0000000001309665

AUTHOR

Pol Besenius

Programmierbare transiente Thermogele vermittelt durch eine pH- und Redox-regulierte supramolekulare Polymerisation

research product

Probing the Folding of Peptide–Polymer Conjugates Using the π-Dimerization of Viologen End-Groups

The synthesis of a foldable viologen-functionalized peptide–polymer conjugate is presented. The ABA-type triblock conjugate with a PEG polymer was capped with a FHFHF pentapeptide sequence and further modified with a viologen building block at both chain ends. The pH-responsive peptide domains fold into an intermediate structure inducing close proximity of the viologen units, which upon a reduction step form π-dimers of the radical cation. Overall the intramolecular folding and intermolecular self-assembly process leads to the formation of supramolecular nanorods. Mixing of viologen-peptide–polymer conjugates with unfunctionalized conjugates leads to crosslinking of the nanorods and hydroge…

research product

Controlling supramolecular polymerization through multicomponent self-assembly

The self-assembly into supramolecular polymers is a process driven by reversible non-covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and …

research product

Tuneable pH-regulated supramolecular copolymerisation by mixing mismatched dendritic peptide comonomers

Charged phenylalanine-rich dendritic peptides form highly stable and pH-switchable rod-like supramolecular copolymers, when co-assembled with a matching oppositely charged dendritic comonomer. Here, we demonstrate that by mismatching a strong with a weak β-sheet encoded comonomer, both the stability and the pH-triggered disassembly of the copolymers shifts drastically from pH 4.2 to biologically relevant pH 5.8.

research product

Cover Feature: Mannose-Decorated Multicomponent Supramolecular Polymers Trigger Effective Uptake into Antigen-Presenting Cells (ChemBioChem 9/2018)

research product

Secondary Structure-Driven Hydrogelation Using Foldable Telechelic Polymer-Peptide Conjugates.

The synthesis of ABA and ABA' triblock polyethylene glycol-and polysarcosine-peptide conjugates is reported. The A/A' peptides are based on phenylalanine(F)-histidine(H) pentapeptide sequences FHFHF, which promote pH-switchable β-sheet self-assembly into nanorods in water. Only parallel β-sheet-driven folding and intermolecular assembly using ABA triblock polymer-peptide conjugates leads to interstrand cross-linking and hydrogelation, highlighting the impact of supramolecular interactions-directed structure formation at the nano- and mesoscopic level.

research product

Structure to Function in Supramolecular Polymers and Materials

research product

Folding induced supramolecular assembly into pH-responsive nanorods with a protein repellent shell

We report the synthesis of ABA' triblock peptide-polysarcosine-peptide conjugates featuring two complementary phenylalanine-histidine pentapeptide strands A/A'. These sequences encode for antiparallel beta-sheet formation into folded conjugates, which promote the self-assembly into polysarcosine-shielded core-shell nanorods. These do not cause aggregation of serum proteins in human blood plasma underlining an enhanced stability.

research product

Structure and luminescence properties of supramolecular polymers of amphiphilic aromatic thioether–peptide conjugates in water

We present the preparation of luminophore–peptide conjugates that self-assemble into supramolecular polymers in neutral buffer. To this end, we have prepared a small library of six conjugates with varying substitution patterns of the aromatic thioethers, as well as varying amino acid sequences. The latter have allowed us to tune the thermodynamic driving force for self-assembly and probe their photoluminescent properties either in the monomeric or polymeric state, while fully avoiding selective solvent techniques or organic solvent mixtures. All of the supramolecular structures were characterised with transmission electron microscopy, circular dichroism measurements, as well as steady-state…

research product

Magnetic Control over the Fractal Dimension of Supramolecular Rod Networks

<p>Controlling supramolecular polymerization is of fundamental importance to create advanced materials and devices. Here we show that the thermodynamic equilibrium of Gd<sup>3+</sup>-bearing supramolecular rod networks is shifted reversibly at room temperature in a static magnetic field of up to 2 T. Our approach opens opportunities to control the structure formation of other supramolecular or coordination polymers that contain paramagnetic ions.</p>

research product

Kinetically Controlled Sequential Growth of Surface-Grafted Chiral Supramolecular Copolymers.

