PhysicsIsotopeaccelerator-based physicsrp-processPenning trapMass spectrometrykiihdytinpohjainen fysiikkaAtomic massNuclear physicsydinrakennenuclear structureydinspektroskopiaNuclear fusionAtomic physicsGround stateSpectroscopyydinfysiikka
researchProduct

Total absorption γ-ray spectroscopy of beta delayed neutron emitters

2013

Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.

PhysicsNuclear physicsDecay schemeDouble beta decayBeta particleNeutronDecay heatDelayed neutronBeta-decay stable isobarsRadioactive decayAIP Conference Proceedings
researchProduct

Precise half-life measurement of the Si-26 ground state

2008

The beta-decay half-life of 26Si was measured with a relative precision of 1.4*10e3. The measurement yields a value of 2.2283(27) s which is in good agreement with previous measurements but has a precision that is better by a factor of 4. In the same experiment, we have also measured the non-analogue branching ratios and could determine the super-allowed one with a precision similar to the previously reported measurements. The experiment was done at the Accelerator Laboratory of the University of Jyvaskyla where we used the IGISOL technique with the JYFLTRAP facility to separate pure samples of 26Si.

PhysicsNuclear and High Energy PhysicsBranching fraction010308 nuclear & particles physicsFOS: Physical sciencesHalf-life01 natural sciencesNuclear physics0103 physical sciencesRelative precisionNuclear Experiment (nucl-ex)010306 general physicsGround stateNuclear ExperimentNuclear Physics
researchProduct

High-precision mass measurements of 25Al and 30P at JYFLTRAP

2016

The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( $\Delta = -8915.962(63)$ keV) and 30P ( $\Delta = -20200.854(64)$ keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but $ \approx$ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al (p, $ \gamma$ )26Si and 30P(p, $ \gamma$ )31S . In this work, $ Q_{(p,\gamma)} = 5513.99(13)$ keV and $ Q_{(p,\gamma)} = 6130.64(24)$ keV were obtained for 25Al and 30P , respectivel…

Nuclear reactionNuclear and High Energy PhysicsmassaspektrometriaQ valueAstrophysics::High Energy Astrophysical PhenomenaastrofysiikkaHadronatomipainot01 natural sciencesNuclear physics0103 physical sciencesNuclear astrophysicsJYFLTRAPIsotopes of siliconalumiiniNuclear Experiment010306 general physicsfosforiPhysics010308 nuclear & particles physicsatomic massPenning trapAtomic masshigh-precision mass measurementAtomic physicsydinfysiikkaRadioactive decay
researchProduct

Recent experiments at the JYFLTRAP Penning trap

2020

AbstractThe JYFLTRAP double Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility offers excellent possibilities for high-precision mass measurements of radioactive ions. Around 400 atomic masses, including around 50 isomeric states, have been measured since JYFLTRAP became operational. JYFLTRAP has also been used as a high-resolution mass separator for decay spectroscopy experiments as well as an ion counter for fission yield studies. In this contribution, an overview of recent activities at the JYFLTRAP Penning trap is given, with a focus on nuclei discussed in the PLATAN2019 meeting.

nuclear binding energymassaspektrometriaNuclear and High Energy PhysicstutkimuslaitteetFission product yieldMass spectrometry7. Clean energy01 natural sciencesIonNuclear physicsPhysics in General0103 physical sciencesPhysical and Theoretical Chemistry010306 general physicsSpectroscopyPhysicsIsotope010308 nuclear & particles physicsatomic masspenning trapCondensed Matter PhysicsPenning trapAtomic and Molecular Physics and OpticsAtomic massNuclear binding energyisomersydinfysiikkaHyperfine Interactions
researchProduct

Half-life, branching-ratio, andQ-value measurement for the superallowed0+→0+β+emitterTi42

2009

The half-life, the branching ratio, and the decay $Q$ value of the superallowed $\ensuremath{\beta}$ emitter $^{42}\mathrm{Ti}$ were measured in an experiment performed at the JYFLTRAP facility of the Accelerator Laboratory of the University of Jyv\"askyl\"a. $^{42}\mathrm{Ti}$ is the heaviest ${T}_{z}=\ensuremath{-}1$ nucleus for which high-precision measurements of these quantities have been tried. The half-life (${T}_{1/2}=208.14\ifmmode\pm\else\textpm\fi{}0.45$ ms) and the $Q$ value [${Q}_{\mathrm{EC}}=7016.83(25)$ keV] are close to or reach the required precision of about 0.1%. The branching ratio for the superallowed decay branch [$\mathrm{BR}=47.7(12)%$], a by-product of the half-lif…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsQ valueBranching fraction0103 physical sciencesHalf-lifeAtomic physics010306 general physics01 natural sciencesCommon emitterPhysical Review C
researchProduct

Measurement of fission products β decay properties using a total absorption spectrometer

2013

In a nuclear reactor, the decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyvaskyla with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented. © Owned by the authors, published by E…

PhysicsFission productsta114SpectrometerFissionPhysicsQC1-999Pandemonium effectParticle detectorPhysics::GeophysicsNuclear physicsHigh Energy Physics::ExperimentNeutrinoDecay heatNuclear ExperimentRadioactive decayEPJ Web of Conferences
researchProduct

R-matrix analysis of theβdecays ofN12andB12

2010

The β decays of 12N and 12B have been studied at KVI and JYFL to resolve the composition of the broad and interfering 0+ and 2+ strengths in the triple-α continuum. For the first time a complete treatment of 3α decay is presented including all major breakup channels. A multilevel, many-channel R-matrix formalism has been developed for the complete description of the breakup in combination with the recently published separate analysis of angular correlations. We find that, in addition to the Hoyle state at 7.65 MeV, more than one 0+ and 2+ state is needed to reproduce the spectra. Broad 03+ and 22+ states are found between 10.5 and 12 MeV in this work. The presence of β strength up to the 12…

Nuclear physicsPhysicsNuclear and High Energy PhysicsExcited stateDouble beta decayCarbon-12Isotopes of boronAlpha particleAtomic physicsRadioactive decaySpectral lineR-matrixPhysical Review C
researchProduct

High-precision mass measurements for the rp-process at JYFLTRAP

2017

The double Penning trap JYFLTRAP at the University of Jyvaskyla has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp) process. A precise mass measurement of 31 Cl is essential to estimate the waiting point condition of 30 S in the rp-process occurring in type I x-ray bursts (XRBs). The mass-excess of 31 C1 measured at JYFLTRAP, -7034.7(3.4) keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy S p determined from the new mass-excess value confirmed that 30 S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52 Co effects both 51 Fe( p,γ ) 52 C…

PhysicsIon Traps (Instrumentation)protonitProtonta114protons010308 nuclear & particles physicsPhysicsQC1-999Analytical chemistryAntiprotonsrp-processPenning trapatomipainot01 natural sciencesMass measurementAtomic massnukleonitnucleons0103 physical sciencesmassamass010306 general physicsAtomic Weights
researchProduct

Measurement of fission yields and isomeric yield ratios at IGISOL

2018

Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range fr…

PhysicsAngular momentumisomerismIsotopeta114010308 nuclear & particles physicsFissionisomeriaPhysicsQC1-999Fission product yieldPenning trap01 natural sciences7. Clean energyIonNuclear physicsfissioYield (chemistry)0103 physical sciencesNeutron sourcefission010306 general physics
researchProduct

Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP

2019

The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…

EFFICIENCYrare and new isotopesastrofysiikkanuclear astrophysicsNuclear Theoryr processFOS: Physical sciencesnucl-ex01 natural sciences7. Clean energybinding energy and massesIonPENNING TRAPS0103 physical sciencesNuclear Physics - ExperimentNeutronNuclideIONNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentDETECTORPhysicsScience & TechnologySTABILITYIsotope010308 nuclear & particles physicsPhysicsR-PROCESSRAMSEY METHODPenning trapnuclear structure and decaysAtomic massNeutron capturePhysics NuclearSPECTROMETRY13. Climate actionPairingPhysical SciencesELECTRONAtomic physicsydinfysiikkaDECAYPhysical Review C
researchProduct

β-decay data requirements for reactor decay heat calculations: study of the possible source of the gamma-ray discrepancy in reactor heat summation ca…

2007

The decay heat of fission products plays an important role in predictions of the heat up of nuclear fuel in reactors. The released energy is calculated as the summation of the activities of allfission products P(t) = Ei λi Ni(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy in the t ∼ 1000s cooling time for some fuels. A possible explanation to this improper description has been found in the work of Yoshida et al. (1), where it has been shown that…

Nuclear physicsFission productsIsotopeDecay energyChemistryGamma rayNuclear dataNuclideExponential decayDecay heatNuclear ExperimentND2007
researchProduct

Q values of the 76Ge and 100Mo double-beta decays

2008

Abstract Penning trap measurements using mixed beams of 76Ge–76Se and 100Mo–100Ru have been utilized to determine the double-beta decay Q-values of 76Ge and 100Mo with uncertainties less than 200 eV. The value for 76Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value, 2039.006(50) keV. The new value for 100Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay.

