0000000001314810

AUTHOR

Josep Canet-ferrer

showing 42 related works from this author

Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots

2012

We have investigated the temperature dependent recombination dynamics in two bimodally distributed InAs self assembled quantum dots samples. A rate equations model has been implemented to investigate the thermally activated carrier escape mechanism which changes from exciton-like to uncorrelated electron and hole pairs as the quantum dot size varies. For the smaller dots, we find a hot exciton thermal escape process. We evaluated the thermal transfer process between quantum dots by the quantum dot density and carrier escape properties of both samples. © 2012 American Institute of Physics.

DYNAMICSMaterials scienceAtmospheric escapeCondensed matter physicsExcitonGeneral Physics and AstronomyElectronRate equationThermal transferEPITAXYCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGallium arsenidechemistry.chemical_compoundCondensed Matter::Materials SciencechemistrySTATESself assembled quantum dots rate equations model carrier escape propertiesQuantum dotQuantum dot laserLUMINESCENCEPHOTOLUMINESCENCE
researchProduct

Development of self-assembled bacterial cellulose–starch nanocomposites

2009

Abstract A bioinspired bottom-up process was developed to produce self-assembled nanocomposites of cellulose synthesized by Acetobacter bacteria and native starch. This process takes advantage of the way some bacteria extrude cellulose nanofibres and of the transport process that occurs during the gelatinization of starch. Potato and corn starch were added into the culture medium and partially gelatinized in order to allow the cellulose nanofibrils to grow in the presence of a starch phase. The bacterial cellulose (BC)–starch gels were hot pressed into sheets that had a BC volume fraction higher than 90%. During this step starch was forced to further penetrate the BC network. The self-assem…

Materials scienceNanocompositebiologyStarchfood and beveragesBioengineeringNanotechnologybiology.organism_classificationBiomaterialschemistry.chemical_compoundCrystallinitychemistryChemical engineeringMechanics of MaterialsBacterial celluloseVolume fractionCelluloseAcetobacterEnvironmental scanning electron microscopeMaterials Science and Engineering: C
researchProduct

Different strategies towards the deterministic coupling of a single Quantum Dot to a photonic crystal cavity mode

2011

In this work we show two different procedures of fabrication aiming towards the systematic positioning of single InAs quantum dots (QDs) coupled to a GaAs photonic crystal (PC) microcavity. The two approaches are based on the molecular beam epitaxial (MBE) growth of site-controlled QDs (SCQDs) on pre-patterned structures. The PC microcavity (PCM) is introduced previous or after the growth, on each case. We demonstrate the InAs SCQD nucleation on pre-patterned PCMs and a method to perform the QD nucleation respect to an etched ruler that is used to position the PC structure after growth. For both types of structures, we have carried out microphotoluminescence (µPL) spectroscopy experiments a…

Materials sciencebusiness.industryCavity quantum electrodynamicsNucleationGallium arsenidechemistry.chemical_compoundchemistryQuantum dotOptoelectronicsPhotonicsbusinessMolecular beamMolecular beam epitaxyPhotonic crystal2011 13th International Conference on Transparent Optical Networks
researchProduct

Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy

2014

AFM images are always affected by artifacts arising from tip convolution effects, resulting in a decrease in the lateral resolution of this technique. The magnitude of such effects is described by means of geometrical considerations, thereby providing better understanding of the convolution phenomenon. We demonstrate that for a constant tip radius, the convolution error is increased with the object height, mainly for the narrowest motifs. Certain influence of the object shape is observed between rectangular and elliptical objects with the same height. Such moderate differences are essentially expected among elongated objects; in contrast they are reduced as the object aspect ratio is increa…

Materials scienceAspect ratiobusiness.industryMechanical Engineeringmedia_common.quotation_subjectMagnitude (mathematics)BioengineeringGeneral ChemistrySubstrate (electronics)RadiusConvolutionOpticsMechanics of MaterialsSurface roughnessContrast (vision)General Materials ScienceElectrical and Electronic EngineeringbusinessConstant (mathematics)media_commonNanotechnology
researchProduct

Phonon properties and photo-thermal oxidation of micromechanically exfoliated antimonene nanosheets

2020

Abstract Two-dimensional (2D) sheets of antimonene have attracted increasing attention due to their unique physical and chemical properties prompting potential for diverse applications. We present a facile method to prepare high-quality antimonene nanosheets (ANSs) by micromechanical exfoliation on SiO2/Si substrate. The temperature- and laser power-dependent Raman studies of exfoliated ANSs are reported and analyzed. It was found that both the out-of-plane A1g and the in-plane Eg modes red-shift linearly with increase in temperature, pointing towards anharmonic vibrations of the lattice. The thermal response of the ANSs on a SiO2/Si surface is also described using numerical simulation of t…

