Search results for "transistori"

showing 10 items of 20 documents

Surface plasmon effects on carbon nanotube field effect transistors

2011

Herein, we experimentally demonstrate surface plasmon polariton (SPP) induced changes in the conductivity of a carbon nanotube field effect transistor (CNT FET). SPP excitation is done via Kretschmann configuration while the measured CNT FET is situated on the opposite side of the metal layer away from the laser, but within reach of the launched SPPs. We observe a shift of 0.4 V in effective gate voltage. SPP-intermediated desorption of physisorbed oxygen from the device is discussed as a likely explanation of the observed effect. This effect is visible even at low SPP intensities and within a near-infrared range. peerReviewed

Materials sciencePhysics and Astronomy (miscellaneous)transistoriNanotechnologyCarbon nanotubehiilinanoputkiplasmonicslaw.inventionlawfield effect transistorspolaritonitPlasmonta114carbon nanotubesbusiness.industryhiilinanoputketSurface plasmonNanofysiikkananoscienceSurface plasmon polaritonCarbon nanotube field-effect transistorpintaplasmonitCarbon nanotube quantum dotplasmoniOptoelectronicsField-effect transistorbusinessnanotube devicesLocalized surface plasmon
researchProduct

Heavy-ion induced single event effects and latent damages in SiC power MOSFETs

2022

The advantages of silicon carbide (SiC) power MOSFETs make this technology attractive for space, avionics and high-energy accelerator applications. However, the current commercial technologies are still susceptible to Single Event Effects (SEEs) and latent damages induced by the radiation environment. Two types of latent damage were experimentally observed in commercial SiC power MOSFETs exposed to heavy-ions. One is observed at bias voltages just below the degradation onset and it involves the gate oxide. The other damage type is observed at bias voltages below the Single Event Burnout (SEB) limit, and it is attributed to alterations of the SiC crystal-lattice. Focused ion beam (FIB) and s…

Materials scienceScanning electron microscopeRadiationFocused ion beamelektroniikkakomponentitIonSEEschemistry.chemical_compoundstomatognathic systempuolijohteetGate oxideSilicon carbideSiC MOSFETsHeavy-ionDetectors and Experimental TechniquesElectrical and Electronic EngineeringPower MOSFETSafety Risk Reliability and Qualitybusiness.industryionisoiva säteilyCondensed Matter PhysicsLatent damageAtomic and Molecular Physics and OpticsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialssäteilyfysiikkachemistrytransistoritOptoelectronicsSiC MOSFETs; Heavy-ion; Latent damage; SEEsbusinessVoltageMicroelectronics Reliability
researchProduct

Failure Estimates for SiC Power MOSFETs in Space Electronics

2018

Silicon carbide (SiC) power metal-oxide-semiconductor field effect transistors (MOSFETs) are space-ready in terms of typical reliability measures. However, single event burnout (SEB) due to heavy-ion irradiation often occurs at voltages 50% or lower than specified breakdown. Failure rates in space are estimated for burnout of 1200 V devices based on the experimental data for burnout and the expected heavy-ion linear energy transfer (LET) spectrum in space. peerReviewed

Materials sciencesingle-event burnoutlcsh:Motor vehicles. Aeronautics. AstronauticsAerospace EngineeringBurnoutpower MOSFETs01 natural scienceschemistry.chemical_compoundReliability (semiconductor)silicon carbide0103 physical sciencesSilicon carbidePower semiconductor devicePower MOSFETheavy ionsavaruustekniikka010302 applied physicspower devicesreliabilityta114ta213010308 nuclear & particles physicsfailure ratessingle event effectsEngineering physicsPower (physics)säteilyfysiikkachemistrytransistoritField-effect transistorlcsh:TL1-4050VoltageAerospace
researchProduct

Current Transport Mechanism for Heavy-Ion Degraded SiC MOSFETs

2019

IEEE Transactions on Nuclear Science, 66 (7)

Nuclear and High Energy PhysicsMaterials scienceSiC power MOSFETsheavy ion irradiationComputerApplications_COMPUTERSINOTHERSYSTEMS01 natural scienceselektroniikkakomponentitchemistry.chemical_compoundMOSFETgate leakageGate oxidesilicon carbide0103 physical sciencesMOSFETSilicon carbideIrradiationElectrical and Electronic EngineeringPower MOSFETLeakage (electronics)leakage currentsionit010308 nuclear & particles physicsbusiness.industryionisoiva säteilysingle event effectspilaantuminenNuclear Energy and EngineeringchemistrysäteilyfysiikkaLogic gatelogic gatesradiation effectstransistoritOptoelectronicsbusinessAND gate
researchProduct

Impact of Terrestrial Neutrons on the Reliability of SiC VD-MOSFET Technologies

2021

Accelerated terrestrial neutron irradiations were performed on different commercial SiC power MOSFETs with planar, trench and double-trench architectures. The results were used to calculate the failure cross-sections and the failure in time (FIT) rates at sea level. Enhanced gate and drain leakage were observed in some devices which did not exhibit a destructive failure during the exposure. In particular, a different mechanism was observed for planar and trench gate MOSFETs, the first showing a partial gate rupture with a leakage path mostly between drain and gate, similar to what was previously observed with heavy-ions, while the second exhibiting a complete gate rupture. The observed fail…

Nuclear and High Energy PhysicsMaterials sciencepower MOSFETs01 natural sciences7. Clean energyelektroniikkakomponentitStress (mechanics)chemistry.chemical_compoundReliability (semiconductor)silicon carbidepuolijohteet0103 physical sciencesMOSFETSilicon carbideElectrical and Electronic EngineeringPower MOSFETSilicon Carbide; Power MOSFETs; neutrons; Single Event Effects; Single Event Burnout; gate damagesingle event burnoutLeakage (electronics)010308 nuclear & particles physicsbusiness.industrygate damageneutronsneutronitsingle event effectssäteilyfysiikkaNuclear Energy and EngineeringchemistryLogic gateTrenchtransistoritOptoelectronicsOtherbusinessIEEE Transactions on Nuclear Science
researchProduct

Single-Event Burnout Mechanisms in SiC Power MOSFETs

2018

Heavy ion-induced single-event burnout (SEB) is investigated in high-voltage silicon carbide power MOSFETs. Experimental data for 1200-V SiC power MOSFETs show a significant decrease in SEB onset voltage for particle linear energy transfers greater than 10 MeV/cm 2 /mg, above which the SEB threshold voltage is nearly constant at half of the rated maximum operating voltage for these devices. TCAD simulations show a parasitic bipolar junction transistor turn-on mechanism, which drives the avalanching of carriers and leads to runaway drain current, resulting in SEB. peerReviewed

Nuclear and High Energy PhysicsMaterials sciencesingle-event burnoutpower MOSFETs01 natural sciencesdevice simulationselektroniikkakomponentitchemistry.chemical_compoundsilicon carbide0103 physical sciencesMOSFETSilicon carbideElectrical and Electronic EngineeringPower MOSFETheavy ions010302 applied physicspower devicesta114ta213010308 nuclear & particles physicsbusiness.industryionisoiva säteilyBipolar junction transistorsingle event effectsThreshold voltageImpact ionizationsäteilyfysiikkaNuclear Energy and EngineeringchemistrytransistoritOptoelectronicsbusinessCurrent densityVoltageIEEE Transactions on Nuclear Science
researchProduct

Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments

2019

A two-photon absorption technique is used to understand the mechanisms of single-event effects (SEEs) in silicon carbide power metal–oxide–field-effect transistors (MOSFETs) and power junction barrier Schottky diodes. The MOSFETs and diodes have similar structures enabling the identification of effects associated specifically with the parasitic bipolar structure that is present in the MOSFETs, but not the diodes. The collected charge in the diodes varies only with laser depth, whereas it varies with depth and lateral position in the MOSFETs. Optical simulations demonstrate that the variations in collected charge observed are from the semiconductor device structure and not from metal/passiva…

Nuclear and High Energy PhysicsMaterials sciencesingle-event effectsSchottky diodesSemiconductor laser theoryelektroniikkakomponentitchemistry.chemical_compoundsilicon carbideMOSFETSilicon carbidetwo-photon absorptionElectrical and Electronic EngineeringPower MOSFETvertical MOSFETDiodebusiness.industrySchottky diodeSemiconductor deviceNuclear Energy and EngineeringchemistrysäteilyfysiikkatransistoritOptoelectronicsCharge carrierdioditbusinesspulse height analysis
researchProduct

Effect of 20 MeV Electron Radiation on Long Term Reliability of SiC Power MOSFETs

2023

The effect of 20 MeV electron radiation on the lifetime of the silicon carbide power MOSFETs was investigated. Accelerated constant voltage stress (CVS) was applied on the pristine and irradiated devices and time-to-breakdown ( T BD ) and charge-to-breakdown ( Q BD ) of gate oxide were extracted and compared. The effect of electron radiation on the device lifetime reduction can be observed at lower stress gate-to-source voltage ( V GS ) levels. The models of T BD and Q BD dependence on the initial gate current ( I G0 ) are proposed which can be used to describe the device breakdown behaviour. peerReviewed

Nuclear and High Energy Physicsionisoiva säteilyelektronitelektroniikkakomponentitstressMOSFETNuclear Energy and Engineeringelectric breakdownsäteilyfysiikkasilicon carbidelogic gatesradiation effectstransistoritElectrical and Electronic Engineeringdegradation
researchProduct

Proton irradiation-induced reliability degradation of SiC power MOSFET

2023

The effect of 53 MeV proton irradiation on the reliability of silicon carbide power MOSFETs was investigated. Post-irradiation gate voltage stress was applied and early failures in time-dependent dielectric breakdown (TDDB) test were observed for irradiated devices. The applied drain voltage during irradiation affects the degradation probability observed by TDDB tests. Proton-induced single event burnouts (SEB) were observed for devices which were biased close to their maximum rated voltage. The secondary particle production as a result of primary proton interaction with the device material was simulated with the Geant4-based toolkit. peerReviewed

Nuclear and High Energy Physicsprotonitreliabilityprotonsionisoiva säteilyelektroniikkakomponentitstressNuclear Energy and Engineeringsäteilyfysiikkasilicon carbidelogic gatesradiation effectstransistoritElectrical and Electronic Engineering
researchProduct

Estimating Terrestrial Neutron-Induced SEB Cross-Sections and FIT Rates for High-Voltage SiC Power MOSFETs

2019

Cross sections and failure in time rates for neutron-induced single-event burnout (SEB) are estimated for SiC power MOSFETs using a method based on combining results from heavy ion SEB experimental data, 3-D TCAD prediction of sensitive volumes, and Monte Carlo radiation transport simulations of secondary particle production. The results agree well with experimental data and are useful in understanding the mechanisms for neutron-induced SEB data.

Radiation transportSiCcross-sectionNuclear and High Energy PhysicsMaterials scienceMonte Carlo method01 natural sciencesIonpowerchemistry.chemical_compoundMOSFETneutronsilicon carbide0103 physical sciencesMOSFETSilicon carbideNeutronElectrical and Electronic EngineeringPower MOSFETMonte Carlosingle event burnoutta114ta213SEB010308 nuclear & particles physicsHigh voltageFITheavy ionComputational physicsNuclear Energy and Engineeringchemistrysäteilyfysiikkatransistoritfailure in timeMREDIEEE Transactions on Nuclear Science
researchProduct