We report a facile strategy to grow supramolecular copolymers on Au surfaces by successively exposing a surface-anchored monomer to solutions of oppositely charged peptide comonomers. Charge regulation on the active chain end of the polymer sufficiently slows down the kinetics of the self-assembly process to produce kinetically trapped copolymers at near-neutral pH. We thereby achieve architectural control at three levels: The β-sheet sequences direct the polymerization away from the surface, the height of the supramolecular copolymer brushes is well-controlled by the stepwise nature of the alternating copolymer growth, and 2D spatial resolution is realized by using micropatterned initiatin…

research product

Modeling Supramolecular Polymerization: The Role of Steric Effects and Hydrophobic Interactions

We present a combined experimental–simulation study of self-assembly into one-dimensional filaments. Experimentally, we study amphiphilic AuI-metallopeptides in neutral aqueous media. Our model foc...

research product

Dynamic Light Scattering Investigation of the Kinetics and Fidelity of Supramolecular Copolymerizations in Water

The self-assembly of supramolecular copolymers facilitates the preparation of multifunctional materials, with tunable mechanical, electronic, or bioactive properties. Compared to covalent copolymerization protocols, controlling the molecular weight, stability, and monomer sequence of a multicomponent supramolecular copolymer remains limited. Here, we report a light scattering investigation of the charge-regulated supramolecular copolymerization in neutral buffer of physiological ionic strength, supported with electron microscopy and circular dichroism spectroscopy experiments. Dendritic anionic and cationic peptide comonomers self-assemble into AB-type heterocopolymers with a nanorod-like m…

research product

Supramolecular Polymers in Aqueous Media

This review discusses one-dimensional supramolecular polymers that form in aqueous media. First, naturally occurring supramolecular polymers are described, in particular, amyloid fibrils, actin filaments, and microtubules. Their structural, thermodynamic, kinetic, and nanomechanical properties are highlighted, as well as their importance for the advancement of biologically inspired supramolecular polymer materials. Second, five classes of synthetic supramolecular polymers are described: systems based on (1) hydrogen-bond motifs, (2) large π-conjugated surfaces, (3) host-guest interactions, (4) peptides, and (5) DNA. We focus on recent studies that address key challenges in the field, provid…

research product

Bridging rigidity and flexibility : modulation of supramolecular hydrogels by metal complexation

The combination of complementary, noncovalent interactions is a key principle for the design of multistimuli responsive hydrogels. In this work, an amphiphilic peptide, supramacromolecular hydrogelator which combines metal-ligand coordination induced gelation and thermoresponsive toughening is reported. Following a modular approach, the incorporation of the triphenylalanine sequence FFF into a structural (C3EG ) and a terpyridine-functionalized (C3Tpy ) C3 -symmetric monomer enables their statistical copolymerization into self-assembled, 1D nanorods in water, as investigated by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). In the presence of a terpyridine …

research product

Supramolecular polymerization of sulfated dendritic peptide amphiphiles into multivalent L-selectin binders

The synthesis of a sulfate-modified dendritic peptide amphiphile and its self-assembly into one-dimensional rod-like architectures in aqueous medium is reported. The influence of the ionic strength on the supramolecular polymerization was probed via circular dichroism spectroscopy and cryogenic transmission electron microscopy. Physiological salt concentrations efficiently screen the charges of the dendritic building block equipped with eight sulfate groups and trigger the formation of rigid supramolecular polymers. Since multivalent sulfated supramolecular structures mimic naturally occurring L-selectin ligands, the corresponding affinity was evaluated using a competitive SPR binding assay…

research product

Evaluation of Charge‐Regulated Supramolecular Copolymerization to Tune the Time Scale for Oxidative Disassembly of β‐Sheet Comonomers