Thermal oxidationMaterials sciencePhononMechanical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesEspectroscòpia Ramansymbols.namesakeChemical engineeringMechanics of MaterialsHeat transfersymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyMaterials2D Materials
researchProduct

Nonanuclear Spin-Crossover Complex Containing Iron(II) and Iron(III) Based on a 2,6-Bis(pyrazol-1-yl)pyridine Ligand Functionalized with a Carboxylat…

2016

The synthesis and magnetostructural characterization of [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](ClO4)13·(CH3)2CO)6·(solvate) (2) are reported. This compound is obtained as a secondary product during synthesis of the mononuclear complex [Fe(II)(bppCOOH)2](ClO4)2 (1). The single-crystal X-ray diffraction structure of 2 shows that it contains the nonanuclear cluster of the formula [Fe(III)3(μ3-O)(H2O)3[Fe(II)(bppCOOH)(bppCOO)]6](13+), which is formed by a central Fe(III)3O core coordinated to six partially deprotonated [Fe(II)(bppCOOH)(bppCOO)](+) complexes. Raman spectroscopy studies on single crystals of 1 and 2 have been performed to elucidate the spin and oxidation states of iron …

010405 organic chemistryStereochemistryTrimer010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundsymbols.namesakeCrystallographyDeprotonationchemistrySpin crossoverCluster (physics)symbolsAntiferromagnetismCarboxylatePhysical and Theoretical ChemistrySpin (physics)Raman spectroscopyInorganic chemistry
researchProduct

Charge control in laterally coupled double quantum dots

2011

4 figuras, 4 páginas.-- PACS number(s): 78.67.Hc, 73.21.La, 78.55.Cr

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsOptical propertiesQuantum dotsElectrons--EmissióQuantum point contactQuantum-confined Stark effectFOS: Physical sciencesElectronsElectronic structureCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceQuantum dot laserQuantum dotElectronic propertiesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Electrons--EmissionEmission spectrumTrionAtomic physicsPunts quànticsQuantum tunnelling
researchProduct

Scanning near-field optical microscopy (SNOM) of lithium niobate aperiodically poled during growth

2007

In the present work, aperiodically poled lithium niobate (APPLN) was grown, along the a-axis, by the off-centred Czochraski method. The domain formation has been triggered by rare earth doping, using in this case Er3+ and Yb3+ ions. The growth conditions were selected in order to obtain a modulated domain distribution. SNOM measurements have been performed with a Nanonics Imaging Ltd model MultiView 200 TM working in non-contact tapping mode.

Materials sciencebusiness.industryDopingRare earthLithium niobateSecond-harmonic generationNear and far fieldIonlaw.inventionchemistry.chemical_compoundOpticsOptical microscopechemistrylawNear-field scanning optical microscopebusiness
researchProduct

Two-Color Single-Photon Emission from In As Quantum Dots: Toward Logic Information Management Using Quantum Light

2014

In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons input/output device…

PhotonExcitonexciton recombination dynamicsNuclear TheoryPhysics::OpticsBioengineeringOptical powerSingle quantum dotlogic informationchemistry.chemical_compoundCondensed Matter::Materials ScienceMaster equationsingle photon emissionGeneral Materials ScienceQuantum informationNuclear ExperimentQuantumPhysicsbusiness.industryMechanical EngineeringSingle quantum dot exciton recombination dynamics single photon emission logic informationGeneral ChemistryCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectchemistryQuantum dotOptoelectronicsIndium arsenidebusiness
researchProduct

Hybrid magnetite–gold nanoparticles as bifunctional magnetic–plasmonic systems: three representative cases

2020

Hybrid systems based on magnetite and gold nanoparticles have been extensively used as bifunctional materials for bio- and nano-technology. The properties of these composites are assumed to be closely related to the magnetite to gold mass ratio and to the geometry of the resulting hetero-structures. To illustrate this, we compare and analyze the optical and magnetic properties of core-shell, dumbbell-like dimers and chemical cross-linked pairs of magnetite and gold nanoparticles in detail. We explore how the combination of gold with magnetite can lead to an improvement of the optical properties of these systems, such as tunability, light scattering enhancement or an increase of the local el…

Materials sciencePhysics::OpticsNanotechnologyLight scatteringchemistry.chemical_compoundchemistryColloidal goldElectric fieldHybrid systemDispersion (optics)General Materials ScienceBifunctionalPlasmonMagnetiteNanoscale Horizons
researchProduct