PhysicsNuclear and High Energy PhysicsParticle physicsDecay schemeQ valuePenning trapDouble-beta decayPenning trapQ-valueBeta decayPhase-space integralNuclear physicsNeutrino massPhase spaceDouble beta decayBeta (plasma physics)Value (mathematics)Physics Letters B
researchProduct

Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al

2021

Abstract The 92-keV resonance in the 25Mg ( p , γ ) 26 Al reaction plays a key role in the production of 26Al at astrophysical burning temperatures of ≈100 MK in the Mg-Al cycle. However, the state can decay to feed either the ground, 26 g Al, or isomeric state, 26 m Al. It is the ground state that is critical as the source of cosmic γ rays. It is therefore important to precisely determine the ground-state branching fraction f 0 of this resonance. Here we report on the identification of four γ-ray transitions from the 92-keV resonance, and determine the spin of the state and its ground-state branching fraction f 0 = 0.52 ( 2 ) s t a t ( 6 ) s y s t . The f 0 value is the most precise report…

Nuclear and High Energy Physicsγ spectroscopyastrofysiikkaAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysics01 natural sciences7. Clean energy0103 physical sciencesNuclear astrophysics010306 general physicsSpin (physics)PhysicsRange (particle radiation)COSMIC cancer database010308 nuclear & particles physicsBranching fractionResonanceState (functional analysis)lcsh:QC1-99926Alcosmic γ raysNuclear astrophysicsCosmic γ raysAtomic physicsydinfysiikkaGround statekosminen säteilylcsh:Physics
researchProduct

Towards an Experimental Determination of the Transition Strength Between the Ground States of $^{20}$F and $^{20}$Ne

2017

Electron capture on $^{20}$Ne is thought to play a crucial role in the final evolution of electron-degenerate ONe stellar cores. Recent calculations suggest that the capture process is dominated by the second-forbidden transition between the ground states of $^{20}$Ne and $^{20}$F, making an experimental determination of this transition strength highly desirable. To accomplish this task we are refurbishing an intermediate-image magnetic spectrometer capable of focusing 7 MeV electrons, and designing a scintillator detector surrounded by an active cosmic-ray veto shield, which will serve as an energy-dispersive device at the focal plane.

Physicsstellar evolutionPhysics - Instrumentation and Detectorsta114Condensed matter physicsPhysics::Instrumentation and Detectorsweak-interaction ratesnuclear experimentFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Transition strengthAstrophysics - Solar and Stellar Astrophysicsbeta-decaySolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Structure of115Ag studied byβ−decays of115Pd and115Pdm

2012

The excited levels of ${}^{115}$Ag have been studied via the beta decay of ${}^{115}$Pd and ${}^{115}$Pd${}^{m}$. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of ${}^{115}$Pd${}^{m}$ which was practically unknown before this work. Transition intensities and ${\mathrm{log}}_{10}ft$ values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of ${}^{115}$Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich sil…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsStructure (category theory)01 natural sciencesBeta decayDouble beta decayExcited state0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsGround stateSpin-½Physical Review C
researchProduct

Precision mass measurements of neutron-rich yttrium and niobium isotopes

2007

Abstract The atomic masses of neutron-rich 95–101 Y and 101–107 Nb produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. Accuracies of better than 10 keV could be reached for most nuclides. The masses of 106,107 Nb were measured for the first time. The energies of the isomeric states in 96 Y and 100 Y were measured as 1541(10) keV and 145(15) keV. The niobium isotopes appear to be systematically less bound than the values given in the latest Atomic Mass Evaluation. The new data lie in a region of the nuclear chart characterised by the transition from spherical to strongly deformed shapes. These structural changes are explored by studying…

PhysicsNuclear and High Energy PhysicsIsotopeNiobiumchemistry.chemical_elementYttriumUraniumPenning trapAtomic massNuclear physicschemistryNeutronNuclideAtomic physicsNuclear ExperimentNuclear Physics A
researchProduct

Penning-trap-assisted study of 115Ru beta decay

2011

The beta decay of 115Ru has been studied by means of Penning-trap-assisted beta and gamma spectroscopy at the IGISOL facility. The level scheme of 115Rh has been substantially extended and compared with the level systematics of lighter rhodium isotopes. Tentative candidates for three states of the deformed K = 1/2 band have been suggested. The beta-strength distribution of the beta decay of 115Ru differs from the beta decays of 111, 113, 113mRu isotopes due to non-observation of the 3-quasiparticle states in 115Rh. The decay properties of 115Ru indicate a spin-parity of (3/2+ for its beta-decaying ground state. In addition, possible Nilsson states as well as the shape and spin transitions i…

PhysicsNuclear physicsNuclear and High Energy PhysicsDecay schemeIsotopeIsotopes of germaniumDouble beta decayGamma spectroscopyAtomic physicsPenning trapNuclear ExperimentBeta decayBeta-decay stable isobarsThe European Physical Journal A
researchProduct

Impact of nuclear mass measurements in the vicinity of 132Sn on the r-process nucleosynthesis

2022

Nuclear masses are a key aspect in the modelling of nuclear reaction rates for the r-process nucleosynthesis. High precision mass measurements drastically reduce the associated uncertainties in the modelling of r-process nucleosynthesis. We investigate the impact of nuclear mass uncertainties on neutron-capture rates calculations using a Hauser – Feshbach statistical code in the vicinity of 132Sn. Finally, we study the impact of the propagated neutron-capture reaction rates uncertainties on the r-process nucleosynthesis. We find that mass measurements with uncertainties higher than 20 keV affect the calculation of reaction rates. We also note that modelling of reaction rates can differ for …

General MedicineHNPS Advances in Nuclear Physics
researchProduct

Mass Measurements and Implications for the Energy of the High-Spin Isomer inAg94

2008

Nuclides in the vicinity of {sup 94}Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter {sup 92}Rh and the beta-decay daughter {sup 94}Pd of the high-spin isomer in {sup 94}Ag have been measured, and the masses of {sup 93}Pd and {sup 94}Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in {sup 94}Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

PhysicsNuclear physicsMass excessIsotopeAnalytical chemistryGeneral Physics and AstronomyNuclideSpin (physics)Penning trapMass spectrometryBeta decayExcitationPhysical Review Letters
researchProduct

Excited states inPd115populated in theβ−decay ofRh115

2010

Excited states in $^{115}\mathrm{Pd}$, populated following the ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of $^{115}\mathrm{Rh}$ have been studied by means of $\ensuremath{\gamma}$ spectroscopy after the Penning-trap station at the IGISOL facility, University of Jyv\"askyl\"a. The $1$$/$$2$${}^{+}$ spin and parity assignment of the ground state of $^{115}\mathrm{Pd}$, confirmed in this work, may indicate a transition to an oblate shape in Pd isotopes at high neutron number.

PhysicsBaryonNuclear and High Energy PhysicsIsotopes of palladiumDouble beta decayExcited stateHadronAtomic physicsNuclear ExperimentNucleonGround stateRadioactive decayPhysical Review C
researchProduct

The β-decay approach for studying 12C

2008

6 pags., 3 figs. -- 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07) 3–7 September 2007, Stratford upon Avon, UK

HistoryChemistryDetectorCoincidenceComputer Science ApplicationsEducationNuclear physicsmedicine.anatomical_structuremedicineMirror nucleiAtomic physicsSpin (physics)NucleusEnergy (signal processing)Journal of Physics: Conference Series
researchProduct

A new off-line ion source facility at IGISOL

2019

An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.

Radioactive ion beamsNuclear and High Energy PhysicsTechnologyPhysics - Instrumentation and DetectorsMaterials sciencetutkimuslaitteetFOS: Physical sciencesSeparator (oil production)Physics Atomic Molecular & Chemical01 natural sciencesIonNuclear physicsPhysics::Plasma Physics0103 physical sciencesAtomPhysics::Atomic PhysicsIGISOLNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsSpectroscopyNuclear Science & TechnologyDischarge ion sourceNuclear ExperimentInstrumentationInstruments & InstrumentationScience & TechnologyIsotope010308 nuclear & particles physicsPhysicsInstrumentation and Detectors (physics.ins-det)Ion sourcePhysics NuclearPhysical SciencesPhysics::Accelerator PhysicsydinfysiikkaOff lineSurface ion source
researchProduct

Reactor Decay Heat inPu239: Solving theγDiscrepancy in the 4–3000-s Cooling Period

2010

The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

Nuclear physicsPhysicsDouble beta decayGeneral Physics and AstronomyOrder (ring theory)Isobaric processAbsorption (logic)Atomic physicsDecay heatPenning trapBeta decayParticle detectorPhysical Review Letters
researchProduct

High-accuracy mass spectrometry of fission products with Penning traps

2012

Mass measurements of fission products based on Penning-trap technique are reviewed in this article. More than 300 fission products have been measured with JYFLTRAP, ISOLTRAP, CPT, LEBIT and TITAN Penning traps with a typical precision of δm/m ≈ 10−7 − 10−8. In general, the results agree well with each other. The new data provide a valuable source of information and a challenge for the future development of theoretical mass models as well as for obtaining a deeper insight into microscopic properties of atomic nuclei as measured, for example, via key mass differentials. Shape transitions around N = 60, subshell closure at N = 40 and shell closures at N = 50 and N = 82 have been investigated i…

Nuclear and High Energy PhysicsNuclear TheoryMass spectrometry01 natural sciencesISOLTRAPkiihdytinpohjainen fysiikkaNuclear physicssymbols.namesakeydinrakenne0103 physical sciencesNuclear astrophysics010306 general physicsNuclear ExperimentPhysicsnuclear spectroscopyFission products010308 nuclear & particles physicsaccelerator-based physicsNuclear structure13. Climate actionPairingAtomic nucleusnuclear structuresymbolsydinspektroskopiaAtomic physicsTitan (rocket family)ydinfysiikka
researchProduct

New Beta-delayed Neutron Measurements in the Light-mass Fission Group

2014

A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

Physics:Energies::Energia nuclear [Àrees temàtiques de la UPC]Nuclear and High Energy Physicsta114Neutron emission:Energies [Àrees temàtiques de la UPC]Xenon-135Astrophysics::High Energy Astrophysical PhenomenaNuclear TheoryNuclear energyFast fissionNeutron temperatureFissió nuclearNuclear physicsPrompt neutronIsotopesNeutron cross sectionNeutronNuclear ExperimentDelayed neutronNuclear Data Sheets
researchProduct

High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL

2019

An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…

RPPHASEONLINE7. Clean energy01 natural sciences114 Physical sciencesbinding energy and massesPENNING TRAPS0103 physical sciencesNeutron010306 general physicsNuclear ExperimentPhysicsisotoopitSpinsIsotope010308 nuclear & particles physicsenergy levels and level densitiesRAMSEY METHODGAMMAPenning trapAtomic massSPECTROMETRYProduction (computer science)Heavy ionlow and intermediate energy heavy-ion reactionsAtomic physicsydinfysiikkaNUCLEAR-MASSESBeam (structure)Physical Review C
researchProduct

QValues of the SuperallowedβEmittersAlm26,Sc42, andV46and Their Impact onVudand the Unitarity of the Cabibbo-Kobayashi-Maskawa Matrix

2006

The $\ensuremath{\beta}$-decay ${Q}_{\mathrm{EC}}$ values of the superallowed beta emitters $^{26}\mathrm{Al}^{m}$, $^{42}\mathrm{Sc}$, and $^{46}\mathrm{V}$ have been measured with a Penning trap to a relative precision of better than $8\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}9}$. Our result for $^{46}\mathrm{V}$, 7052.72(31) keV, confirms a recent measurement that differed from the previously accepted reaction-based ${Q}_{\mathrm{EC}}$ value. However, our results for $^{26}\mathrm{Al}^{m}$ and $^{42}\mathrm{Sc}$, 4232.83(13) keV and 6426.13(21) keV, are consistent with previous reaction-based values. By eliminating the possibility of a systematic difference between the two t…

PhysicsParticle physicsSystematic differenceUnitarity010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrix0103 physical sciencesGeneral Physics and AstronomyBeta (velocity)Relative precisionAtomic physics010306 general physics01 natural sciencesPhysical Review Letters
researchProduct

Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data

2020

For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…

Fission productsMaterials scienceFissionPhysicsQC1-999Buffer gasNuclear Theorychemistry.chemical_elementFission product yieldIonNuclear physicsSubatomär fysikchemistryPhysics::Plasma PhysicsYield (chemistry)Subatomic PhysicsNeutronNuclear ExperimentHeliumEPJ Web of Conferences
researchProduct

First β -decay scheme of Nb107 : New insight into the low-energy levels of Mo107

2019

Monoisotopic samples of $^{107}\mathrm{Nb}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of $^{107}\mathrm{Mo}$. Gamma transitions and excited levels in $^{107}\mathrm{Mo}$ were observed in $\ensuremath{\beta}$ decay for the first time. Spin and parity $1/{2}^{+}$ for the ground state of $^{107}\mathrm{Mo}$ is proposed, to replace the previous $5/{2}^{+}$ assignment. The experimental $\ensuremath{\beta}$-decay half-life of $^{107}\mathrm{Nb}$ was estimated to be $0.27\ifmmode\pm\else\textpm\fi{}0.02$ s.

PhysicsDecay scheme010308 nuclear & particles physicsFissionPenning trap01 natural sciencesLow energyExcited state0103 physical sciencesAtomic physics010306 general physicsSpin (physics)Ground stateSpectroscopyPhysical Review C
researchProduct

Influences on the triple alpha process beyond the Hoyle state

2010

7 pags., 3 figs. -- International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, 25-30 June 2006, CERN

Nuclear physicsPhysicsParticle physicsAstrophysics and AstronomyLarge Hadron ColliderNuclear astrophysicsState (functional analysis)Triple-alpha process
researchProduct

Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra Determination

2015

8 pags., 3 figs., 1 tab. ; Presented at the XXXIV Mazurian Lakes Conference on Physics, Piaski, Poland, September 6–13, 2015.

Physicsantineutrinosfission fragmentTotal absorption spectroscopyta114010308 nuclear & particles physicsFissionGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Total Absorption Spectroscopy01 natural sciences7. Clean energyBeta decaySpectral lineIonizing radiationNuclear physicsIGISOL facility0103 physical sciences010306 general physicsNuclear Experiment
researchProduct

Precision Mass Measurements beyondSn132: Anomalous Behavior of Odd-Even Staggering of Binding Energies

2012

Atomic masses of the neutron-rich isotopes $^{121--128}\mathrm{Cd}$, $^{129,131}\mathrm{In}$, $^{130--135}\mathrm{Sn}$, $^{131--136}\mathrm{Sb}$, and $^{132--140}\mathrm{Te}$ have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four $r$-process nuclei $^{135}\mathrm{Sn}$, $^{136}\mathrm{Sb}$, and $^{139,140}\mathrm{Te}$ were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N=82$ for Sn, with a $Z$ dependence that is unexplainable by the current theoretical models.

QuenchingPhysicsIsotopePairingBinding energyTheoretical modelsGeneral Physics and AstronomyNeutronPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentMass spectrometryAtomic massPhysical Review Letters
researchProduct

Systematic studies of the accuracy of the Penning trap mass spectrometer JYFLTRAP

2009

Abstract Measurements to quantify the mass-dependent systematic effect and the residual uncertainty of the JYFLTRAP setup have been performed with carbon-cluster ions. The primary quantities reported in this work are a mass-dependent uncertainty of σ m ( r ) / r = ( 7.8 ± 0.3 × 10 - 10 / u ) × Δ m and a residual uncertainty of σ res ( r ) / r = 1.2 × 10 - 8 for the JYFLTRAP mass spectrometer. By restricting the mass difference between the reference ion and ion of interest to | m meas - m ref | ≤ 24 , the values for the mass-dependent effect and the corresponding residual uncertainty are σ m , lim ( r ) / r = ( 7.5 ± 0.4 × 10 - 10 / u ) × Δ m and σ res , lim ( r ) / r = 7.9 × 10 - 9 , respec…

PhysicsNuclear and High Energy PhysicsAtomic physicsMass spectrometryPenning trapInstrumentationIon sourceIonNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Precise branching ratios to unbound 12C states from 12N and 12B β-decays

2009

6 pages, 2 tables, 4 figures.--PACS nrs.: 21.45.-v; 23.40.-s; 27.20.+n; 21.60.De.--Printed version published Aug 3, 2009

branching ratiosPhysicsNuclear and High Energy PhysicsChiral perturbation theory[PACS] β decayBranching fractionNuclear shell model[PACS] Ab initio methods[PACS] β decay; double β decay; electron and muon captureAlpha particleFew-body systems[PACS] Few-body systemselectron and muon capturedouble β decay6 ≤ A ≤ 19 [[PACS] Properties of specific nuclei listed by mass ranges]Double beta decayExcited stateAtomic physics[PACS] Properties of specific nuclei listed by mass ranges: 6 ≤ A ≤ 19Nucleonbeta-decayC12
researchProduct

Total Absorption Spectroscopy Study ofRb92Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

2015

The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

Semileptonic decayPhysicsTotal absorption spectroscopyFissionGeneral Physics and Astronomychemistry.chemical_elementBeta decaySpectral lineRubidiumNuclear physicschemistryDouble beta decayAtomic physicsAbsorption (electromagnetic radiation)Physical Review Letters
researchProduct

Mass of astrophysically relevantCl31and the breakdown of the isobaric multiplet mass equation

2016

The mass of $^{31}\mathrm{Cl}$ has been measured with the JYFLTRAP double-Penning-trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, $\ensuremath{-}7034.7(34)$ keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the $T=3/2$ quartet at $A=31$ fails $({\ensuremath{\chi}}_{n}^{2}=11.6)$ and a nonzero cubic term, $d=\ensuremath{-}3.5(11)$ keV, is obtained when the new mass value is adopted. $^{31}\mathrm{Cl}$ has been found to be less proton-bound, with a proton separation energy of ${S}_{p}=264.6(34)$ keV. Energies for the excited states in $^{31…

PhysicsProton010308 nuclear & particles physicsQuadratic form (statistics)Type (model theory)7. Clean energy01 natural sciencesAtomic massNuclear physicsMass formulaPhotodisintegration0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsMultipletEnergy (signal processing)Physical Review C
researchProduct

Recent mass measurements for the r process at JYFLTRAP

2013

Nuclear physicsPhysicsr-processProceedings of XII International Symposium on Nuclei in the Cosmos — PoS(NIC XII)
researchProduct

Mass Measurements for the rp Process

2017

Penning-trap mass spectrometrynovaePhysicsatomic massesChromatographyta114010308 nuclear & particles physicsrp process0103 physical sciencesrp-process010306 general physics01 natural sciencesProceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016)
researchProduct

Excited levels in the multishaped Pd117 nucleus studied via β decay of Rh117

2018

Monoisotopic samples of exotic, neutron-rich $^{117}\mathrm{Rh}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform $\ensuremath{\beta}$ and $\ensuremath{\gamma}$ coincidence spectroscopy of $^{117}\mathrm{Pd}$. The spin parity of the ground state of $^{117}\mathrm{Pd}$ was determined to be $1/{2}^{+}$ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity $7/{2}^{\ensuremath{-}}$. The $^{117}\mathrm{Rh}$ ${\ensuremath{\beta}}^{\ensuremath{-}}$-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prol…

Physics010308 nuclear & particles physicsFissionNuclear TheoryParity (physics)Penning trap01 natural sciencesmedicine.anatomical_structureExcited state0103 physical sciencesmedicineAtomic physicsNuclear Experiment010306 general physicsGround stateSpectroscopySpin (physics)NucleusPhysical Review C
researchProduct

Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases

2018

9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

Nuclear fission product[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FissionQC1-999Nuclear Theory114 Physical sciences01 natural sciences7. Clean energyNuclear physics0103 physical sciencesSPECTROMETERGamma spectroscopyDecay heat010306 general physicsNuclear ExperimentPhysics[PHYS]Physics [physics]Fission products010308 nuclear & particles physicsPhysicsNuclear dataFísica nuclearHigh Energy Physics::ExperimentDelayed neutronRadioactive decay
researchProduct

Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements

2011

The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaeskylae, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat sum…

Nuclear physicsFission productsMaterials scienceNuclear fuelIsotopeSpectrometerIsotopes of samariumGeneral Physics and AstronomyGamma spectroscopyDecay heatNuclear ExperimentPenning trapJournal of the Korean Physical Society
researchProduct

β-decay ofO13

2005

The beta decay of O-13 has been studied at the IGISOL facility of the Jyvaskyla accelerator centre (Finland). By developing a low-energy isotope-separated beam of O-13 and using a modern segmented charged-particle detector array an improved measurement of the delayed proton spectrum was possible. Protons with energy up to more than 12 MeV are measured and the corresponding log(ft) values extracted. A revised decay scheme is constructed. The connection to molecular states and the shell model is discussed.

Nuclear physicsPhysicsNuclear and High Energy PhysicsDecay schemeInternal conversionProtonDouble beta decayPhysics::Accelerator PhysicsNeutronNuclear drip lineNuclear ExperimentBeta decayRadioactive decayPhysical Review C
researchProduct

Production of Sn and Sb isotopes in high-energy neutron induced fission of natU

2018

The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyväskylä, Finland. The fission products from high-energy neutron-induced fission of nat U were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133 , were transported to a tape-implantation station and identified using γ -spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a …

Nuclear reactionPhysicsNuclear and High Energy PhysicsFission products010308 nuclear & particles physicsFissionIsotopes of samariumFission product yield01 natural sciences7. Clean energyFast fissionNuclear physicsSubatomär fysikneutron-induced fission yields0103 physical sciencesIsotopes of tinSubatomic PhysicsNeutronsystematic measurement010306 general physics
researchProduct

Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z = 28 , N = 40

2007

The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion Guide Isotope Separator On-Line (IGISOL) facility at Jyvaskyla, was employed to measure the atomic masses of neutron-rich 70-73Ni and 73, 75Cu isotopes with a typical accuracy less than 5keV. The mass of 73Ni was measured for the first time. Comparisons with the previous data are discussed. Two-neutron separation energies show a weak subshell closure at 68 28Ni40 . A well established proton shell gap is observed at Z = 28 .

PhysicsNuclear and High Energy PhysicsProtonIsotopePenning trapMass spectrometryAtomic massIonNuclear physicsNuclear fusionNeutronPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentThe European Physical Journal A
researchProduct

Coulomb displacement energies as a probe for nucleon pairing in the $f_{7/2}$ shell

2014

Coulomb displacement energies of $T=1/2$ mirror nuclei have been studied via a series of high-precision $Q_\mathrm{EC}$-value measurements with the double Penning trap mass spectrometer JYFLTRAP. Most recently, the $Q_\mathrm{EC}$ values of the $f_{7/2}$-shell mirror nuclei $^{45}$V ($Q_\mathrm{EC}=7123.82(22)$ keV) and $^{49}$Mn ($Q_\mathrm{EC}=7712.42(24)$ keV) have been measured with an unprecedented precision. The data reveal a 16-keV ($1.6\sigma$) offset in the adopted Atomic Mass Evaluation 2012 value of $^{49}$Mn suggesting the need for further measurements to verify the breakdown of the quadratic form of the isobaric multiplet mass equation. Precisely measured $Q_\mathrm{EC}$ values…

PhysicsNuclear and High Energy Physicsta114010308 nuclear & particles physicsFOS: Physical sciences01 natural sciencesAtomic massIonMass formulaPairing0103 physical sciencesCoulombMirror nucleiAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentMultiplet
researchProduct

Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP

2008

A new procedure to prepare isomerically clean samples of ions with a mass resolving power of more than 100,000 has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.

Condensed Matter::Quantum GasesNuclear and High Energy PhysicsTandemChemistryAnalytical chemistryFOS: Physical sciencesMass spectrometryPenning trapIonTrap (computing)Physics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physicsNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationNuclear Experiment
researchProduct

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

2021

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…

CHARGE RADIIEFFICIENCYProtonScienceSYMMETRYNuclear TheoryGeneral Physics and AstronomyIONIZATION SPECTROSCOPY[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyEffective nuclear chargeArticleNuclear physicsCharge radiusMOMENTS0103 physical sciencesexperimental nuclear physicsNeutronNuclear Physics - ExperimentPhysics::Atomic PhysicsBETA-DECAYExperimental nuclear physics010306 general physicsLASER SPECTROSCOPYNuclear ExperimentPhysicsRESONANCE IONIZATIONisotoopitMultidisciplinaryScience & TechnologyIsotope010308 nuclear & particles physicsQGeneral ChemistryRadiusION-SOURCEMultidisciplinary SciencesTheoretical nuclear physicsNeutron numbertheoretical nuclear physicsScience & Technology - Other TopicsISOTOPESDensity functional theoryydinfysiikka
researchProduct

LUKIOLAISTEN MOTIVAATIO OPISKELLA FYSIIKKAA: ONKO TÄSSÄ EROJA MIESTEN JA NAISTEN VÄLILLÄ?

2022

Viime vuosina fysiikan ylioppilaskirjoituksiin ilmoittautuneiden määrä on lähes kaksinkertaistunut ja naisten suhteellinen osuus kasvanut. Aiemmasta tutkimuksesta tiedetään, että motivaatio opiskella fysiikkaa on sukupuolittunutta. Tässä tutkimuksessa selvitettiin lukiolaisten motivaatiota fysiikan opiskeluun ja mahdollisia sukupuolten välisiä eroja. Tutkimus toteutettiin kyselytutkimuksena fysiikan syventäviä kursseja opiskeleville. Keskimäärin miesten sisäinen motivaatio opiskella fysiikkaa ja koettu fysiikan välinearvo olivat korkeampia kuin naisilla. Fysiikan opiskelun kustannuksissa tai fysiikkaan liittyvissä kykyuskomuksissa ei ollut eroja sukupuolten välillä. Avok…

sukupuolittuminenlukiolaisetopiskelumotivaatiosukupuolierotainevalinnatlukioArtikkelitfysiikkaFMSERA Journal
researchProduct

Characterization and performance of the DTAS detector

2018

11 pags., 16 figs., 3 tabs.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaMonte Carlo methodspektrometritβ decayFOS: Physical sciencesNon-proportional scintillation light yield: Monte Carlo simulationsMonte Carlo simulations [Non-proportional scintillation light yield]y-ray spectrometerB decay[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesMonte Carlo simulationsOpticsDistortion0103 physical sciencesNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsAbsorption (electromagnetic radiation)Nuclear ExperimentInstrumentation[formula omitted] decayNuclear ExperimentPhysicsta114Spectrometer010308 nuclear & particles physicsbusiness.industryNaI(Tl) detectorPulse generatorTotal absorption [formula omitted]-ray spectrometerDetectornon-proportional scintillation light yieldInstrumentation and Detectors (physics.ins-det)Total absorption γ -ray spectrometerNon-proportional scintillation light yieldFísica nuclearTotal absorptionydinfysiikkabusinessDelayed neutronExotic nucleiNuclear instruments & methods inphysics research section A: Accelerators spectrometers detectors and associated equipment 910: 79-89 (2018)
researchProduct

The MORA project

2018

The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.

Physics - Instrumentation and Detectorsexperimental methodsPhysics beyond the Standard Model42.25.Janucl-ex01 natural sciences7. Clean energylaw.invention23.40.-slawPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Detectors and Experimental TechniquesNuclear Experimentphysics.ins-detPhysicsLarge Hadron Colliderion trapsOrientation (computer vision)Instrumentation and Detectors (physics.ins-det)Condensed Matter PhysicsComputer Science::Computers and SocietyAtomic and Molecular Physics and OpticsIon trapydinfysiikkaNuclear and High Energy PhysicsFOS: Physical sciencesTrapping[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Computer Science::Digital LibrariesIonFundamental symmetriesNuclear physics0103 physical sciencesCP: violation37.10.TyNuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physical and Theoretical Chemistry010306 general physicsactivity reportion: capturenucleus: semileptonic decayCondensed Matter::Quantum Gases010308 nuclear & particles physicsBeta DecayLaserlaserDipoleefficiencycorrelationfundamental symmetries11.30.Erbeta decayIon traps
researchProduct

Branching ratios in theβdecays ofN12andB12

2009

Absolute branching ratios to unbound states in C-12 populated in the beta decays of N-12 and B-12 are reported. Clean sources of N-12 and B-12 were obtained using the isotope separation on-line (ISOL) method. The relative branching ratios to the different populated states were extracted using single-alpha as well as complete kinematics triple-alpha spectra. These two largely independent methods give consistent results. Absolute normalization is achieved via the precisely known absolute branching ratio to the bound 4.44 MeV state in C-12. The extracted branching ratios to the unbound states are a factor of three more precise than previous measurements. Branching ratios in the decay of Na-20 …

Nuclear physicsPhysicsNormalization (statistics)Nuclear and High Energy PhysicsBranching fractionlawDouble beta decayCarbon-12Alpha particleBeta decaySpectral lineIsotope separationlaw.inventionPhysical Review C
researchProduct

Breakup channels forC12triple-αcontinuum states

2009

The triple-alpha-particle breakup of states in the triple-alpha continuum of C-12 has been investigated by way of coincident detection of all three alpha particles of the breakup. The states have been fed in the beta decay of N-12 and B-12, and the alpha particles measured using a setup that covers all of the triple-alpha phase space. Contributions from the breakup through the Be-8(0(+)) ground state as well as other channels-interpreted as breakup through excited energies in Be-8-have been identified. Spins and parities of C-12 triple-alpha continuum states are deduced from the measured phase-space distributions for breakup through Be-8 above the ground state by comparison to a fully symme…

PhysicsNuclear and High Energy PhysicsAngular momentumExcited stateNuclear TheoryContinuum (design consultancy)Carbon-12Alpha particleAtomic physicsNuclear ExperimentSpin (physics)Ground stateBreakupPhysical Review C
researchProduct

Double-beta decay Q values of 116Cd and 130Te

2011

Abstract The Q values of the 116Cd and 130Te double-beta decaying nuclei were determined by using a Penning trap mass spectrometer. The new atomic mass difference between 116Cd and 116Sn of 2813.50(13) keV differs by 4.5 keV and is 30 times more precise than the previous value of 2809(4) keV. The new value for 130Te, 2526.97(23) keV is close to the Canadian Penning trap value of 2527.01 ± 0.32 keV (Scielzo et al., 2009) [1] , but differs from the Florida State University trap value of 2527.518 ± 0.013 keV (Redshaw et al., 2009) [2] by 0.55 keV (2σ). These values are sufficiently precise for ongoing neutrinoless double-beta decay searches in 116Cd and 130Te. Hence, our Q values were used to …

PhysicsNuclear and High Energy PhysicsDecay schemeta114Q valuePenning trapDouble-beta decayMass SpectrometerQ valueMass spectrometryPenning trapAtomic massNuclear physicsMatrix (mathematics)Neutrino massCUOREDouble beta decayHigh Energy Physics::ExperimentAtomic physicsPhysics Letters B
researchProduct

Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer

2018

The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb $ ^{+}$ and 87 Rb $ ^{+}$ ions with well-known mass values show that relative uncertainties $ \Delta m/m \leq 7\cdot 10^{-10}$ are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and …

Nuclear and High Energy PhysicstutkimuslaitteetHadronCyclotronspektrometritdouble penning trap mass spectrometerMass spectrometry01 natural sciencesIonlaw.inventionPhysics::Plasma Physicslaw0103 physical sciencesJYFLTRAPNuclear fusionNuclear Experiment010306 general physicsPhysics010308 nuclear & particles physicssyklotronitPenning trapphase-imagingion-cyclotron-resonance techniqueNeutrinoAtomic physicsydinfysiikkaIon cyclotron resonanceThe European Physical Journal A
researchProduct

QECvalues of the superallowedβemittersC10,Ar34,Ca38, andV46

2011

The ${Q}_{\mathrm{EC}}$ values of the superallowed ${\ensuremath{\beta}}^{+}$ emitters $^{10}\mathrm{C}$, $^{34}\mathrm{Ar}$, $^{38}\mathrm{Ca}$, and $^{46}\mathrm{V}$ have been measured with the JYFLTRAP Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7), and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results. Of the well-known superallowed emitters, only $^{14}\mathrm{O}$ has yet to have had its ${Q}_{\mathrm{EC}}$ value measured with a Penning trap.

PhysicsNuclear and High Energy PhysicsLight nucleusQ valueIsotopes of vanadiumAtomic physicsNuclear ExperimentPenning trapEnergy (signal processing)Physical Review C
researchProduct

First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility

2015

V. Guadilla et al. ; 4 págs.; 4 figs.; 1 tab.

SOL facilitiesNuclear and High Energy PhysicsAnalytical chemistryβ decay[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Total Absorption γ-Ray Spectrometertotal absorption gamma-ray spectrometer01 natural sciencesNuclear physicsLow energy0103 physical sciences010306 general physicsAbsorption (electromagnetic radiation)Instrumentationbeta-delayed neutron emittersSpectrometerta114010308 nuclear & particles physicsChemistryDetector3. Good healthexotic nucleiβ-Delayed neutron emittersISOL facilitiesbeta decayExotic nuclei
researchProduct

JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification

2012

In this article a comprehensive description and performance of the double Penning-trap setup JYFLTRAP will be detailed. The setup is designed for atomic mass measurements of both radioactive and stable ions and additionally serves as a very high-resolution mass separator. The setup is coupled to the IGISOL facility at the accelerator laboratory of the University of Jyväskylä. The trap has been online since 2003 and it was shut down in the summer of 2010 for relocation to the upgraded IGISOL facility. Numerous atomic mass and decay energy measurements have been performed using the time-of-flight ion-cyclotron resonance technique. The trap has also been used in several decay spectroscopy expe…

Physicsnuclear spectroscopyNuclear and High Energy Physicsaccelerator-based physicsCyclotronPenning trapMass spectrometrykiihdytinpohjainen fysiikkaAtomic massIonlaw.inventionNuclear physicsydinrakenneDecay energylawnuclear structureydinspektroskopiaNuclear fusionPhysics::Atomic PhysicsSpectroscopyNuclear Experimentydinfysiikka
researchProduct

Characterization of a cylindrical plastic {\beta}-detector with Monte Carlo simulations of optical photons

2017

V. Guadilla et al. -- 5 pags., 8 figs., tab.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhotonTotal absorption spectroscopyoptical photonsTotal absorption spectroscopyMonte Carlo method[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesElectromagnetic radiationMonte Carlo simulationsOptics0103 physical sciencesPlastic scintillators[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]plastic scintillators010306 general physicsAbsorption (electromagnetic radiation)Nuclear ExperimentInstrumentationPhysicsSpectrometerta114010308 nuclear & particles physicsbusiness.industryDetectortotal absorption spectroscopyComputational physicsOptical photonsDynamic Monte Carlo methodbusiness
researchProduct

Direct measurement of the mass difference of As72−Ge72 rules out As72 as a promising β -decay candidate to determine the neutrino mass

2021

We report the first direct determination of the ground-state to ground-state electron-capture $Q$ value for the $^{72}\mathrm{As}$ to $^{72}\mathrm{Ge}$ decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$ value was measured to be 4343.596(75) keV, which is more than a fiftyfold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$ value was found to be 12.4(40) keV (3.1 $\ensuremath{\sigma}$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$ value combined with the level scheme of $^{72}\mathrm{Ge}$ from $\ensurem…

Physics010308 nuclear & particles physicsElectron captureSigmaPenning trapMass spectrometry01 natural sciencesAtomic mass0103 physical sciencesNeutrinoAtomic physics010306 general physicsSpectroscopyElectron neutrinoPhysical Review C
researchProduct

Optimization of krypton yields for rp-process studies at ISOLDE(CERN)

2004

The production of neutron-deficient krypton isotopes having astrophysical importance has been studied at the ISOLDE PBS facility at CERN. To investigate several effects on the yield a Monte Carlo code has been extensively applied.

PhysicsNuclear and High Energy PhysicsLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsKryptonIsotopes of kryptonchemistry.chemical_elementrp-process7. Clean energy01 natural sciencesNuclear physicschemistryMonte carlo codeYield (chemistry)0103 physical sciencesPhysics::Accelerator PhysicsPhysics::Atomic PhysicsNuclear Experiment010306 general physicsNuclear Physics A
researchProduct

Trap-assisted separation of nuclear states for gamma-ray spectroscopy: the example of100Nb

2011

Low-lying levels in 100Mo are known to be populated by beta decay from both the ground and isomeric states in 100Nb. The small energy difference (~3 ppm) between the two parent states and the similarity of their half-lives make it difficult to distinguish experimentally between the two decay paths. A new technique for separating different states of nuclei has recently been developed in a series of experiments at the IGISOL facility, using the JYFLTRAP installation, at the University of Jyvaskyla where mass resolution ~2 ppm was achieved in mass measurements and in the production of 133mXe. This paper reports on the extension of this technique to allow the separate study of the gamma-ray dec…

PhysicsNuclear physicsNuclear and High Energy PhysicsDecay scheme[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]010308 nuclear & particles physics0103 physical sciencesGamma spectroscopyTrap (plumbing)Atomic physics010306 general physics01 natural sciencesBeta decayJournal of Physics G: Nuclear and Particle Physics
researchProduct

Isomeric fission yield ratios for odd-mass Cd and In isotopes using the Phase-Imaging Ion-Cyclotron-Resonance technique

2018

Isomeric yield ratios for the odd-$A$ isotopes of $^{119-127}$Cd and $^{119-127}$In from 25-MeV proton-induced fission on natural uranium have been measured at the JYFLTRAP double Penning trap, by employing the Phase-Imaging Ion-Cyclotron-Resonance technique. With the significantly improved mass resolution of this novel method isomeric states separated by 140 keV from the ground state, and with half-lives of the order of 500 ms, could be resolved. This opens the door for obtaining new information on low-lying isomers, of importance for nuclear structure, fission and astrophysics. In the present work the experimental isomeric yield ratios are used for the estimation of the root-mean-square a…

Nuclear TheoryAnalytical chemistryFOS: Physical sciencesFission product yield01 natural sciences7. Clean energySubatomär fysikydinreaktiotPhysics::Plasma Physics0103 physical sciencesSubatomic PhysicsPhysics::Atomic and Molecular ClustersfissionNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Experimentnuclear reactionsPhysicsIsotopeta114010308 nuclear & particles physics3. Good healthfissioPhase imagingisomer decaysydinfysiikkaIon cyclotron resonance
researchProduct

Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning

2019

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…

Nuclear and High Energy Physicsastro-ph.SRNuclear TheoryExplosive materialnucl-thStrong interactionnucl-ex01 natural sciencesIonReaction ratesymbols.namesake0103 physical sciencesCoulombMirror nuclei010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsradioactive beams010308 nuclear & particles physicsshell modellcsh:QC1-999Astrophysics - Solar and Stellar AstrophysicsExcited statesymbolsX-ray burststransfer reactionsAtomic physicsHamiltonian (quantum mechanics)ydinfysiikkalcsh:PhysicsPhysics Letters B
researchProduct

Large Impact of the Decay of Niobium Isomers on the Reactor ν¯e Summation Calculations

2019

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data ob…

Semileptonic decayPhysicsIsotopeNiobiumGeneral Physics and Astronomychemistry.chemical_elementPenning trap7. Clean energy01 natural sciencesBeta decayIonNuclear physicschemistry13. Climate actionBeta (plasma physics)0103 physical sciencesNuclear Experiment010306 general physicsSpectroscopyPhysical Review Letters
researchProduct

Measurement of the 2+→0+ ground-state transition in the β decay of F20

2019

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

Physics010308 nuclear & particles physicsBranching fractionDegenerate energy levelsDetectorchemistry.chemical_element01 natural sciences7. Clean energychemistry0103 physical sciencesHigh Energy Physics::ExperimentAtomic physics010306 general physicsGround stateCarbonStellar evolutionBeam (structure)FOIL methodPhysical Review C
researchProduct

Total absorption study of theβdecay of102,104,105Tc

2013

The $\ensuremath{\beta}$-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely ${}^{102,104,105}$Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations.

Nuclear physicsPhysicsNuclear and High Energy PhysicsTotal absorption spectroscopyBeta (plasma physics)Double beta decayIsobaric processAbsorption (logic)Decay heatAtomic physicsPenning trapBeta decayPhysical Review C
researchProduct

TAGS measurements of $^{100}$Nb ground and isomeric states and $^{140}$Cs for neutrino physics with the new DTAS detector

2016

V. Guadilla et al. -- 4 pags., 6 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

PhysicsFission productsta114Spectrometer010308 nuclear & particles physicsPhysicsQC1-999Detector[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3. Good healthNuclear physicsnuclear masses0103 physical sciencesstructuredecay data measurementsNeutrino010306 general physicsSpectroscopyAbsorption (electromagnetic radiation)
researchProduct

New isomer and decay half-life ofRu115

2010

Exotic, neutron-rich nuclei of mass $A=115$ produced in proton-induced fission of $^{238}\mathrm{U}$ were extracted using the IGISOL mass separator. The beam of isobars was transferred to the JYFLTRAP Penning trap system for further separation to the isotopic level. Monoisotopic samples of $^{115}\mathrm{Ru}$ nuclei were used for $\ensuremath{\gamma}$and $\ensuremath{\beta}$ coincidence spectroscopy. In $^{115}\mathrm{Ru}$ we have observed excited levels, including an isomer with a half-life of 76(6) ms and ($7/{2}^{\ensuremath{-}}$) spin and parity. The first excited 61.7-keV level in $^{115}\mathrm{Ru}$ with spins and parity ($3/{2}^{+}$) may correspond to an $\mathit{oblate}$ $3/{2}^{+}$…

Nuclear reactionPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsHadron01 natural sciencesDouble beta decayExcited state0103 physical sciencesIsobarAtomic physicsNuclear Experiment010306 general physicsNucleonGround stateRadioactive decayPhysical Review C
researchProduct

QEC value of the superallowed β emitter Sc42

2017

Precise measurements of superallowed ${0}^{+}\ensuremath{\rightarrow}{0}^{+}$ $\ensuremath{\beta}$ decay presently provide the most precise value for the weak mixing amplitude ${V}_{u\phantom{\rule{0}{0ex}}d}$. As the largest element of the CKM matrix, ${V}_{u\phantom{\rule{0}{0ex}}d}$ is a critical piece of the Standard Model of the electroweak interaction. The new, precise Penning-trap mass measurement of the decay energy for the superallowed transition in ${}^{42}$Sc opens the door for a much more precise $f\phantom{\rule{0}{0ex}}t$ value determination if its half-life can be measured more precisely as well.

PhysicsParticle physics010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixElectroweak interactionValue (computer science)01 natural sciencesMass measurementStandard ModelAmplitudeDecay energy0103 physical sciences010306 general physicsCommon emitterPhysical Review C
researchProduct

Women Scientists Who Made Nuclear Astrophysics

2019

Female role models reduce the impact on women of stereotype threat, i.e. of being at risk of conforming to a negative stereotype about one’s social, gender, or racial group (Fine in Delusion of Gender. W.W. Norton & Co. NY, p. 36, 2010 [1]; Steele and Aronson in J Pers Soc Psychol 69:797–811, 1995 [2]). This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible (CafeBabel Homepage [3]). In response to this situation, we present a selection of twelve outst…

naisetFissionNuclear TheoryAstronomyNuclear physics050109 social psychologykosmologiaAstrophysics01 natural sciencestähtitiedeSolar studies5. Gender equalityHistory and Philosophy of Physics (physics.hist-ph)Nuclear Experiment (nucl-ex)Nuclear Experiment010303 astronomy & astrophysicsNuclear theoryQCQBEarth and Planetary Astrophysics (astro-ph.EP)High Energy Astrophysical Phenomena (astro-ph.HE)Women scientistsHistorical05 social sciencesGender studiestutkijatCosmologyStereotype threatRadioactivityAstrophysics - Solar and Stellar Astrophysicsmedicine.symptomAstrophysics - High Energy Astrophysical PhenomenaPsychologyydinfysiikkaScientific careerastrofysiikkaeducationPhysics - History and Philosophy of PhysicsFOS: Physical sciencesNegative stereotypeNuclear Theory (nucl-th)Delusion0103 physical sciencesmedicine0501 psychology and cognitive sciencesSolar and Stellar Astrophysics (astro-ph.SR)radioaktiivisuusRacial groupGénéralitésAstrophysics - Astrophysics of GalaxiesfissioAstrophysics of Galaxies (astro-ph.GA)Astrophysics - Earth and Planetary Astrophysics
researchProduct

Decays of T Z = − 3/2 nuclei 23Al, 31Cl, and 41Ti

2012

This article gives an overview on the decay spectroscopy of T Z  = − 3/2 nuclei 23Al, 31Cl, and 41Ti performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The results of the IGISOL experiments are compared to the experimental results that have been published since. The isobaric multiplet mass equation (IMME) has been studied for the T = 3/2 quartets at A = 23 and A = 31. For 41Ti, a detailed comparison to the Gamow–Teller strengths obtained for the analog transitions via charge-exchange reactions has been done. Further improvements in the experimental instrumentation and methods and possible implementations for studying T Z  = − 3/2 nuclei at the new IGISOL facility are di…

Nuclear and High Energy PhysicsIsotopebeta-delayed protonsChemistryCondensed Matter PhysicsBeta decayAtomic and Molecular Physics and OpticsIonMass formulaNuclear physicsIsobaric processbeta decayIGISOLPhysical and Theoretical ChemistryAtomic physicsSpectroscopyMultiplet
researchProduct

AccurateQValue for theSn112Double-βDecay and its Implication for the Search of the Neutrino Mass

2009

The $Q$ value of the $^{112}\mathrm{Sn}$ double-beta decay was determined by using a Penning trap mass spectrometer. The new atomic-mass difference between $^{112}\mathrm{Sn}$ and $^{112}\mathrm{Cd}$ of 1919.82(16) keV is 25 times more precise than the previous value of 1919(4) keV. This result removes the possibility of enhanced resonance capture of the neutrinoless double-EC decay to the excited ${0}^{+}$ state at 1871.00(19) keV in $^{112}\mathrm{Cd}$.

PhysicsNuclear physicsQ valueDouble beta decayExcited stateGeneral Physics and AstronomyResonanceNeutrinoAtomic physicsEnergy (signal processing)Radioactive decayLeptonPhysical Review Letters
researchProduct

Quenching of the SnSbTe Cycle in therpProcess

2009

The nuclides 104-108Sn, 106-110Sb, 108,109Te, and 111I at the expected endpoint of the astrophysical rp process have been produced in 58Ni+natNi fusion-evaporation reactions at IGISOL and their mass values were precisely measured with the JYFLTRAP Penning trap mass spectrometer. For 106Sb, 108Sb, and 110Sb these are the first direct experimental mass results obtained. The related one-proton separation energies have been derived and the value for 106Sb, Sp=424(8) keV, shows that the branching into the closed SnSbTe cycle in the astrophysical rp process is weaker than expected.

PhysicsNuclear physicsIsotopeSpectrometerBranching fractionGeneral Physics and AstronomyNucliderp-processNucleonMass spectrometryPenning trapPhysical Review Letters
researchProduct

Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line

2021

Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $\delta$m/m = 4.0$\times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured…

nucl-thNuclear TheoryFOS: Physical sciencesInteraction strengthnucl-exMass spectrometry01 natural sciences7. Clean energyarseeniIonNuclear Theory (nucl-th)Nuclear physicsFragmentation (mass spectrometry)0103 physical sciencesddc:530NeutronbromiNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsIsotope010308 nuclear & particles physicsMass measurementAtomic massseleeniydinfysiikkaPhysical Review C
researchProduct

Disentangling decaying isomers and searching for signatures of collective excitations in β decay

2019

6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK

Neutron-rich nucleiHistoryIsotope-separator-on-lineGround statePenning trapspektroskopiaBeta decay01 natural sciencesEducationNuclear physics0103 physical sciencesGamma-ray spectroscopy010306 general physicsNuclear ExperimentPhysicsPygmy dipole resonances010308 nuclear & particles physicsGamma rays[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]3. Good healthComputer Science ApplicationsQuasiparticleIsomeric stateFísica nuclearydinfysiikkaGamma ray spectrometersCollective excitations
researchProduct

New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions

2021

The astrophysical $^{25}\mathrm{Al}(p,\ensuremath{\gamma})\phantom{\rule{0.16em}{0ex}}^{26}\mathrm{Si}$ reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic $^{26}\mathrm{Al}$ ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in $^{26}\mathrm{Si}$, that govern the rate of the $^{25}\mathrm{Al}(p,\ensuremath{\gamma})$ reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the $^{26}\mathrm{Si}$ mirror nucleus $^{26}\mathrm{Mg}$. We have measured the lifetime of the ${3}^{+}$, 6.125-MeV state in $^{26}\mathrm{Mg}$ to be $19(3)\phanto…

PhysicsNuclear reactionRadiative captureFluxResonanceNova (laser)Atomic physicsSpectroscopyPhysical Review C
researchProduct

Studying Gamow-Teller transitions and the assignment of isomeric and ground states at $N=50$

2022

Direct mass measurements of neutron-deficient nuclides around the N=50 shell closure below $^{100}$Sn were performed at the FRS Ion Catcher (FRS-IC) at GSI, Germany. The nuclei were produced by projectile fragmentation of $^{124}$Xe, separated in the fragment separator FRS and delivered to the FRS-IC. The masses of 14 ground states and two isomers were measured with relative mass uncertainties down to 1×10−7 using the multiple-reflection time-of-flight mass spectrometer of the FRS-IC, including the first direct mass measurements of $^{98}$Cd and $^{97}$Rh. A new QEC=5437±67 keV was obtained for $^{98}$Cd, resulting in a summed Gamow-Teller (GT) strength for the five observed transitions (0+…

nuclear isomersNuclear and High Energy PhysicsMultiple-reflection time-of-flight massNuclear shell structuremultiple-reflection time-of-flight mass[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]N = 50 isotonesFOS: Physical sciencesGamow-Teller transition?s strength114 Physical sciencesSpectrometerexotic nucleiGamow-Teller transition's strengthnuclear shell structureNuclear isomersspectrometerN=50 isotonesNuclear Experiment (nucl-ex)ydinfysiikkaNuclear ExperimentExotic nuclei
researchProduct

Study of the Ti44(α,p)V47 reaction and implications for core collapse supernovae

2014

The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ-ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is Ti44(α,p)V47. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16MeV/u, corresponding to an energy distribution, for reacting α-partic…

Nuclear physicsNuclear reactionPhysicsNuclear and High Energy PhysicsStarsSupernovaIsotopes of vanadiumNeutron sourceSpallationAstrophysicsEjecta7. Clean energySpallation Neutron SourcePhysics Letters B
researchProduct

Studies on exotic nuclei of astrophysical interest near the N = Z line

2006

researchProduct

First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement : The P2n value of 136Sb

2018

Background: β-delayed multiple neutron emission has been observed for some nuclei with A≤100, being the Rb100 the heaviest β2n emitter measured to date. So far, only 25P2n values have been determined for the ≈300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of a…

astrofysiikkaNuclear Theorynuclear astrophysicsr processbeta decayNuclear Experimentydinfysiikkanuclear engineeringnuclear structure and decaysisotope separation and enrichmentneutron physicsemissio (fysiikka)
researchProduct

Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy

2017

The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also r…

total absorption gamma-ray spectroscopybeta decay
researchProduct

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP : Reduced Neutron Pairing and Implications for r-Process Calculations

2018

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. Nd158, Pm160, Sm162, and Gd164-166 have been measured for the first time, and the precisions for Nd156, Pm158, Eu162,163, Gd163, and Tb164 have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2n and neutron pairing energy metrics Dn. The data do not support the existence of…

astrofysiikkanuclear astrophysicsharvinaiset maametallitydinfysiikkabinding energy and masses
researchProduct

Study of the β decay of fission products with the DTAS detector

2017

Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. The analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors. peerReviewed

High Energy Physics::Experimentbeta decayTotal Absorption Spectroscopy
researchProduct

Impact of nuclear mass measurements in the vicinity of 132Sn on the r-process nucleosynthesis

2022

Nuclear masses are a key aspect in the modelling of nuclear reaction rates for the r-process nucleosynthesis. High precision mass measurements drastically reduce the associated uncertainties in the modelling of r-process nucleosynthesis. We investigate the impact of nuclear mass uncertainties on neutron-capture rates calculations using a Hauser – Feshbach statistical code in the vicinity of 132Sn. Finally, we study the impact of the propagated neutron-capture reaction rates uncertainties on the r-process nucleosynthesis. We find that mass measurements with uncertainties higher than 20 keV affect the calculation of reaction rates. We also note that modelling of reaction rates can differ for …

isotoopittinamassa (fysiikka)ydinfysiikka
researchProduct

Total absorption study of the \beta decay of 102,104,105Tc

2013

The β-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely 102,104,105Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations. peerReviewed

Experimental nuclear physics
researchProduct

Ydinfysiikkaa, jotta ymmärtäisimme miten alkuaineet ovat syntyneet tähdissä

2017

Ihmisiä on aina kiinnostanut, miten maailma on syntynyt. Kalevalassa kerrotaan maailman saaneen alkunsa kuudesta kultaisesta ja yhdestä rautaisesta munasta. Nykytieteen perustella toki tiedämme, ettei näin ole. nonPeerReviewed

astrofysiikkaalkuaineetfysiikkaydinfysiikka
researchProduct

Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data

2020

For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…

Nuclear TheorytutkimuslaitteethiukkaskiihdyttimetNuclear Experimentydinfysiikka
researchProduct

Characterization of a neutron–beta counting system with beta-delayed neutron emitters

2016

A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a selftriggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accura…

beta-delayed neutron emission probabilityAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryGeant4 simulationsself-triggered digital data acquisition systemNuclear Experimentneutron and beta counters
researchProduct

High-Precision Proton-Capture Q Values for 25Al(p,γ)26Si and 30P(p,γ)31Si

2017

The masses of astrophysically relevant nuclei, 25Al and 30P, have recently been measured with the JYFLTRAP double Penning trap at the new IGISOL-4 facility at the University of Jyväskylä. Unparalleled precisions of 63 and 64 eV were achieved for the 25Al and 30P masses, respectively. The proton-capture Q values for 25Al(p, γ)26Si and 30P(p, γ)31S were also determined, and their precisions improved by a factor of 4 and 2, respectively, in comparison with AME12. The impact of the more precise values on the resonant proton-capture rate has also been studied. peerReviewed

Penning-trap mass spectrometryatomic massesnovat
researchProduct

Large Impact of the Decay of Niobium Isomers on the Reactor ¯νe Summation Calculations

2019

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of 100gs;100mNb and 102gs;102mNb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this …

neutriinotbeta decayNuclear Experimentydinfysiikka
researchProduct

High-precision measurement of the mass difference between 102Pd and 102Ru

2019

The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyväskylä. Th…

neutrinoless double-electron capturepenning trapQ-valuesydinfysiikkahigh-precision mass spectrometry
researchProduct

Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons

2017

In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic β-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extens…

optical photonstotal absorption spectroscopyplastic scintillatorsMonte Carlo simulations
researchProduct

Precision Mass Measurements beyond $^{132}$Sn: Anomalous behaviour of odd-even staggering of binding energies

2012

Atomic masses of the neutron-rich isotopes $^{121-128}$Cd, $^{129,131}$In, $^{130-135}$Sn, $^{131-136}$Sb, and $^{132-140}$Te have been measured with high precision (10 ppb) using the Penning trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei $^{135}$Sn, $^{136}$Sb, and $^{139,140}$Te were measured for the first time. The data reveals a strong $N$=82 shell gap at $Z$=50 but indicates the importance of correlations for $Z>50$. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N$=82 for Sn, with the $Z$-dependence that is unexplainable by the current theoretical models.