A multistimuli-responsive supramolecular copolymerization is reported. The copolymerization is driven by hydrogen bond encoded β-sheet-based charge co-assembly into 1D nanorods in water, using glutamic acid or lysine residues in either of the peptide comonomers. The incorporation of methionine as hydrophobic amino acid supports β-sheet formation, but oxidation of the thioether side-chain to a sulfoxide functional group destabilizes the β-sheet ordered domains and induces disassembly of the supramolecular polymers. Using H2 O2 as reactive oxygen species, the time scale and kinetics of the oxidative disassembly are probed. Compared to the charge neutral homopolymers, it is found that the oxid…

research product

Cell adhesion on UV-crosslinked polyurethane gels with adjustable mechanical strength and thermoresponsiveness

Temperature-responsive polyurethane (PU) hydrogels represent a versatile material platform for modern tissue engineering and biomedical applications. However, besides intrinsic advantages such as high mechanical strength and a hydrolysable backbone composition, plain PU materials are generally lacking bio-adhesive properties. To overcome this shortcoming, the authors focus on the synthesis of thermoresponsive PU hydrogels with variable mechanical and cell adhesive properties obtained from linear precursor PUs based on poly(ethylene glycol)s (pEG) with different molar masses, isophorone diisocyanate, and a dimerizable dimethylmaleimide (DMMI)-diol. The cloud point temperatures of the dilute,…

research product

Kinetically Controlled Stepwise Self-Assembly of AuI-Metallopeptides in Water

The combination of attractive supramolecular interactions of a hydrophobic AuI-metallopeptide with the shielding effect of flexible oligoethylene glycol chains provides access to a stepwise self-assembly of a AuI-metalloamphiphile in water. Kinetic control of the supramolecular polymer morphology is achieved using a temperature-dependent assembly protocol, which yields low dispersity supramolecular polymers (metastable state I) or helical bundled nanorods (state II).

research product

Insight into the synthesis of N-methylated polypeptides

The ring-opening polymerization (ROP) of N-carboxy anhydrides (NCAs) is mostly divided into two classes: NCAs of α-substituted amino acids and N-methylated NCAs of α-unsubstituted glycine derivatives (NNCAs). The use of both monomer types offers different mechanistic features and results in a multitude of functional materials. To combine these properties, the synthesis and ROP of α-substituted and N-methylated NCAs (αNNCAs) of several amino acids were investigated. The current study provides insight into the influence of polymerization conditions and the limitations caused by the enhanced steric demand of the amino acid NCA monomers and their N-methylated derivatives. Namely, the effects of…

research product

Synthesis and Structural Stability of α-Helical Gold(I)-Metallopeptidesy

AbstractThe synthesis of hexa- and dodecapeptides functionalized with two Au(I)–phosphine complexes is reported. The high stability of the Au(I)–phosphine bond allowed orthogonal peptide-protecting-group chemistry, even when using hard Lewis acids like boron tribromide. This enabled the preparation of an Fmoc-protected lysine derivative carrying the Au(I) complex in a side chain, which was used in standard Fmoc-based solid-phase peptide synthesis protocols. Alanine and leucine repeats in the metallododecapeptide formed α-helical secondary structures in 2,2,2-trifluoroethanol–H2O and 1,1,1,3,3,3-hexafluoroisopropanol–H2O mixtures with high thermal stability, as shown by temperature-dependent…

research product

Reversible Covalent and Supramolecular Functionalization of Water-Soluble Gold(I) Complexes.

The ligation of gold(I) metalloamphiphiles with biomolecules is reported, using water-soluble AuI -N-alkynyl substituted maleimide complexes. For this purpose, two different polar ligands were applied: 1) a neutral, dendritic tetraethylene glycol-functionalized phosphane and 2) a charged, sulfonated N-heterocyclic carbene (NHC). The retro Diels-Alder reaction of a furan-protected maleimide gold(I) complex, followed by cycloaddition with a diene-functionalized biotin under mild conditions leads to a novel gold(I) metalloamphiphile. The strong streptavidin-biotin binding affinity in buffered aqueous solution of the resulting biotin alkynyl gold(I) phosphane conjugate remains intact. The cytot…

research product

Lipid Bilayer Interactions of Peptidic Supramolecular Polymers and Their Impact on Membrane Permeability and Stability.