Exciton and multiexciton optical properties of single InAs/GaAs site-controlled quantum dots

2013

We have studied the optical properties of InAs site-controlled quantum dots (SCQDs) grown on pre-patterned GaAs substrates. Since InAs nucleates preferentially on the lithography motifs, the location of the resulting QDs is determined by the pattern, which is fabricated by local oxidation nanolithography. Optical characterization has been performed on such SCQDs to study the fundamental and excited states. At the ground state different exciton complex transitions of about 500 μeV linewidth have been identified and the fine structure splitting of the neutral exciton has been determined (≈65 μeV). The observed electronic structure covers the demands of future quantum information technologies.…

congenital hereditary and neonatal diseases and abnormalitiesPhotoluminescenceMaterials sciencegenetic structuresPhysics and Astronomy (miscellaneous)ExcitonPhysics::OpticsElectronic structureEmissionCondensed Matter::Materials ScienceFine structureBiexcitonPhotonsCondensed Matter::Otherbusiness.industrynutritional and metabolic diseasesCondensed Matter::Mesoscopic Systems and Quantum Hall Effecteye diseasesClose proximitySurfacesQuantum dotExcited stateOptoelectronicsInAs site-controlled quantum dots optical properties fine structure splittingbusinessGround stateState
researchProduct

Single Photon Emission from Site-Controlled InAs Quantum Dots Grown on GaAs(001) Patterned Substrates

2009

5 páginas, 5 figuras.

Materials scienceFabricationbusiness.industryQuantum dotsQuantum point contactGeneral EngineeringPhysics::OpticsGeneral Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectEpitaxySingle photon emissionCondensed Matter::Materials ScienceNanolithographyQuantum dotQuantum dot laserOptoelectronicsSingle photon emittersGeneral Materials SciencePatterned substratesbusinessQuantum
researchProduct

Localized surface plasmon resonance sensor based on Ag-PVA nanocomposite thin films

2009

In this work we demonstrate the use of nanocomposite thin films of poly(vinyl alcohol) with embedded silver NPs for chemosensing purposes. Silver NPs are in situ synthesized inside polyvinyl alcohol during the bake step of the formation of a nanocomposite thin film. The polymer in the nanocomposite provides an appropriate chemical and electromagnetic environment for metal NPs in order to interact with and hence detect the chemical species. A limit of detection below 20 nM is found when detecting 2-mercaptoethanol as the analyte, when measuring spectral changes (peak wavelength, linewidth and intensity) in the Localized Surface Plasmon Resonance. Potential qualitative and semi-quantitative s…

chemistry.chemical_classificationVinyl alcoholAnalyteNanocompositeMaterials scienceAnalytical chemistryNanotechnologyGeneral ChemistryPolymerPolyvinyl alcoholchemistry.chemical_compoundChemical speciesLaser linewidthchemistryMaterials ChemistrySurface plasmon resonanceJournal of Materials Chemistry
researchProduct

Free spectral range enlargement by selective suppression of optical modes in photonic crystal L7 microcavities

2015

We show an enlargement in the free spectral range (FSR) of the emission spectra of a L7 photonic crystal microcavity (PCM). The FSR enlargement is achieved by the selective modal suppression of the second cavity mode. The selective suppression is made by introducing two nano-inclusions in specific sites within the defect region that forms the cavity. We have demonstrated the suppression of the second mode of the L7-PCM, and a significant increase in the FSR of the fundamental mode. The method provides an alternative to engineer the modal structure of a photonic crystal microcavity. The large FSR-value might improve the emission properties of light sources based on photonic crystal structure…

Materials scienceOpticsbusiness.industryDefect regionComputer Science::Networking and Internet ArchitecturePhysics::OpticsOptoelectronicsEmission spectrumbusinessAstrophysics::Galaxy AstrophysicsFree spectral rangePhotonic crystal2015 17th International Conference on Transparent Optical Networks (ICTON)
researchProduct

Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires

2013

The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers. © 2013 AIP Publishing LLC.

PhysicsPhysics and Astronomy (miscellaneous)business.industryDotCondensed Matter::OtherExcitonPhysics::OpticsPurcell effectContinuous-Wave OperationCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemiconductor laser theoryNanocavityOptical pumpingOptoelectronicsSpontaneous emissionStimulated emissionbusinessSpontaneous EmissionLasing thresholdRoom-TemperatureMicrodisk LasersPhotonic crystal
researchProduct

Photonic effect study on polystyrene 3D-photonic crystals at near-field range: dependence on the wavelength and on the lattice parameter

2007

3D-photonic crystals (opals) based on polystyrene (PS) colloidal nanospheres are being characterized by scanning near-field optical microscopy (SNOM). These crystals offer a huge potential for controlling both the spontaneous emission of embedded light sources and the propagation of light itself.