nuclear spectroscopyydinrakenneTheoretical nuclear physicsaccelerator-based physicsnuclear structureydinspektroskopiaFOS: Physical sciencesNuclear Experiment (nucl-ex)ydinfysiikkakiihdytinpohjainen fysiikkaNuclear Experiment
researchProduct

Isomeric states close to doubly magic $^{132}$Sn studied with JYFLTRAP

2012

The double Penning trap mass spectrometer JYFLTRAP has been employed to measure masses and excitation energies for $11/2^-$ isomers in $^{121}$Cd, $^{123}$Cd, $^{125}$Cd and $^{133}$Te, for $1/2^-$ isomers in $^{129}$In and $^{131}$In, and for $7^-$ isomers in $^{130}$Sn and $^{134}$Sb. These first direct mass measurements of the Cd and In isomers reveal deviations to the excitation energies based on results from beta-decay experiments and yield new information on neutron- and proton-hole states close to $^{132}$Sn. A new excitation energy of 144(4) keV has been determined for $^{123}$Cd$^m$. A good agreement with the precisely known excitation energies of $^{121}$Cd$^m$, $^{130}$Sn$^m$, an…

FOS: Physical sciencesExperimental nuclear physicsNuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

Structure of 115Ag studied by β− decays of 115Pd and 115mPd

2012

The excited levels of 115Ag have been studied via the beta decay of 115Pd and 115Pdm. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of 115Pdm which was practically unknown before this work. Transition intensities and log10 f t values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of 115Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich silver isotopes, and new spin assignments as well as identificatio…

nuclear spectroscopyydinrakenneaccelerator-based physicsnuclear structureydinspektroskopiaydinfysiikkakiihdytinpohjainen fysiikka
researchProduct

β Decay of 127Cd and Excited States in 127In

2019

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyväskylä. Following high-resolution mass separation in a Penning trap, β−γ−γcoincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2− states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(128)s and 0.36(4) s. The experimentally observed βfeeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations. peerReviewed

electromagnetic transitionsgamma-ray spectroscopynuclear shell modelPenning trapSubatomic Physicsshell modelisomer decaybeta decayydinfysiikkanuclear structure and decaysGamow-Teller strength
researchProduct

Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

2016

Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of natUnatU were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of natUnatU were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. peerReviewed

proton-induced fissionisotopic yieldsNuclear Experiment
researchProduct

Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

2016

Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complemen…

rubidiumdecay heatfission productsHigh Energy Physics::Experimentbeta decayantineutrino emissionNuclear ExperimentPhysics::Geophysics
researchProduct

Excited levels in the multishaped 117Pd nucleus studied via β decay of 117Rh

2018

Monoisotopic samples of exotic, neutron-rich 117Rh nuclei, produced in the proton-induced fission of 238U and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform β and γ coincidence spectroscopy of 117Pd. The spin parity of the ground state of 117Pd was determined to be 1/2+ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity 7/2−. The 117Rh β−-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prolate, oblate, and triaxial nuclear shapes. Some of the β− decays were considered as the allowed Gamow-Teller transitions. The experimental distribution of Gamow-Teller streng…

isotoopitrare and new isotopesNuclear Theorybeta decayNuclear Experimentisomer decaysydinfysiikkapalladiumnuclear structure and decays
researchProduct

Ion traps in nuclear physics : recent results and achievements

2016

Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purified ion sa…

Condensed Matter::Quantum GasesioniliikkuvuusspektrometriaAtomic mass measurementstrap-assisted spectroscopyastrofysiikkaNuclear binding energyhiukkasfysiikkaPhysics experimentsAtomic massNuclear astro-physicsPhysics::Atomic PhysicsDecay spectroscopiesydinfysiikkaMass measurementsIon traps
researchProduct

Mass Measurements for the rp Process

2017

One of the key parameters for the reaction network calculations for the rapid proton capture (rp) process, occurring e.g., in type I X-ray bursts, are the masses of the involved nuclei. Nowadays, masses of even rather exotic nuclei can be measured very precisely employing Penning-trap mass spectrometry. With the JYFLTRAP Penning trap at the IGISOL facility, masses of around 100 neutron-deficient nuclei have been determined with a typical precision of a few keV. Most recently, 25Al, 30P, 31Cl, and 52Co have been measured. Of these, the precision of the mass-excess value of 31Cl was improved from 50 to 3.4 keV, and the mass of 52Co was experimentally determined for the first time. The mass of…

Penning-trap mass spectrometrynovae rp processatomic masses
researchProduct

Isomers of astrophysical interest in neutron-deficient nuclei at masses A = 81, 85 and 86

2005

Decay properties of neutron-deficient exotic nuclei close to A=80 have been investigated at the IGISOL facility. The studied nuclei, 81Y, 81Sr, 81mKr, 85Nb, 85Zr, 86Mo and 86Nb, were produced by a 32S beam from the Jyväskylä isochronous cyclotron on 54Fe and natNi targets. The internal conversion coefficient for a 190.5 keV isomeric transition in 81mKr has been measured and the internal transition rate has been determined. The internal transition rate has been used to estimate a neutrino capture rate on 81Br, which yields a log ft of 5.13±0.09 for the reaction 81Br( ν, e-)81mKr. A new isomer with a half-life of 3.3±0.9 s has been observed in 85Nb. The existence of an earlier reported isomer…

nukliditnuclides
researchProduct

Shape coexistence in the odd-odd nucleus 98Y : the role of the g9/2 neutron extruder

2017

Excited states in 98Y, populated in neutron-induced fission of 235U and in spontaneous fission of 248Cm and 252Cf, have been studied by means of γ spectroscopy using the Lohengrin fission-fragment separator at ILL Grenoble and the EXILL, Eurogam2, and Gammasphere Ge arrays. Two new isomers have been found in 98Y: a deformed one with T1/2 = 180(7) ns and a rotational band on top of it, and a spherical one with T1/2 = 0.45(15)μs, analogous to the 8+ isomer in 96Y, corresponding to the (νg7/2,πg9/2)8+ spherical configuration. Using the JYFLTRAP Penning trap, an accurate excitation energy of 465.7(7) keV has been determined for the 2.36-s isomer in 98Y. This result and the studies of excited le…

level densitiesleveyslifetimesenergy levelsisomer decaysnuclear structure and decayss
researchProduct

Quenching of the SnSbTe Cycle in the rp-Process

2009

researchProduct

First evidence of multiple β-delayed neutron emission for isotopes with a > 100

2017

The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …

neutron-rich nucleiAstrophysics::High Energy Astrophysical PhenomenaNuclear Theorynuclear structureNuclear Experimentbeta-delayed neutron emission
researchProduct

r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay

2017

Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed

total absorption gamma-ray spectroscopybeta-delayed neutron emittersAstrophysics::High Energy Astrophysical Phenomenar-processutron-capture ratesNuclear Experiment
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)Astrophysics - Solar and Stellar AstrophysicsNuclear TheoryFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Precision 71Ga – 71Ge mass-difference measurement

2016

The 71Ga(νe, e−) 71Ge reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyv¨askyl¨a to Q = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in 71Ga. peerReviewed

mass measurementsQ value for solar-neutrino capture rates
researchProduct

Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap

2006

The masses of 80,81,82,83Y, 83,84,85,86,88Zr and 85,86,87,88Nb have been measured with a typical precision of 7 keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides. peerReviewed

nukliditnuclides
researchProduct

The science case of the FRS Ion Catcher for FAIR Phase-0

2019

The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…

ydinreaktiotMR-TOF-MSNuclear Theorymass measurementsddc:530exotic nuclidesNuclear Experimentydinfysiikkanuclear reactionsbeta-delayed neutron emissionemissio (fysiikka)
researchProduct

QEC value of the superallowed β emitter 42Sc

2017

The QEC value of the superallowed β+ emitter Sc42 has been measured with the JYFLTRAP Penning-trap mass spectrometer at the University of Jyväskylä to be 6426.350(53) keV. This result is at least a factor of four more precise than all previous measurements, which were also inconsistent with one another. As a byproduct we determine the excitation energy of the 7+ isomeric state in Sc42 to be 616.762(46) keV, which deviates by 8σ from the previous measurement. peerReviewed

Ion Traps (Instrumentation)astrofysiikkasuperallowed emittersAntiprotonsAtomic Weightsydinfysiikkaatomipainot
researchProduct

High-precision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl

2010

ydinrakenneydinspektroskopiaydinfysiikkakiihdytinpohjainen fysiikka
researchProduct

FRIB and the GW170817 Kilonova

2018

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear Theory (nucl-th)FOS: Physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

2021_06_02_TrapOffline: 98Mo-98Ru and 96Ru-96Mo with the JYFLTRAP Penning trap mass spectrometer

2022

Data include the measurement data collected with the JYFLTRAP double Penning trap mass spectrometer in the JYFL-ACCLAB Accelerator Laboratory at the University of Jyväskylä and the associated ELOG notes. Supplementary data for the article published in European Physical Journal A (https://doi.org/10.1140/epja/s10050-022-00695-w) based on this data set are also included. Aineisto sisältää JYFLTRAP -Penningin loukulla kerätyn mittausdatan, lokikirjan, sekä mittauksen pohjalta julkaistun European Physical Journal A -artikkeliin liittyvät tiedostot.

nuclear physicsydinfysiikka
researchProduct