The synthesis and physicochemical characterization of supramolecular polymers with tunable assembly profiles offer exciting opportunities, involving the development of new biomedical carriers. Because synthetic nanocarriers aim to transport substances across or toward cellular membranes, we evaluated the interactions of amphiphilic peptide-based supramolecular polymers with lipid bilayers. Here, we focused on nanorod-like supramolecular polymers, obtained from two C3-symmetric dendritic peptide amphiphiles with alternating Phe/His sequences, equipped with a peripheral tetraethylene glycol dendron (C3-PH) or charged ethylenediamine end groups (C3-PH+). Triggered by pH changes, these amphiphi…

research product

Aqueous Supramolecular Polymers and Hydrogels

research product

Impact of Branching on the Solution Behavior and Serum Stability of Starlike Block Copolymers.

The size control of nanomedicines for tumor diagnosis and therapy is of high importance, since it enables or disables deep and sufficient tumor penetration. Amphiphilic star-shaped block copolypept(o)ides offer substantial promise to precisely adjust the hydrophobic core and the hydrophilic corona, independent of each other, and therefore simultaneously control the size dimension in the interesting size range from 10 to 30 nm. To gain access to core-shell structures of such sizes, 3-arm and 6-arm PeptoStars, based on poly(gamma-tert-butyloxycarbonyl-L-glutamate)-b-polysarcosine (pGlu(OtBu)-b-pSar), were prepared via controlled living ring-opening polymerization (ROP) of the corresponding N-…

research product

Steric Constraints Induced Frustrated Growth of Supramolecular Nanorods in Water.

A unique example of supramolecular polymerisation in water based on monomers with nanomolar affinities, which yield rod-like materials with extraordinarily high thermodynamic stability, yet of finite length, is reported. A small library of charge-neutral dendritic peptide amphiphiles was prepared, with a branched nonaphenylalanine-based core that was conjugated to hydrophilic dendrons of variable steric demand. Below a critical size of the dendron, the monomers assemble into nanorod-like polymers, whereas for larger dendritic side chains frustrated growth into near isotropic particles is observed. The supramolecular morphologies observed by electron microscopy, X-ray scattering and diffusio…

research product

Supramolecular assembly of functional peptide-polymer conjugates.

The following review gives an overview about synthetic peptide-polymer conjugates as macromolecular building blocks and their self-assembly into a variety of supramolecular architectures, from supramolecular polymer chains, to anisotropic 1D arrays, 2D layers, and more complex 3D networks. A selection of recent literature examples using linear, coiled-coil and cyclic peptide motifs is provided. The reversible nature of the unimer-to-supramolecular polymer transition provides unique opportunities to investigate mechanistic aspects of the supramolecular assembly, with respect to the thermodynamic or kinetic parameters and furthermore provides exciting opportunities for non-equilibrium assembl…

research product

Synthetic MUC1 Antitumor Vaccine with Incorporated 2,3-Sialyl-T Carbohydrate Antigen Inducing Strong Immune Responses with Isotype Specificity

The endothelial glycoprotein MUC1 is known to underlie alterations in cancer by means of aberrant glycosylation accompanied by changes in morphology. The heavily shortened glycans induce a collapse of the peptide backbone and enable accessibility of the latter to immune cells, rendering it a tumor-associated antigen. Synthetic vaccines based on MUC1 tandem repeat motifs, comprising tumor-associated 2,3-sialyl-T antigen, conjugated to the immunostimulating tetanus toxoid, are reported herein. Immunization with these vaccines in a simple water/oil emulsion produced a strong immune response in mice to which stimulation with complete Freund's adjuvant (CFA) was not superior. In both cases, high…

research product

The Development of Vaccines from Synthetic Tumor‐Associated Mucin Glycopeptides and their Glycosylation‐Dependent Immune Response

Tumor-associated carbohydrate antigens are overexpressed as altered-self in most common epithelial cancers. Their glycosylation patterns differ from those of healthy cells, functioning as an ID for cancer cells. Scientists have been developing anti-cancer vaccines based on mucin glycopeptides, yet the interplay of delivery system, adjuvant and tumor associated MUC epitopes in the induced immune response is not well understood. The current state of the art suggests that the identity, abundancy and location of the glycans on the MUC backbone are all key parameters in the cellular and humoral response. This review shares lessons learned by us in over two decades of research in glycopeptide vac…

research product

Transient Hydrogels Mediated by Redox-Switchable Supramolecular Polymerization

Spatial and temporal control in multi-stimuli-responsive materials are critical properties to advance and optimize functional soft matter in order to mimic key features of living systems. In this contribution, I will discuss our methodology in developing non-equilibrium states in supramolecular materials. We have expanded our concept of charge regulated s–sheet self-assembly of alternating hydrophilic and hydrophobic amino acids in order to introduce redox-switchable properties. An interplay of pH- and oxidation-stimuli, promoted by the production of reactive oxygen species (ROS) thus leads to transient supramolecular polymerizations of methionine containing amphiphiles, with tuneable lifet…

research product

Facile access to foldable redox-active flavin-peptide conjugates

A convenient approach for the synthesis of foldable redox-active flavin peptide conjugates was established. A model β-hairpin oligopeptide motif was utilized to demonstrate that azidolysine side-chains are readily functionalised with an alkyne-bearing flavine derivative. The folding equilibrium of the peptide backbone as well as the redox behaviour of the flavin moieties remains intact after the conjugation.

research product

Young Talents in Polymer Science.

research product

Surface-Assisted Self-Assembly of a Hydrogel by Proton Diffusion

International audience; Controlling supramolecular growth at solid surfaces is of great importance to expand the scope of supramolecular materials. Here we describe a dendritic benzene-1,3,5-tricarboxamide peptide conjugate whose assembly can be triggered by a pH jump. Stopped flow kinetics and mathematical modeling provide a quantitative understanding of the nucleation, elongation, and fragmentation behavior in solution. To assemble the molecule at a solid-liquid interface, we use proton diffusion from the bulk. The latter needs to be slower than the lag phase of nucleation in order to progressively grow a hydrogel outwards from the surface. Our method of surface-assisted self-assembly is …

research product

Reduced Breast Tumor Growth after Immunization with a Tumor-Restricted MUC1 Glycopeptide Conjugated to Tetanus Toxoid.

Abstract Preventive vaccination against tumor-associated endogenous antigens is considered to be an attractive strategy for the induction of a curative immune response concomitant with a long-lasting immunologic memory. The mucin MUC1 is a promising tumor antigen, as its tumor-associated form differs from the glycoprotein form expressed on healthy cells. Due to aberrant glycosylation in tumor cells, the specific peptide epitopes in its backbone are accessible and can be bound by antibodies induced by vaccination. Breast cancer patients develop per se only low levels of T cells and antibodies recognizing tumor-associated MUC1, and clinical trials with tumor-associated MUC1 yielded unsatisfac…

research product

Defects and defect engineering in Soft Matter.

Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properti…

research product

Inside Back Cover: Kinetically Controlled Sequential Growth of Surface-Grafted Chiral Supramolecular Copolymers (Angew. Chem. Int. Ed. 25/2016)

research product

Tuneable Transient Thermogels Mediated by a pH- and Redox-Regulated Supramolecular Polymerization.

A multistimuli-responsive transient supramolecular polymerization of β-sheet-encoded dendritic peptide monomers in water is presented. The amphiphiles, which contain glutamic acid and methionine, undergo a glucose oxidase catalyzed, glucose-fueled transient hydrogelation in response to an interplay of pH and oxidation stimuli, promoted by the production of reactive oxygen species (ROS). Adjusting the enzyme and glucose concentration allows tuning of the assembly and the disassembly rates of the supramolecular polymers, which dictate the stiffness and transient stability of the hydrogels. The incorporation of triethylene glycol chains introduces thermoresponsive properties to the materials. …

research product

Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence.

OA hybrid The synthesis and self-assembly of a new C2-symmetric oligohistidine amphiphile equipped with an aggregation induced emission luminophore is reported. We observe the formation of highly stable and ordered rod-like micelles in phosphate buffered saline, with a critical aggregation concentration below 200 nM. Aggregation induced emission of the luminophore confirms the high stability of the anisotropic assemblies in serum.

research product

Modular Platform of Carbohydrates-modified Supramolecular Polymers Based on Dendritic Peptide Scaffolds.

Glycopeptide supramolecular polymers displaying multivalent carbohydrates are particularly suitable for immune-relevant biomaterials, due to the important functions of carbohydrates in mediating cell-cell communication and modulating immune responses. However, the diversity and complexity of carbohydrates limited the generation of glycopeptide supramolecular monomers. Thereby, a modular platform of presenting various carbohydrates, especially more complex oligosaccharides, is highly desirable but remains underexplored. Here, we first prepared the linear amphiphilic glycopeptides that self-assembled into spherical nanoparticles and worm-like nanoparticles. Furthermore, the dendritic glycopep…

research product

Targeted Repolarization of Tumor‐Associated Macrophages via Imidazoquinoline‐Linked Nanobodies

Abstract Tumor‐associated macrophages (TAMs) promote the immune suppressive microenvironment inside tumors and are, therefore, considered as a promising target for the next generation of cancer immunotherapies. To repolarize their phenotype into a tumoricidal state, the Toll‐like receptor 7/8 agonist imidazoquinoline IMDQ is site‐specifically and quantitatively coupled to single chain antibody fragments, so‐called nanobodies, targeting the macrophage mannose receptor (MMR) on TAMs. Intravenous injection of these conjugates result in a tumor‐ and cell‐specific delivery of IMDQ into MMRhigh TAMs, causing a significant decline in tumor growth. This is accompanied by a repolarization of TAMs to…

research product

Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic peptide-polymer conjugates

Abstract The synthesis of multi-stimuli responsive peptide-poly(ethylene glycol) ABA-type conjugates is reported. The β-sheet encoded intramolecular folding and intermolecular self-assembly into 1D nanorods is based on a phenylalanine(F)-methionine(M)-histidine(H) FMHMHF hexapeptide sequence, and the supramolecular nanorods are stabilised by a shielding corona of hydrophilic PEG polymers. Interstrand crosslinking leads to the formation of physical networks and hydrogels at physiological pH and at room temperature. The thioether functional groups integrate oxidation responsive properties in the supramolecular polymer assemblies. We show that the glucose fuelled and glucose oxidase catalysed …

research product

Innenrücktitelbild: Kinetisch kontrolliertes, sequenzielles Wachstum von chiralen supramolekularen Copolymeren auf Oberflächen (Angew. Chem. 25/2016)

research product

Mannose-Decorated Multicomponent Supramolecular Polymers Trigger Effective Uptake into Antigen-Presenting Cells

A modular route to prepare functional self-assembling dendritic peptide amphiphiles decorated with mannosides, to effectively target antigen-presenting cells, such as macrophages, is reported. The monomeric building blocks were equipped with tetra(ethylene glycol)s (TEGs) or labeled with a Cy3 fluorescent probe. Experiments on the uptake of the multifunctional supramolecular particles into murine macrophages (Mφs) were monitored by confocal microscopy and fluorescence-activated cell sorting. Mannose-decorated supramolecular polymers trigger a significantly higher cellular uptake and distribution, relative to TEG carrying bare polymers. No cytotoxicity or negative impact on cytokine producti…

research product

A clickable NHC–Au(i)-complex for the preparation of stimulus-responsive metallopeptide amphiphiles

We report the synthesis of an alkyne functionalised NHC-Au(i)-complex which is conjugated with amphiphilic oligopeptides using a copper(i) catalysed cycloaddition. The resulting Au(i)-metalloamphiphiles are shown to self-assemble into charge-regulated stimulus-responsive supramolecular polymers in water via a weakly cooperative polymerisation mechanism.

research product

Kinetic control in the temperature-dependent sequential growth of surface-confined supramolecular copolymers

We report the sequential growth of supramolecular copolymers on gold surfaces, using oppositely charged dendritic peptide amphiphiles. By including water-solubilising thermoresponsive chains in the monomer design, we observed non-linear effects in the temperature-dependent sequential growth. The step-wise copolymerisation process is characterised using temperature dependent SPR and QCM-D measurements. At higher temperatures, dehydration of peripheral oligoethylene glycol chains supports copolymer growth due to more favourable comonomer interactions. Both monomers incorporate methionine amino acids but remarkably, desorption of the copolymers via competing sulphur gold interactions with the …

research product

Impact of sample history and solvent effects on pathway control in the supramolecular polymerisation of Au(i)-metallopeptide amphiphiles

We investigate the kinetics of the supramolecular polymerisation of an Au(i)-metallopeptide amphiphile that assembles into exceptionally long and rigid nanofibers.

research product

Kinetisch kontrolliertes, sequenzielles Wachstum von chiralen supramolekularen Copolymeren auf Oberflächen

Wir berichten uber eine einfache Strategie zur Herstellung supramolekularer Copolymere an Goldoberflachen durch sukzessive Inkubation einer initiatorbeschichteten Oberflache mit Losungen aus gegensatzlich geladenen peptidischen Comonomeren. Ein ladungsreguliertes Wachstum des Polymers verlangsamt die Kinetik der Selbstorganisation in dem Mase, dass kinetisch gehemmte Copolymere im nahezu neutralen pH-Bereich gebildet werden. Auf diese Weise erreichen wir eine Kontrolle der Polymerarchitektur auf drei Ebenen: Die β-faltblattkodierte Peptidsequenz steuert eine Wachstumsrichtung der Polymere senkrecht zur Oberflache, die Hohe der supramolekularen Copolymerbursten wird durch den schrittweisen A…

research product

Tuning the pH-Switch of Supramolecular Polymer Carriers for siRNA to Physiologically Relevant pH

The preparation of histidine enriched dendritic peptide amphiphiles and their self-assembly into multicomponent pH-switchable supramolecular polymers is reported. Alternating histidine and phenylalanine peptide synthons allow the assembly/disassembly to be adjusted in a physiologically relevant range of pH 5.3-6.0. Coassembly of monomers equipped with dendritic tetraethylene glycol chains with monomers bearing peripheral primary amine groups leads to nanorods with a tunable cationic surface charge density. These surface functional supramolecular polycations are able to reversibly bind short interfering RNA (siRNA). The nanorod-like supramolecular polymers, their complexation with siRNA, and…

research product

CCDC 1532063: Experimental Crystal Structure Determination

Related Article: Benedict Kemper, Maximilian von Gröning, Vanessa Lewe, Daniel Spitzer, Tobias Otremba, Natascha Stergiou, Dieter Schollmeyer, Edgar Schmitt, Bart Jan Ravoo, Pol Besenius|2017|Chem.-Eur.J.|23|6048|doi:10.1002/chem.201700588

research product

CCDC 1976456: Experimental Crystal Structure Determination

Related Article: Christian Muhl, Lydia Zengerling, Jonathan Groß, Paul Eckhardt, Till Opatz, Pol Besenius, Matthias Barz|2020|Polym.Chem.|11|6919|doi:10.1039/D0PY01055C

research product

CCDC 1583576: Experimental Crystal Structure Determination

Related Article: David Straßburger, Natascha Stergiou, Moritz Urschbach, Hajime Yurugi, Daniel Spitzer, Dieter Schollmeyer, Edgar Schmitt, Pol Besenius|2018|ChemBioChem|19|912|doi:10.1002/cbic.201800114

research product

CCDC 1976455: Experimental Crystal Structure Determination

Related Article: Christian Muhl, Lydia Zengerling, Jonathan Groß, Paul Eckhardt, Till Opatz, Pol Besenius, Matthias Barz|2020|Polym.Chem.|11|6919|doi:10.1039/D0PY01055C

research product