Materials sciencebusiness.industryNear-field opticsColloidal crystallaw.inventionchemistry.chemical_compoundOpticsOptical microscopechemistrylawOptoelectronicsNear-field scanning optical microscopeSpontaneous emissionPolystyrenePhotonicsbusinessPhotonic crystal2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference
researchProduct

A fluorescent layered oxalato-based canted antiferromagnet

2018

We report the synthesis and characterization of the first fluorescent oxalato-based canted antiferromagnet. Compound [DOC][MnFe(C2O4)3] (1) (DOC = 3,3'-diethyloxacarbocyanine) combines the well-known canted antiferromagnetic [MnFe(C2O4)3]- honeycomb layers with a fluorescent cationic cyanine-type fluorescent dye. Besides the expected spin canted antiferromagnetic order in the oxalato layer at ca. 29 K, we show the key role played by the anionic oxalato lattice in the optical properties of the cation since it provides isolation of dye cations in the hexagonal cavities of the oxalato-based matrix. The emission of the DOC+ dye shows a redshift and a broadening of the emission as well as an inc…

Materials scienceHexagonal crystal systemCationic polymerization02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorescence0104 chemical sciencesInorganic ChemistryCrystallographyLattice (order)AntiferromagnetismIsolation effect0210 nano-technologyDalton Transactions
researchProduct

Au-PVA Nanocomposite Negative Resist for One-Step Three-Dimensional e-Beam Lithography

2009

Au nanoparticles are synthesized in situ upon the electron beam exposure of a poly(vinyl alcohol) (PVA) thin film containing Au(III). The e-beam-irradiated areas are insoluble in water (negative-tone resist), and Au-PVA nanocomposite patterns with a variable profile along the structure can be thus generated (3D lithography) in a single step. A local characterization of the generated patterns is performed by high-resolution transmission electron microscopy and UV-vis localized surface plasmon resonance microspectroscopy. This characterization confirms the presence of crystalline nanoparticles and aggregates.

NanocompositeMaterials sciencebusiness.industrySurface plasmonSurfaces and InterfacesPhotoresistCondensed Matter PhysicsOpticsChemical engineeringResistTransmission electron microscopyElectrochemistryGeneral Materials ScienceSurface plasmon resonancebusinessLithographySpectroscopyElectron-beam lithographyLangmuir
researchProduct

WS2/MoS2 Heterostructures via Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters

2020

The preparation of 2D stacked layers that combine flakes of different nature, gives rise to countless number of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides WS2/MoS2, has awaken great interest due to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3S…

CouplingMaterials sciencePhotoluminescencebusiness.industryHeterojunctionThermal treatmentHomogeneous distribution7. Clean energylaw.inventionTransition metallawCluster (physics)OptoelectronicsCalcinationbusiness
researchProduct

Thermal activated carrier transfer between InAs quantum dots in very low density samples

2010

In this work we develop a detailed experimental study of the exciton recombination dynamics as a function of temperature on QD-ensembles and single QDs in two low density samples having 16.5 and 25 dots/¼m2. We corroborate at the single QD level the limitation of the exciton recombination time in the smallest QDs of the distribution by thermionic emission (electron emission in transient conditions). A portion of these emitted carriers is retrapped again in other (larger) QDs, but not very distant from those emitting the carriers, because the process is limited by the diffusion length at the considered temperature.

HistoryWork (thermodynamics)Condensed Matter::Otherbusiness.industryChemistryExcitonThermionic emissionElectron66.30.H- Self-diffusion and ionic conduction in nonmetals78.67.Hc Quantum dotsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular physicsComputer Science ApplicationsEducationCondensed Matter::Materials Science78.55.Cr III-V semiconductorsQuantum dotThermalOptoelectronics71.35.-y Excitons and related phenomenaDiffusion (business)businessRecombination79.40.+z Thermionic emissionJournal of Physics: Conference Series
researchProduct

Imaging the Magnetic Reversal of Isolated and Organized Molecular-Based Nanoparticles using Magnetic Force Microscopy

2015

In the race towards miniaturization in nanoelectronics, magnetic nanoparticles (MNPs) have emerged as potential candidates for their integration in ultrahigh-density recording media. Molecular-based materials open the possibility to design new tailor-made MNPs with variable composition and sizes, which benefit from the intrinsic properties of these materials. Before their implementation in real devices is reached, a precise organization on surfaces and a reliable characterization and manipulation of their individual magnetic behavior are required. In this paper, it is demonstrated how molecular-based MNPs are accurately organized on surfaces and how the magnetic properties of the individual…

Materials scienceNanoelectronicsMiniaturizationNanoparticleMagnetic nanoparticlesGeneral Materials ScienceNanotechnologyGeneral ChemistryMagnetic force microscopeCondensed Matter PhysicsCharacterization (materials science)Magnetic fieldGeomagnetic reversalParticle & Particle Systems Characterization
researchProduct

High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics

2008

Polymer nanocomposites containing noble metal nanoparticles are promising materials for plasmonic applications. In this paper, we report on a high-resolution negative-tone nanocomposite resist based on poly(vinyl alcohol) where silver nanoparticles and nanopatterns are simultaneously generated by electron-beam lithography. Our results indicate nanostructures with a relatively high concentration of nanoparticles and, consequently, an electromagnetic coupling among the nanoparticles. Therefore, the patternable nanocomposite described in this work may be a suitable material for future plasmonic circuitry.

Vinyl alcoholNanocompositeNanostructureMaterials sciencePolymer nanocompositeMechanical EngineeringNanoparticleBioengineeringNanotechnologyPlasmonic CircuitryGeneral ChemistrySilver nanoparticlechemistry.chemical_compoundchemistryResistMechanics of MaterialsGeneral Materials ScienceElectrical and Electronic EngineeringComposite materialNanotechnology
researchProduct

Scalable heterogeneous synthesis of metallic nanoparticles and aggregates with polyvinyl alcohol

2009

Here we report on a new route to synthesize colloidal silver and gold nanoparticles, potentially scalable for massive nanoparticle-production. This method is based on the microwave-assisted heterogeneous reduction of the metal salts with polyvinylalcohol. The reaction is carried out in alcohols, which are non-solvents for polyvinylalcohol. Nanoparticles can be very easily separated by filtration. The reaction kinetics are extremely fast. Size-controlled formation of nanoparticle agglomerates is accomplished with a seed-mediated synthesis of nanoparticles upon MW exposure.

ChemistryNanoparticleNanotechnologyColloidal silverGeneral ChemistryPolyvinyl alcoholCatalysislaw.inventionChemical kineticschemistry.chemical_compoundlawColloidal goldAgglomerateMaterials ChemistryMetal nanoparticlesFiltrationNew Journal of Chemistry
researchProduct

WS 2 /MoS 2 Heterostructures through Thermal Treatment of MoS 2 Layers Electrostatically Functionalized with W 3 S 4 Molecular Clusters

2020

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationi…

CouplingPhotoluminescence010405 organic chemistrybusiness.industryChemistryOrganic ChemistryHeterojunctionGeneral ChemistryThermal treatmentCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry01 natural sciences7. Clean energyHomogeneous distributionCatalysis0104 chemical scienceslaw.inventionCondensed Matter::Materials ScienceTransition metallawCluster (physics)OptoelectronicsCalcinationbusinessChemistry – A European Journal
researchProduct

Near-field scanning optical microscopy to study nanometric structural details of LiNbO3 Zn-diffused channel waveguides

2008

A near-field scanning optical microscope (NSOM) is used to perform structural and optical characterization of the surface layer after Zn diffusion in a channel waveguide fabricated on lithium niobate. A theoretical approach has been developed in order to extract refractive index contrast from NSOM optical transmission measurements (illumination configuration). As a result, different solid phases present on the sample surface can be identified, such as ZnO and ZnNb2O6. They appear like submicrometric crystallites aligned along the domain wall direction, whose origin can be ascribed to some strain relaxation mechanism during the annealing process after Zn diffusion. Jose.Canet-Ferrer@uv.es

Materials scienceLithium niobateRefractive indexGeneral Physics and AstronomyWaveguide (optics)law.inventionAnnealingchemistry.chemical_compoundAnnealing ; Crystallites ; Lithium compounds ; Nanostructured materials ; Near-field scanning optical microscopy ; Optical waveguides ; Refractive index ; StoichiometryOpticsOptical microscopelaw:FÍSICA [UNESCO]Refractive index contrastSurface layerNear-field scanning optical microscopyÓpticabusiness.industryUNESCO::FÍSICACrystallitesFísicaLithium compoundsNanostructured materialsStoichiometryOptical waveguideschemistryNear-field scanning optical microscopeCrystallitebusinessRefractive index
researchProduct

SNOM study of ferroelectric domains in doped LiNbO3 crystals

2009

Abstract This work shows a study of the periodic ferroelectric domains formed in LiNbO3 crystals doped with rare earths by means of scanning near field optical microscopy (SNOM) technique. It has been observed periodic structures associated with ferroelectric domains with an unexpected high value of the optical contrast working under reflectance SNOM mode. From Raman-Nath diffraction patterns, a refractive index modulation of Δ n ∼ 1 0 − 4 has been calculated. These results were correlated with the ferroelectric periodic domains obtained by the SNOM technique. A light waveguide effects along the ferroelectric domains is suggested to explain the high reflectance contrast observed in SNOM exp…

DiffractionMaterials scienceOptical contrastbusiness.industryDopingNear and far fieldWaveguide (optics)Ferroelectricitylaw.inventionOpticsOptical microscopelawOptoelectronicsNear-field scanning optical microscopebusinessPhysics Procedia
researchProduct

Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire

2008

4 páginas, 5 figuras.-- PACS numbers: 78.67.Lt, 71.30.+h, 71.35. -y.-- Comunicación presentada a la International Conference on the Physics of Semiconductors (ICPS) celebrada en Rio de Jqaneiro (Brasil/2008).

PhysicsPhase transitionPhotoluminescenceCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsQuantum wireExcitonDimension (graph theory)CondensationNanowireFOS: Physical sciencesGeneral Physics and AstronomyInAs/InP quantum wiresSpace (mathematics)Condensed Matter - Strongly Correlated ElectronsSemiconductor nanostructuresMesoscale and Nanoscale Physics (cond-mat.mes-hall)Microphotoluminiscence
researchProduct

Slow relaxation of the magnetization, reversible solvent exchange and luminescence in 2D anilato-based frameworks.

2020

A series of multifunctional 2D frameworks prepared with Dy(iii) and the bromanilato ligand, formulated as: [Dy2(C6O4Br2)3(G)n]·nG with G = H2O, dimethylformamide (dmf) and dimethylsulfoxide (dmso), can exchange the coordinated and non-coordinated solvent molecules (G) in a reversible way. These multifunctional frameworks show field induced slow relaxation of the magnetization and luminescence that can be easily and reversibly modified by solvent exchange.

Materials scienceLigandRelaxation (NMR)Metals and AlloysGeneral ChemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventMagnetizationchemistry.chemical_compoundchemistryMaterials ChemistryCeramics and CompositesPhysical chemistryMoleculeDimethylformamideLuminescenceChemical communications (Cambridge, England)
researchProduct

Stroboscopic Space Tag for Optical Time-Resolved Measurements with a Charge Coupled Device Detector

2018

Time-resolved measurements are extensively employed in the study of light–matter interaction at the nanoscale such as the exciton dynamics in semiconductors or the ultrafast intraband transitions in metals. Importantly, single-photon correlation, quantum state tomography, and other techniques devoted to the characterization of quantum optics systems rely on time-resolved experiments, whose resolution which is bound to the time response of the detector and related electronics. For this reason, multiplexing or beam deflection techniques have been recently proposed to overcome the detector resolution and thus measure the final photon distribution characteristics. Taking advantage of both strat…

PhysicsQuantum opticsbusiness.industryDetectorMeasure (physics)02 engineering and technologyQuantum tomography021001 nanoscience & nanotechnology01 natural sciencesSignalMultiplexingAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials010309 opticsOptics0103 physical sciencesCharge-coupled deviceElectrical and Electronic Engineering0210 nano-technologybusinessUltrashort pulseBiotechnologyACS Photonics
researchProduct

Photoluminescence Enhancement by Band Alignment Engineering in MoS 2 /FePS 3 van der Waals Heterostructures

2022

Single-layer semiconducting transition metal dichalcogenides (2H-TMDs) display robust excitonic photoluminescence emission, which can be improved by controlled changes to the environment and the chemical potential of the material. However, a drastic emission quench has been generally observed when TMDs are stacked in van der Waals heterostructures, which often favor the nonradiative recombination of photocarriers. Herein, we achieve an enhancement of the photoluminescence of single-layer MoS2 on top of van der Waals FePS3. The optimal energy band alignment of this heterostructure preserves light emission of MoS2 against nonradiative interlayer recombination processes and favors the charge t…

Transition metal dichalcogenide monolayersAlignment engineeringVan der Waals heterostructuresEnhanced photoluminescenceOptoelectronic tunabilityGeneral Materials ScienceMaterialsACS Applied Materials & Interfaces
researchProduct

Scanning probe microscopies applied to the study of the domain wall in a ferroelectric crystal.

2007

Summary Scanning near-field optical microscopy is capable of measuring the topography and optical signals at the same time. This fact makes this technique a valuable tool in the study of materials at nanometric scale and, in particular, of ferroelectric materials, as it permits the study of their domains structure without the need of chemical etching and, therefore, not damaging the surface (as will be demonstrated later). We have measured the scanning near-field optical microscopy transmission, as well as the topography, of an RbTiOPO4 single crystalline slab, which exhibits two different of macroscopic ferroelectric domains. A chemical selective etching has been performed to distinguish b…

HistologyMaterials sciencebusiness.industryScanning confocal electron microscopyScanning capacitance microscopyIsotropic etchingPathology and Forensic MedicinePiezoresponse force microscopyOpticsScanning ion-conductance microscopyNear-field scanning optical microscopebusinessNon-contact atomic force microscopyVibrational analysis with scanning probe microscopyJournal of microscopy
researchProduct

Emission properties of single InAs/GaAs quantum dot pairs and molecules grown in GaAs nanoholes

2010

Trabajo presentado a la "11th International Conference on Optics of Excitons in Confined Systems" (OECS), celebrada en en Madrid (España) del 7 al 11 de Septiembre de 2009.

PhysicsCouplingHistoryCondensed matter physicsQuantum dot moleculesCoulomb blockadeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectDroplet epitaxiMolecular physicsComputer Science ApplicationsEducationQuantum dotQuantum dot laserMicrophotoluminiscenceMoleculeDiffusion (business)Quantum dot molecules
researchProduct

Smart molecular/MoS2 Heterostructures Featuring Light and Thermally-Induced Strain Driven by Spin Switching

2020

In this work we exploit the ability of spin-crossover molecules to switch between two spin states, upon the application of external stimuli, to prepare smart molecular/2D heterostructures. Through the chemical design of the hybrid interface, that involves a covalent grafting between the two components, we obtain a hybrid heterostructure formed by spin-crossover nanoparticles anchored on chemically functionalized monolayers of semiconducting MoS2. In the resulting hybrid, the strain generated by the molecular system over the MoS2 layer, as a consequence of a thermal or light-induced spin switching, results in a dramatic and reversible change of its electrical and optical properties. This nov…

Materials scienceSpintronicsSpin statesNanoparticleNanotechnologyHeterojunction02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundCondensed Matter::Materials SciencechemistrySpin crossoverMonolayerMolecule0210 nano-technologyMolybdenum disulfide
researchProduct

A Local Study of the Transport Mechanisms in MoS2 Layers for Magnetic Tunnel Junctions

2018

MoS2-based vertical spintronic devices have attracted an increasing interest thanks to theoretical predictions of large magnetoresistance signals. However, experimental performances are still far from expectations. Here, we carry out the local electrical characterization of thin MoS2 flakes in a Co/Al2O3/MoS2 structure through conductive tip AFM measurements. We show that thin MoS2 presents a metallic behavior with a strong lateral transport contribution that hinders the direct tunnelling through thin layers. Indeed, no resistance dependence is observed with the flake thickness. These findings reveal a spin depolarization source in the MoS2-based spin valves, thus pointing to possible solut…

010302 applied physics[PHYS]Physics [physics]Thin layersMaterials scienceCondensed matter physicsMagnetoresistanceSpintronics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLocal studyCharacterization (materials science)0103 physical sciencesGeneral Materials Science[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyElectrical conductorQuantum tunnellingComputingMilieux_MISCELLANEOUSSpin-½
researchProduct

Spin-crossover nanoparticles anchored on MoS2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching

2021

In the past few years, the effect of strain on the optical and electronic properties of MoS2 layers has attracted particular attention as it can improve the performance of optoelectronic and spintronic devices. Although several approaches have been explored, strain is typically externally applied on the two-dimensional material. In this work, we describe the preparation of a reversible ‘self-strainable’ system in which the strain is generated at the molecular level by one component of a MoS2-based composite material. Spin-crossover nanoparticles were covalently grafted onto functionalized layers of semiconducting MoS2 to form a hybrid heterostructure. Their ability to switch between two spi…

Spin statesStrain (chemistry)Spintronicsbusiness.industryChemistryGeneral Chemical EngineeringNanoparticleHeterojunction02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCondensed Matter::Materials ScienceSpin crossoverOptoelectronicsMaterials nanoestructurats0210 nano-technologybusinessLayer (electronics)MaterialsSpin-½Nature Chemistry
researchProduct

Morphological Characterisation of Bacterial Cellulose-Starch Nanocomposites

2008

Acetobacter sp. growing medium was modified in order to produce bacterial cellulose (BC) nanocomposites using a bottom-up technique that allowed starch to be introduced into the cellulose network. The BC-starch mats were hot-pressed to obtain nanocomposites sheets. Morphological characterisation was carried out using Atomic Force Microscopy and Environmental Scanning Electron Microscopy. The images obtained from microscopy were then processed using image analysis. Network properties, such as mesh size and fibre orientation were characterised. Fracture surfaces of these new nanocomposites were analysed.

chemistry.chemical_compoundNanocompositeMaterials sciencePolymers and PlasticsChemical engineeringchemistryBacterial celluloseStarchPolymer chemistryMaterials ChemistryCeramics and CompositesAcetobacter sp.CellulosePolymers and Polymer Composites
researchProduct

Resist-based silver nanocomposites synthesized by lithographic methods

2010

In this work, the formation of silver metal nanoparticles inside a negative-tone resist based on poly(vinyl alcohol) is achieved by electron beam lithography. The chemistry of this sensitive resist allows the production of nanoparticles as well as the polymer crosslinking by the electron radiation. Due to the presence of the silver nanoparticles, the final composite exhibits a plasmonic behavior, which was characterized by measuring the absorbance. The lithographic properties of the resist have been characterized. The technique has also been exported to UV lithography, where silver nanoparticles are obtained inside the polymeric patterns after optical lithography.

Vinyl alcoholMaterials sciencetechnology industry and agricultureNanoparticleNanotechnologyPhotoresistCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSilver nanoparticleSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistryResistlawElectrical and Electronic EngineeringPhotolithographyLithographyElectron-beam lithographyMicroelectronic Engineering
researchProduct

CCDC 2005220: Experimental Crystal Structure Determination

2020

Related Article: Samia Benmansour, Antonio Hernández-Paredes, Arpan Mondal, Gustavo López Martínez, Josep Canet-Ferrer, Sanjit Konar, Carlos J. Gómez-García|2020|Chem.Commun.|56|9862|doi:10.1039/D0CC03964K

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(tris(mu-25-dibromo-36-dioxycyclohexa-25-diene-14-dione)-hexakis(dimethylformamide)-di-dysprosium)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1565283: Experimental Crystal Structure Determination

2020

Related Article: Samia Benmansour, Antonio Hernández-Paredes, Arpan Mondal, Gustavo López Martínez, Josep Canet-Ferrer, Sanjit Konar, Carlos J. Gómez-García|2020|Chem.Commun.|56|9862|doi:10.1039/D0CC03964K

Space GroupCrystallographycatena-(tris(mu-25-dibromo-36-dioxycyclohexa-25-diene-14-dione)-hexa-aqua-di-ytterbium hexahydrate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1486674: Experimental Crystal Structure Determination

2016

Related Article: Alexandre Abhervé, María José Recio-Carretero, Maurici López-Jordà, Juan Modesto Clemente-Juan, Josep Canet-Ferrer, Andrés Cantarero, Miguel Clemente-León, and Eugenio Coronado|2016|Inorg.Chem.|55|9361|doi:10.1021/acs.inorgchem.6b01508

Space GroupCrystallographyhexakis(mu-26-di(1H-pyrazol-1-yl)isonicotinato)-(mu-oxo)-triaqua-hexakis(26-di(1H-pyrazol-1-yl)isonicotinic acid)-hexa-iron(ii)-tri-iron(iii) tridecaperchlorate acetone solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1828981: Experimental Crystal Structure Determination

2018

Related Article: Samia Benmansour, Christian Cerezo-Navarrete, Josep Canet-Ferrer, Guillermo Muñoz-Matutano, Juan Martínez-Pastor, Carlos J. Gómez-García|2018|Dalton Trans.|47|11909|doi:10.1039/C8DT01473F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[3-ethyl-2-[3-(3-ethyl-13-benzoxazol-2(3H)-ylidene)prop-1-en-1-yl]-13-benzoxazol-3-ium tris(mu-oxalato)-iron(iii)-manganese(ii)]Experimental 3D Coordinates
researchProduct

CCDC 1486675: Experimental Crystal Structure Determination

2016

Related Article: Alexandre Abhervé, María José Recio-Carretero, Maurici López-Jordà, Juan Modesto Clemente-Juan, Josep Canet-Ferrer, Andrés Cantarero, Miguel Clemente-León, and Eugenio Coronado|2016|Inorg.Chem.|55|9361|doi:10.1021/acs.inorgchem.6b01508

Space GroupCrystallographyhexakis(mu-26-di(1H-pyrazol-1-yl)isonicotinato)-(mu-oxo)-triaqua-hexakis(26-di(1H-pyrazol-1-yl)isonicotinic acid)-hexa-iron(ii)-tri-iron(iii) tridecaperchlorate acetone solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct