0000000000008045

AUTHOR

Heiko J. Luhmann

0000-0002-7934-8661

Long-range intralaminar noise correlations in the barrel cortex

Identifying the properties of correlations in the firing of neocortical neurons is central to our understanding of cortical information processing. It has been generally assumed, by virtue of the columnar organization of the neocortex, that the firing of neurons residing in a certain vertical domain is highly correlated. On the other hand, firing correlations between neurons steeply decline with horizontal distance. Technical difficulties in sampling neurons with sufficient spatial information have precluded the critical evaluation of these notions. We used 128-channel “silicon probes” to examine the spike-count noise correlations during spontaneous activity between multiple neurons with i…

research product

GABAC receptors are functionally expressed in the intermediate zone and regulate radial migration in the embryonic mouse neocortex

Radial neuronal migration in the cerebral cortex depends on trophic factors and the activation of different voltage- and ligand-gated channels. To examine the func- tional role of GABAC receptors in radial migration we ana- lyzed the effects of specific GABAA and GABAC receptor antagonists on the migration of BrdU-labeled neurons in vitro using organotypic neocortical slice cultures. These experi- ments revealed that the GABAA specific inhibitor bicuculline methiodide facilitated neuronal migration, while the GABAC specific inhibitor (1,2,5,6-tetrahydropyridine-4-yl) methylphos- phinic-acid (TPMPA) impeded migration. Co-application of TPMPA and bicuculline methiodide or the unspecific ionot…

research product

Changes in the expression of cation-Cl- cotransporters, NKCC1 and KCC2, during cortical malformation induced by neonatal freeze-lesion.

Focal cortical malformations comprise a heterogeneous group of disturbances in brain development, often associated with intractable epilepsy. A focal freeze-lesion of cerebral cortex in newborn rat produces a cortical malformation that resembles human polymicrogyria, clinical conditions that results from abnormal neuronal migration. The change in GABAergic functions that occurs during early brain development is induced by an alteration in Cl(-) homeostasis and plays important roles in neocortical development by modulating such events as laminar organization and synaptogenesis. We therefore investigated the relationship between pathogenesis of polymicrogyria and ontogeny of Cl(-) homeostasis…

research product

The Functional Role of the Second NPXY Motif of the LRP1 β-Chain in Tissue-type Plasminogen Activator-mediated Activation of N-Methyl-D-aspartate Receptors

The low density lipoprotein receptor-related protein 1 (LRP1) emerges to play fundamental roles in cellular signaling pathways in the brain. One of its prominent ligands is the serine proteinase tissue-type plasminogen activator (tPA), which has been shown to act as a key activator of neuronal mitogen-activated protein kinase pathways via the N-methyl-D-aspartate (NMDA) receptor. However, here we set out to examine whether LRP1 and the NMDA receptor might eventually act in a combined fashion to mediate tPA downstream signaling. By blocking tPA from binding to LRP1 using the receptor-associated protein, we were able to completely inhibit NMDA receptor activation. Additionally, inhibition of …

research product

Pathway-specificity in N-methyl-d-aspartate receptor-mediated synaptic inputs onto subplate neurons

The subplate plays an important role in forming neuronal connections during early cortical development. We characterized by the use of whole-cell and cell-attached patch-clamp recordings in coronal brain slices from newborn mice (postnatal day [P] 0-3) the functional properties of two major pathways onto subplate neurons (SPn), the thalamocortical and the intra-subplate synaptic input. The two afferent pathways were stimulated extracellularly with bipolar electrodes placed in the thalamus and the subplate, respectively. Synaptically evoked and pharmacologically isolated N-methyl-d-aspartate receptor (NMDAR) -mediated responses with an onset latency of approximately 6 ms could be reliably re…

research product

Spike-wave discharges in absence epilepsy: segregation of electrographic components reveals distinct pathways of seizure activity.

Key points The major electrophysiological hallmarks of absence seizures are spike and wave discharges (SWDs), consisting of a sharp spike component and a slow wave component. In a widely accepted scheme, these components are functionally coupled and reflect an iterative progression of neuronal excitation during the spike and post-excitatory silence during the wave. In a genetic rat model of absence epilepsy, local pharmacological inhibition of the centromedian thalamus (CM) selectively suppressed the spike component, leaving self-contained waves in epidural recordings. Thalamic inputs induced activity in cortical microcircuits underlying the spike component, while intracortical oscillations…

research product

Identification of a developmental switch in information transfer between whisker S1 and S2 cortex in mice

AbstractThe whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first post-natal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate for the first time the developmental e…

research product

Coincident Activation of Glutamate Receptors Enhances GABAA Receptor-Induced Ionic Plasticity of the Intracellular Cl−-Concentration in Dissociated Neuronal Cultures

Massive activation of γ-amino butyric acid A (GABAA) receptors during pathophysiological activity induces an increase in the intracellular Cl−-concentration ([Cl−]i), which is sufficient to render GABAergic responses excitatory. However, to what extent physiological levels of GABAergic activity can influence [Cl−]i is not known. Aim of the present study is to reveal whether moderate activation of GABAA receptors mediates functionally relevant [Cl−]i changes and whether these changes can be augmented by coincident glutamatergic activity. To address these questions, we used whole-cell patch-clamp recordings from cultured cortical neurons [at days in vitro (DIV) 6–22] to determine changes in t…

research product

Volatile Anesthetics Influence Blood-Brain Barrier Integrity by Modulation of Tight Junction Protein Expression in Traumatic Brain Injury

Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortality after traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be important to elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonula occludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anesthetics sevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) in murine brain endothelial monolayers and neurovascular co-cultures of the B…

research product

GABA-A Receptors Regulate Neocortical Neuronal Migration In Vitro and In Vivo

The cortical migration process depends on a number of trophic factors and on the activation of different voltage- and ligand-gated channels. We investigated the role of gamma-aminobutyric acid (GABA) type A receptors in the neuronal migration process of the newborn rat parietal cortex in vivo and in vitro. Local in vivo application of the GABA-A antagonist bicuculline methiodide (BMI) or the agonist muscimol via cortical surface Elvax implants induced prominent alterations in the cortical architecture when compared with untreated or sham-operated controls. BMI- and muscimol-treated animals revealed heterotopic cell clusters in the upper layers and a complete loss of the cortical lamination …

research product

Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology.

Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmiss…

research product

Activity-Dependent Regulation of Neuronal Apoptosis in Neonatal Mouse Cerebral Cortex

A massive neuronal loss during early postnatal development has been well documented in the murine cerebral cortex, but the factors that drive cells into apoptosis are largely unknown. The role of neuronal activity in developmental apoptosis was studied in organotypic neocortical slice cultures of newborn mice. Multielectrode array and whole-cell patch-clamp recordings revealed spontaneous network activity characterized by synchronized burst discharges, which could be blocked by tetrodotoxin and ionotropic glutamate receptor antagonists. The identical neuropharmacological manipulations also caused a significant increase in the number of apoptotic neurons as early as 6 h after the start of dr…

research product

Combining Optogenetics with MEA, Depth-Resolved LFPs and Assessing the Scope of Optogenetic Network Modulation

research product

Inhibition of different GABA transporter systems is required to attenuate epileptiform activity in the CA3 region of the immature rat hippocampus

GABA transporters (GATs) are an essential element of the GABAergic system, which regulate excitability in the central nervous system and are thus used as targets for anticonvulsive therapy. However, in the immature nervous system the functions of the GABAergic system and the expression profile of GATs are distinct from the adult situation, obscuring to predict how different GAT isoforms influence epileptiform activity. Therefore we analyzed the effects of subtype specific GAT inhibitors on repetitive epileptiform discharges using field potential and whole-cell patch-clamp recordings in the CA3 region of hippocampal slices of immature (postnatal days 4-7) rats. These experiments revealed tha…

research product

Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was ob…

research product

Co-activation of VEGF and NMDA receptors promotes synaptic targeting of AMPA receptors

research product

Phasic GABAA-receptor activation is required to suppress epileptiform activity in the CA3 region of the immature rat hippocampus

Summary Purpose:  Despite the consistent observation that γ-aminobutyric acid A (GABAA) receptors mediate excitatory responses at perinatal stages, the role of the GABAergic system in the generation of neonatal epileptiform activity remains controversial. Therefore, we analyzed whether tonic and phasic GABAergic transmission had differential effects on neuronal excitability during early development. Methods:  We performed whole cell patch-clamp and field potential recordings in the CA3 region of hippocampal slices from immature (postnatal day 4–7) rats to analyze the effect of specific antagonists and modulators of tonic and phasic GABAergic components on neuronal excitability. Key Findings…

research product

LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex.

During the pre- and neonatal period, the cerebral cortex reveals distinct patterns of spontaneous synchronized activity, which is critically involved in the formation of early networks and in the regulation of neuronal survival and programmed cell death (apoptosis). During this period, the cortex is also highly vulnerable to inflammation and in humans prenatal infection may have a profound impact on neurodevelopment causing long-term neurological deficits. Using in vitro and in vivo multi-electrode array recordings and quantification of caspase-3 (casp-3)-dependent apoptosis, we demonstrate that lipopolysaccharide-induced inflammation causes rapid alterations in the pattern of spontaneous b…

research product

Early patterns of electrical activity in the developing cerebral cortex of humans and rodents.

International audience; During prenatal and early postnatal development, the cerebral cortex exhibits synchronized oscillatory network activity that is believed to be essential for the generation of neuronal cortical circuits. The nature and functional role of these early activity patterns are of central interest in neuroscience. Much of the research is performed in rodents and in vitro, but how closely do these model systems relate to the human fetal brain? In this review, we compare observations in humans with in vivo and in vitro rodent data, focusing on particular oscillatory activity patterns that share many common features: delta brushes, spindle bursts and spindle-like oscillations. …

research product

Functional Synaptic Projections onto Subplate Neurons in Neonatal Rat Somatosensory Cortex

Subplate neurons (SPn) play an important role in the formation of thalamocortical connections during early development and show glutamatergic and GABAergic spontaneous synaptic activity. We characterized these synaptic inputs by performing whole-cell recordings from SPn in somatosensory cortical slices of postnatal day 0-3 rats. At -70 mV, electrical stimulation of the thalamocortical afferents elicited in 68% of the SPn a monosynaptic CNQX-sensitive postsynaptic current (PSC). These fast PSCs were mediated by AMPA receptors, because they were prolonged by cyclothiazide and blocked by GYKI 52466. On membrane depolarization, thalamocortical stimulation elicited in 50% of the cells an additio…

research product

Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex

During the perinatal period, the brain is highly vulnerable to hypoxia and inflammation, which often cause white matter injury and long-term neuronal dysfunction such as motor and cognitive deficits or epileptic seizures. We studied the effects of moderate hypoxia (HYPO), mild systemic inflammation (INFL), or the combination of both (HYPO + INFL) in mouse somatosensory cortex induced during the first postnatal week on network activity and compared it to activity in SHAM control animals. By performing in vitro electrophysiological recordings with multi-electrode arrays from slices prepared directly after injury (P8–10), one week after injury (P13–16), or in young adults (P28–30), we investig…

research product

Translational Model of Cortical Premotor-Motor Networks.

Abstract Deciphering the physiological patterns of motor network connectivity is a prerequisite to elucidate aberrant oscillatory transformations and elaborate robust translational models of movement disorders. In the proposed translational approach, we studied the connectivity between premotor (PMC) and primary motor cortex (M1) by recording high-density electroencephalography in humans and between caudal (CFA) and rostral forelimb (RFA) areas by recording multi-site extracellular activity in mice to obtain spectral power, functional and effective connectivity. We identified a significantly higher spectral power in β- and γ-bands in M1compared to PMC and similarly in mice CFA layers (L) 2/…

research product

Allopregnanolone augments epileptiform activity of an in-vitro mouse hippocampal preparation in the first postnatal week.

Abstract In the immature brain the neurotransmitter γ-amino butyric acid (GABA) mediates a membrane depolarization and can contribute to both, inhibition and excitation. Therefore the consequences of a positive modulation of GABA(A) receptors by neurosteroids on epileptiform activity are hard to predict. In order to analyze whether neurosteroids attenuate or exaggerate epileptiform activity in the immature brain, we investigated the effect of the neurosteroid allopregnanolone on epileptiform activity in an in-toto hippocampus preparation of early postnatal mice (postnatal days 4–7) using field potential recordings. These in-vitro experiments revealed that 0.5 μmol/L allopregnanolone had no …

research product

Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling

Summary Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2−/− thalamus restored the aberrant cortical innervation. We ide…

research product

Author response: Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex

research product

Cajal–Retzius and Subplate Cells

The laminar and columnar organization of the mature cerebral cortex is determined by a variety of early developmental processes. Two distinct populations of early generated preplate neurons play key roles in corticogenesis. Cajal–Retzius neurons, located in the marginal zone (later layer I), control the formation of neocortical layers by releasing the extracellular matrix protein reelin, which serves as a guiding signal for migrating neurons. Subplate neurons in the lower neocortical layer play an active role in transient synaptic circuits and influence early cortical plasticity and the maturation of the columnar architecture. Both neuronal cell populations serve as transient synaptic targe…

research product

Hypoosmolar conditions reduce extracellular volume fraction and enhance epileptiform activity in the CA3 region of the immature rat hippocampus

The osmolarity of the extracellular space (ECS) compartment is an important factor determining the excitability of neuronal tissue. In the adult hippocampus an important role of osmolarity and ECS diffusion parameters on the susceptibility to epileptic events is well established, but the influence of hypo- and hyperosmolar conditions on the immature hippocampus remains elusive. To investigate the influence of osmolarity on epileptiform activity, extracellular field potentials were recorded in the CA3 region of hippocampal slices of immature (postnatal days 4-7) Wistar rats. The ECS diffusion parameters were determined by the real-time tetramethylammonium (TMA+) iontophoretic method with ion…

research product

In vivo imaging of dopamine receptors in a model of temporal lobe epilepsy

Alterations in dopamine neurotransmission in animal models of epilepsies have been frequently demonstrated using invasive neuroscience or ex vivo techniques. We aimed to test whether corresponding alterations could be detected by noninvasive in vivo brain imaging with positron emission tomography (PET) in the chronic phase of the rat pilocarpine model of temporal lobe epilepsy.Six pilocarpine-treated Wistar rats exhibiting spontaneous recurrent seizures and nine control rats were studied with PET using [(18)F]-fallypride, a high-affinity dopamine D(2/3) receptor ligand. Parametric images of [(18)F]-fallypride specific binding were calculated using a reference tissue method, and the two grou…

research product

Stimulus-induced gamma activity in the electrocorticogram of freely moving rats: the neuronal signature of novelty detection.

To investigate the cortical activity pattern associated with the exploration and identification of a novel object we recorded the intracranial electrocorticogram (ECoG) in the barrel cortex of freely moving adult rats using wireless technology. We report here that the exploration and detection of a novel object correlate with a transient increase of synchronized oscillatory activity in the 40–47 Hz frequency band. This specific cortical activity pattern occurs 200–300 ms after the first sensory contact with the novel stimulus and decreases in power in the subsequent recording sessions with the same object. During the first explorative session the increase in 40–47 Hz is associated with a si…

research product

Neuronal precursor-specific activity of a human doublecortin regulatory sequence.

The doublecortin (DCX) gene encodes a 40-kDa microtubule-associated protein specifically expressed in neuronal precursors of the developing and adult CNS. Due to its specific expression pattern, attention was drawn to DCX as a marker for neuronal precursors and neurogenesis, thereby underscoring the importance of its promoter identification and promoter analysis. Here, we analysed the human DCX regulatory sequence and confined it to a 3.5-kb fragment upstream of the ATG start codon. We demonstrate by transient transfection experiments that this fragment is sufficient and specific to drive expression of reporter genes in embryonic and adult neuronal precursors. The activity of this regulator…

research product

A Polyphenylene Dendrimer Drug Transporter with Precisely Positioned Amphiphilic Surface Patches

The design and synthesis of a polyphenylene dendrimer (PPD 3) with discrete binding sites for lipophilic guest molecules and characteristic surface patterns is presented. Its semi-rigidity in combination with a precise positioning of hydrophilic and hydrophobic groups at the periphery yields a refined architecture with lipophilic binding pockets that accommodate defined numbers of biologically relevant guest molecules such as fatty acids or the drug doxorubicin. The size, architecture, and surface textures allow to even penetrate brain endothelial cells that are a major component of the extremely tight blood-brain barrier. In addition, low to no toxicity is observed in in vivo studies using…

research product

TRESK channel contributes to depolarization-induced shunting inhibition and modulates epileptic seizures.

Glutamatergic and GABAergic synaptic transmission controls excitation and inhibition of postsynaptic neurons, whereas activity of ion channels modulates neuronal intrinsic excitability. However, it is unclear how excessive neuronal excitation affects intrinsic inhibition to regain homeostatic stability under physiological or pathophysiological conditions. Here, we report that a seizure-like sustained depolarization can induce short-term inhibition of hippocampal CA3 neurons via a mechanism of membrane shunting. This depolarization-induced shunting inhibition (DShI) mediates a non-synaptic, but neuronal intrinsic, short-term plasticity that is able to suppress action potential generation and…

research product

Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2′7′-dichlorodihydrofluorescein (H<sub>2</sub>DCF) in primary murine VSMC. IL-17A induced an increase in H<sub>2</sub>DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting …

research product

Inhibition of the myosin light chain kinase prevents hypoxia-induced blood-brain barrier disruption

Increased mortality after stroke is associated with development of brain edema. The aim of the present study was to examine the contribution of endothelial myosin light chain (MLC) phosphorylation to hypoxia-induced blood-brain barrier (BBB) opening. Measurements of trans-endothelial electrical resistance (TEER) were performed to analyse BBB integrity in an in vitro co-culture model (bovine brain microvascular endothelial cells (BEC) and rat astrocytes). Brain fluid content was analysed in rats after stroke induction using a two-vein occlusion model. Dihydroethidium was used to monitor intracellular generation of reactive oxygen species (ROS) in BEC. MLC phosphorylation was detected using i…

research product

Rapid developmental switch in the mechanisms driving early cortical columnar networks

The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this…

research product

Fine-tuning DNA/albumin polyelectrolyte interactions to produce the efficient transfection agent cBSA-147.

We present the preparation and isolation of different chemically modified BSA species with varying numbers of primary amino groups at the surface. Highly cationic albumin proteins with increased numbers of amino groups were achieved and complex formation with plasmid DNA was carefully investigated. We compare the transfection results, polyelectrolyte complexes morphologies with their impact on complex stabilities, cytotoxicities and DNA accessibility. This knowledge-driven approach led to the identification of the efficient non-viral DNA delivery agent cBSA-147, which showed high transfection efficacies and stability.

research product

Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus

While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4-7) rat using field potential recordings. Bath application of 100 μM taurine or 10 μM glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μM 4-aminopyridine in low Mg(2+) solution. This proconvulsive effect was prevented by 3 μM strychnine or after incubation with the loop diuretic bumetanide (10 …

research product

Glycine receptors influence radial migration in the embryonic mouse neocortex.

To investigate whether glycine receptors influence radial migration in the neocortex, we analyzed the effect of glycine and the glycinergic antagonist strychnine, on the distribution of 5-bromo-2'deoxyuridine-labeled neurons in organotypic slice cultures from embryonic mice cortices. Application of glycine impeded radial migration only in the presence of the glycine-transport blockers, ALX-5407 and ALX-1393. This effect was blocked by the specific glycine receptor antagonist strychnine, whereas application of strychnine in the absence of glycine was without effect. We conclude from these observations that an activation of glycine receptors can impede radial migration, but that the glycinerg…

research product

Comment on “Local impermeant anions establish the neuronal chloride concentration”

Glykys et al . (Reports, 7 February 2014, p. 670) proposed that cytoplasmic impermeant anions and polyanionic extracellular matrix glycoproteins establish the local neuronal intracellular chloride concentration, [Cl – ] i , and thereby the polarity of γ-aminobutyric acid type A (GABA A ) receptor signaling. The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to.

research product

Electrophysiological and morphological properties of Cajal–Retzius cells with different ontogenetic origins

International audience; The different origins of Cajal-Retzius cells (CRc) as well as their diverse molecular profile suggest that this cell type may represent different neuronal subpopulations. In order to investigate whether CRc from different origins show distinct functional or morphological characteristics we used transgenic Dbx1(cre);ROSA26(YFP) mice in which two subpopulations of CRc, originating from the septum and ventral pallium (VP) at the pallial-subpallial border (PSB), were permanently labeled by yellow fluorescent protein (YFP) expression. Electrophysiological properties of YFP(+) and YFP(-) CRc were investigated by whole-cell patch-clamp recordings, while a thorough somatoden…

research product

DEVELOPMENT/MALFORMATIONS | Cortical Malformations as a Cause for Epileptiform Activity: The Freeze Lesion Model

research product

Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage.

BACKGROUND: Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context. METHODOLOGY/PRINCIPAL FINDINGS: We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by…

research product

Transient cortical circuits match spontaneous and sensory-driven activity during development.

At the earliest developmental stages, spontaneous activity synchronizes local and large-scale cortical networks. These networks form the functional template for the establishment of global thalamocortical networks and cortical architecture. The earliest connections are established autonomously. However, activity from the sensory periphery reshapes these circuits as soon as afferents reach the cortex. The early-generated, largely transient neurons of the subplate play a key role in integrating spontaneous and sensory-driven activity. Early pathological conditions—such as hypoxia, inflammation, or exposure to pharmacological compounds—alter spontaneous activity patterns, which subsequently in…

research product

Altered morphological and electrophysiological properties of Cajal-Retzius cells in cerebral cortex of embryonic Presenilin-1 knockout mice

Mutations of Presenilin-1 are the major cause of familial Alzheimer's disease. Presenilin-1 knockout (PS1-/-) mice develop severe cortical dysplasia related to human type 2 lissencephaly. This overmigration syndrome has been attributed to the premature loss of Cajal-Retzius cells (CRcs), pioneer neurons required for the termination of radial neuronal migration. To elucidate the potential cellular mechanisms responsible for this premature neuronal loss, we investigated the morphological and electrophysiological properties of visually identified CRcs of wild-type (WT) and PS1-/- mouse brains at embryonic day 16.5. The density of CRcs was substantially reduced in the cerebral cortex of PS1-/-.…

research product

A new technique for real-time analysis of caspase-3 dependent neuronal cell death

Several markers are available to identify cells undergoing programmed cell death, but so far they are only applicable on fixed material. Therefore, no information on the kinetics of apoptosis can be obtained, although apoptosis is a dynamic cell process. Here, we describe a new technique that allows the real-time observation of the onset of apoptosis in primary neurons. Neurons are transfected with a plasmid that codes for a fluorescent protein localized in the soma. Upon activation of caspase-3, which represents the point-of-no-return in the apoptosis process, the fusion protein is cleaved and as a consequence translocates into the nucleus. The onset of apoptosis is thus visualized by tran…

research product

Fluvastatin prevents glutamate-induced blood-brain-barrier disruption in vitro.

Abstract Glutamate is an important excitatory amino acid in the central nervous system. Under pathological conditions glutamate levels dramatically increase. Aim of the present study was to examine whether the HMG-CoA inhibitor fluvastatin prevents glutamate-induced blood-brain-barrier (BBB) disruption. Measurements of transendothelial electrical resistance (TEER) were performed to analyze BBB integrity in an in vitro co-culture model of brain endothelial and glial cells. Myosin light chain (MLC) phosphorylation was detected by immunohistochemistry, or using the in-cell western technique. Intracellular Ca 2+ and reactive oxygen species (ROS) levels were analyzed using the fluorescence dyes …

research product

Activation of metabotropic glutamate receptors induces propagating network oscillations in the intact cerebral cortex of the newborn mouse.

Activation of metabotropic glutamate receptors (mGluRs) with (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) elicited in the frontal or occipital pole of the intact cerebral cortex preparation of the newborn mouse (P0-P3) a transient oscillatory field potential activity in the frequency range of 11-14Hz. These oscillations propagated over the whole cortical hemisphere and were blocked by tetrodotoxin, indicating that action potentials are required for the generation of this activity. Blockade of GABA-A receptors with gabazine did not influence the ACPD-induced network activity, but the glycine antagonist strychnine caused a significant decrease in the frequency, amplitude and durat…

research product

The subplate and early cortical circuits.

The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in v…

research product

Laminar and Columnar Structure of Sensory-Evoked Multineuronal Spike Sequences in Adult Rat Barrel Cortex In Vivo

One of the most relevant questions regarding the function of the nervous system is how sensory information is represented in populations of cortical neurons. Despite its importance, the manner in which sensory-evoked activity propagates across neocortical layers and columns has yet not been fully characterized. In this study, we took advantage of the distinct organization of the rodent barrel cortex and recorded with multielectrode arrays simultaneously from up to 74 neurons localized in several functionally identified layers and columns of anesthetized adult Wistar rats in vivo. The flow of activity within neuronal populations was characterized by temporally precise spike sequences, which …

research product

Behavioural parameters in aged rats are related to LTP and gene expression of ChAT and NMDA-NR2 subunits in the striatum.

Striatal parameters were assessed for their relevance to age-related behavioural decline. Forty aged rats (28-30 months) were tested in the water maze and open field. Of these, seven superior and seven inferior learners were compared with each other in terms of levels of in vitro short- and long-term potentiation (STP and LTP), and gene expression of choline acetyltransferase (ChAT) as well as of the NMDA-NR2A-C subunits assessed by quantitative RT-PCR. Results revealed that the superior as compared with the inferior learners had higher levels of ChAT mRNA in the striatum. For the superior group, ChAT mRNA was correlated with escape on to the cued platform in the water maze, whereas level o…

research product

Neocortical Layer 6B as a Remnant of the Subplate - A Morphological Comparison.

The fate of the subplate (SP) is still a matter of debate. The SP and layer 6 (which is ontogenetically the oldest and innermost neocortical lamina) develop coincidentally. Yet, the function of sublamina 6B is largely unknown. It has been suggested that it consists partly of neurons from the transient SP, however, experimental evidence for this hypothesis is still missing. To obtain first insights into the neuronal complement of layer 6B in the somatosensory rat barrel cortex, we used biocytin stainings of SP neurons (aged 0-4 postnatal days, PND) and layer 6B neurons (PND 11-35) obtained during in vitro whole-cell patch-clamp recordings. Neurons were reconstructed for a quantitative charac…

research product

Activity-dependent survival of developing neocortical neurons depends on PI3K signalling

J. Neurochem. (2012) 120, 495–501. Abstract Spontaneous electrical network activity plays a major role in the control of cell survival in the developing brain. Several intracellular pathways are implicated in transducing electrical activity into gene expression dependent and independent survival signals. These include activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector Akt, activation of Ras and subsequently MAPK/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase and signalling via calcium/calmodulin-dependent protein kinase (CaMK). In the present study, we analyzed the role of these pathways for the control of neuronal survival …

research product

Dopaminergic modulation of low-Mg2+-induced epileptiform activity in the intact hippocampus of the newborn mouse in vitro

To investigate whether epileptiform activity in the immature brain is modulated by dopamine, we examined the effects of dopaminergic agonists and antagonists in an intact in vitro preparation of the isolated corticohippocampal formation of immature (postnatal days 3 and 4) C57/Bl6 mice using field potential recordings from CA3. Epileptiform discharges were induced by a reduction of the extracellular Mg(2+) concentration to 0.2 mM. These experiments revealed that low concentrations of dopamine ( 3 μM dopamine enhanced epileptiform activity. The D1-agonist SKF38393 (10 μM) had a strong proconvulsive effect, and the D2-like agonist quinpirole (10 μM) mediated a weak anticonvulsive effect. The …

research product

Control of cortical neuronal migration by glutamate and GABA

Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist …

research product

Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS)…

research product

Haploinsufficiency of Tsc2 Leads to Hyperexcitability of Medial Prefrontal Cortex via Weakening of Tonic GABAB Receptor-mediated Inhibition.

Abstract Loss-of-function mutation in one of the tumor suppressor genes TSC1 or TSC2 is associated with several neurological and psychiatric diseases, including autism spectrum disorders (ASDs). As an imbalance between excitatory and inhibitory neurotransmission, E/I ratio is believed to contribute to the development of these disorders, we investigated synaptic transmission during the first postnatal month using the Tsc2+/− mouse model. Electrophysiological recordings were performed in acute brain slices of medial prefrontal cortex. E/I ratio at postnatal day (P) 15–19 is increased in Tsc2+/− mice as compared with wildtype (WT). At P25–30, facilitated GABAergic transmission reduces E/I rati…

research product

Gadd45α modulates aversive learning through post‐transcriptional regulation of memory‐related mRNA s

Abstract Learning is essential for survival and is controlled by complex molecular mechanisms including regulation of newly synthesized mRNAs that are required to modify synaptic functions. Despite the well‐known role of RNA‐binding proteins (RBPs) in mRNA functionality, their detailed regulation during memory consolidation is poorly understood. This study focuses on the brain function of the RBP Gadd45α (growth arrest and DNA damage‐inducible protein 45 alpha, encoded by the Gadd45a gene). Here, we find that hippocampal memory and long‐term potentiation are strongly impaired in Gadd45a‐deficient mice, a phenotype accompanied by reduced levels of memory‐related mRNAs. The majority of the Ga…

research product

Water maze performance, exploratory activity, inhibitory avoidance and hippocampal plasticity in aged superior and inferior learners

In 28- to 30-month-old rats, in vitro short-term and long-term potentiation (STP and LTP) were measured in area CA1 of the hippocampus in seven superior and seven inferior learners, that were selected from a pool of 40 rats based on water maze escape performance over a period of 9 days. The aim was to examine whether levels of STP and LTP could account for group differences in learning of water maze escape, spatial preference and wall (thigmotaxis)-avoidance and in short-term retention of an inhibitory avoidance task. There was no significant group difference in open-field exploration, i.e. the number of rearings. In contrast to expectation, the superior and inferior learners did not differ…

research product

Studying the Neurovascular Unit: An Improved Blood–Brain Barrier Model

The blood–brain barrier (BBB) closely interacts with the neuronal parenchyma in vivo. To replicate this interdependence in vitro, we established a murine coculture model composed of brain endothelial cell (BEC) monolayers with cortical organotypic slice cultures. The morphology of cell types, expression of tight junctions, formation of reactive oxygen species, caspase-3 activity in BECs, and alterations of electrical resistance under physiologic and pathophysiological conditions were investigated. This new BBB model allows the application of techniques such as laser scanning confocal microscopy, immunohistochemistry, fluorescent live cell imaging, and electrical cell substrate impedance se…

research product

Homeostatic interplay between electrical activity and neuronal apoptosis in the developing neocortex

An intriguing feature of nervous system development in most animal species is that the initial number of generated neurons is higher than the number of neurons incorporated into mature circuits. A substantial portion of neurons is indeed eliminated via apoptosis during a short time window - in rodents the first two postnatal weeks. While it is well established that neurotrophic factors play a central role in controlling neuronal survival and apoptosis in the peripheral nervous system (PNS), the situation is less clear in the central nervous system (CNS). In postnatal rodent neocortex, the peak of apoptosis coincides with the occurrence of spontaneous, synchronous activity patterns. In this …

research product

Can we understand human brain development from experimental studies in rodents?

Animal models are needed to gain an understanding of the genetic, molecular, cellular, and network mechanisms of human brain development. In rodents, a large spectrum of in vitro and in vivo approaches allows detailed analyses and specific experimental manipulations for studying the sequence of developmental steps in corticogenesis. Neurogenesis, neuronal migration, cellular differentiation, programmed cell death, synaptogenesis, and myelination are surprisingly similar in the rodent cortex and the human cortex. Spontaneous EEG activity in the pre- and early postnatal human cortex resembles the activity patterns recorded with intracortical multi-electrode arrays in newborn rodents. This ear…

research product

Optical release of caged glutamate for stimulation of neurons in the in vitro slice preparation

Optical stimulation techniques prove useful to map func- tional inputs in the in vitro brain slice preparation: Glutamate released by a focused beam of UV light induces action potentials, which can be detected in postsynaptic neurons. The direct activation effect is influenced by factors such as compound concentration, focus depth, light absorption in the tissue, and sensitivity of different neuronal do- mains. We analyze information derived from direct stimulation ex- periments in slices from rat barrel cortex and construct a computa- tional model of a layer V pyramidal neuron that reproduces the experimental findings. The model predictions concerning the influ- ence of focus depth on inpu…

research product

CoCoDat: a database system for organizing and selecting quantitative data on single neurons and neuronal microcircuitry.

We present a novel database system for organizing and selecting quantitative experimental data on single neurons and neuronal microcircuitry that has proven useful for reference-keeping, experimental planning and computational modelling. Building on our previous experience with large neuroscientific databases, the system takes into account the diversity and method-dependence of single cell and microcircuitry data and provides tools for entering and retrieving published data without a priori interpretation or summarizing. Data representation is based on the framework suggested by biophysical theory and enables flexible combinations of data on membrane conductances, ionic and synaptic current…

research product

Resonance properties of GABAergic interneurons in immature GAD67-GFP mouse neocortex.

Subthreshold resonance is a characteristic membrane property of different neuronal classes, is critically involved in the generation of network oscillations, and tunes the integration of synaptic inputs to particular frequency ranges. In order to investigate whether neocortical GABAergic interneurons show resonant behavior already during early postnatal development, we performed whole-cell patch-clamp recordings from visually identified interneurons in supragranular layers of parietal regions in coronal neocortical slices from postnatal day (P) P6-P13 GAD67-GFP knock-in mice. Subthreshold resonance was analyzed by injection of sinusoidal current with varying frequency. About 50% of the inve…

research product

Intact In Vitro Preparations of the Neonatal Rodent Cortex: Analysis of Cellular Properties and Network Activity

research product

Monitoring brain activity in preterms: mathematics helps to predict clinical outcome: Figure 1

research product

Intrinsic activation of GABAA receptors suppresses epileptiform activity in the cerebral cortex of immature mice

SUMMARY Purpose: Activation of ionotropic c-aminobutyric acid type A (GABAA) receptors induces in immature neocortical neurons a membrane depolarization that may contribute to the higher epilepsy susceptibility in newborns. To elucidate whether depolarizing GABAergic responses enhance or attenuate epileptiform activity in the immature neocortex, we investigated the effect of agonists, antagonists, and positive modulators of GABAA receptors on epileptiform activity. Methods: We performed in vitro field potential recordings on isolated whole neocortex preparations and whole cell recordings of identified pyramidal neurons in 400-lm slices of immature (postnatal day 1–7) mice. Epileptiform acti…

research product

Cajal–Retzius cells: Update on structural and functional properties of these mystic neurons that bridged the 20th century

Cajal-Retzius cells (CRc) represent a mostly transient neuronal cell type localized in the uppermost layer of the developing neocortex. The observation that CRc are a major source of the extracellular matrix protein reelin, which is essential for the laminar development of the cerebral cortex, attracted the interest in this unique cell type. In this review we will (i) describe the morphological and molecular properties of neocortical CRc, with a special emphasize on the question which markers can be used to identify CRc, (ii) summarize reports that identified the different developmental origins of CRc, (iii) discuss the fate of CRc, including recent evidence for apoptotic cell death and a p…

research product

Control of Programmed Cell Death by Distinct Electrical Activity Patterns

Electrical activity and sufficient supply with survival factors play a major role in the control of apoptosis in the developing cortex. Coherent high-frequency neuronal activity, which efficiently releases neurotrophins, is essential for the survival of immature neurons. We studied the influence of neuronal activity on apoptosis in the developing cortex. Dissociated cultures of the newborn mouse cerebral cortex were grown on multielectrode arrays to determine the activity patterns that promote neuronal survival. Cultures were transfected with a plasmid coding for a caspase-3-sensitive fluorescent protein allowing real-time analysis of caspase-3-dependent apoptosis in individual neurons. Ele…

research product

Effect of depolarizing GABAA-mediated membrane responses on excitability of Cajal-Retzius cells in the immature rat neocortex

In immature neurons activation of ionotropic GABA receptors induces depolarizing membrane responses due to a high intracellular Cl− concentration ([Cl−]i). However, it is difficult to draw conclusions about the functional consequences of subthreshold GABAergic depolarizations, since GABAergic membrane shunting and additional effects on voltage-dependent ion channels or action potential threshold must be considered. To systematically investigate factors that determine the GABAergic effect on neuronal excitability we performed whole cell patch-clamp recordings from Cajal-Retzius cells in immature rat neocortex, using [Cl−]i between 10 and 50 mM. The effect of focal GABA application was quant…

research product

Ryanodine receptor- and sodium-calcium exchanger-mediated spontaneous calcium activity in immature oligodendrocytes in cultures

Myelination in the central nervous system depends on interactions between axons and oligodendrocyte precursor cells (OPCs). Action potentials in an axon can be followed by release of biologically active substances, like glutamate, which can instruct OPCs to start myelination. Myelin Basic Protein (MBP) is an "executive molecule of myelin" required for the formation of compact myelin. As cells of the oligodendrocyte lineage (OLCs) are capable of producing MBP in pure oligodendrocyte cultures, i.e. without neurons, we investigated Ca2+ signaling in developing OLCs in cultures. We show that spontaneous Ca2+ transients (CTs) occur at very low frequency in both bipolar OPCs and mature oligodendr…

research product

Electrical activity controls area-specific expression of neuronal apoptosis in the mouse developing cerebral cortex

Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptos…

research product

Cell type specific impact of cannabinoid receptor signaling in somatosensory barrel map formation in mice

Endocannabinoids and their receptors are highly abundant in the developing cerebral cortex and play major roles in early developmental processes, for example, neuronal proliferation, migration, and axonal guidance as well as postnatal plasticity. To investigate the role of the cannabinoid type 1 receptor (CB1) in the formation of sensory maps in the cerebral cortex, the topographic representation of the whiskers in the primary somatosensory cortex (barrel field) of adult mice with different cell type specific genetic deletion of CB1 was studied. A constitutive absence of CB1 (CB1-KO) significantly decreased the total area of the somatosensory cortical map, affecting barrel, and septal areas…

research product

Subplate Cells: Amplifiers of Neuronal Activity in the Developing Cerebral Cortex

Due to their unique structural and functional properties, subplate cells are ideally suited to function as important amplifying units within the developing neocortical circuit. Subplate neurons have extensive dendritic and axonal ramifications and relatively mature functional properties, i.e. their action potential firing can exceed frequencies of 40 Hz. At earliest stages of corticogenesis subplate cells receive functional synaptic inputs from the thalamus and from other cortical and non-cortical sources. Glutamatergic and depolarizing GABAergic inputs arise from cortical neurons and neuromodulatory inputs arise from the basal forebrain and other sources. Activation of postsynaptic metabot…

research product

Kinetic Properties of Cl−Uptake Mediated by Na+-Dependent K+-2Cl−Cotransport in Immature Rat Neocortical Neurons

GABA, the main inhibitory neurotransmitter in the adult nervous system, evokes depolarizing membrane responses in immature neurons, which are crucial for the generation of early network activity. Although it is well accepted that depolarizing GABA actions are caused by an elevated intracellular Cl−concentration ([Cl−]i), the mechanisms of Cl−accumulation in immature neurons are still a matter of debate. Using patch-clamp, microfluorimetric, immunohistochemical, and molecular biological approaches, we studied the mechanism of Cl−uptake in Cajal-Retzius (CR) cells of immature [postnatal day 0 (P0) to P3] rat neocortex. Gramicidin-perforated patch-clamp and 6-methoxy-N-ethylquinolinium-microfl…

research product

Probabilistic graphical model identifies clusters of EEG patterns in recordings from neonates

Abstract Objectives In this paper we introduce a novel method for the evaluation of neonatal brain function via multivariate EEG (electroencephalography) signal processing and embedding into a probabilistic graph, the so called Chow-Liu tree. Methods Using 28 EEG recordings of preterm and term neonate infants the complex features of the EEG signals were constructed in the form of a Chow-Liu tree. The trees were embedded into a 3 dimensional Euclidean space. Clustering of specific EEG patterns was done by complete linkage algorithm. Results Our analytic tool was able to build clusters of patients with pathological EEG findings. In particular, we were able to make a visual proof on a 3d multi…

research product

Guiding the modeller: organizing and selecting experimental data for single cell models using the CoCoDat database

Collating, organizing and selecting quantitative experimental data are time-consuming tasks necessary for building and constraining biophysically realistic neuronal models. The CoCoDat (Collation of Cortical Data) database has been designed as an advanced environment for storing, organizing and retrieving detailed, uninterpreted quantitative data on morphology, electrophysiology and connectivity from the published literature according to neurophysiological concepts. All experimental data are linked to exact bibliographical references and detailed records of procedures used in the experiments that produced the data. We demonstrate the usefulness of CoCoDat for implementation of an example mo…

research product

Spontaneous Epileptic Manifestations in a DCX Knockdown Model of Human Double Cortex

Previous reports indicate that in utero knockdown of doublecortin (DCX) results in the genesis of a subcortical heterotopia reminiscent of the doublecortex observed in female patients with DCX mutations. It has also been shown that these rats display an increased susceptibility to convulsant agents and increased cortical neurons excitability; but it is presently unknown whether they display spontaneous seizures. Furthermore, the link between the size of heterotopia and the clinical manifestation remained to be elucidated. Using video--electrocorticogram recordings, we now report that DCX knockdown induces frequent spontaneous seizures commonly associated with myoclonic jerks in adult rats. …

research product

Decision letter: Activity-dependent death of transient Cajal-Retzius neurons is required for functional cortical wiring

research product

Contralateral increase in thigmotactic scanning following unilateral barrel-cortex lesion in mice.

Adult C57BL/6 mice received uni- or bilateral cryogenic or sham-lesions over the barrel field and their exploratory behaviour was assessed in an open field between 1 and 7 days post-lesion. Bilateral cortical lesions produced a short-lasting increase in thigmotactic scanning with both sides of the face on the first day of testing. Mice with a unilateral barrel-cortex lesion showed more contralateral wall scanning with a recovery to behavioural symmetry after 5-7 days. Furthermore, the increase in contralateral thigmotaxis was most pronounced in animals with damage to the left barrel field, indicative of a lateralization of the lesion-induced behavioural changes. The cortical lesions did not…

research product

Review of imaging network activities in developing rodent cerebral cortex in vivo

The combination of voltage-sensitive dye imaging (VSDI) with multielectrode array (MEA) recordings in the rodent cerebral cortex in vivo allows the simultaneous analysis of large-scale network interactions and electrophysiological single-unit recordings. Using this approach, distinct patterns of spontaneous and sensory-evoked activity can be recorded in the primary somatosensory (S1) and motor cortex (M1) of newborn rats. Already at the day of birth, gamma oscillations and spindle bursts in the barrel cortex synchronize the activity of a local columnar ensemble, thereby generating an early topographic representation of the sensory periphery. During the first postnatal week, both cortical ac…

research product

Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis.

Myelin basic protein (MBP) is a major component of central nervous system (CNS) myelin. The absence of MBP results in the loss of almost all compact myelin in the CNS. MBP mRNA is sorted into RNA granules that are transported to the periphery of oligodendrocytes in a translationally inactive state. A central mediator of this transport process is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 that binds to the cis-acting A2-response element in the 3′UTR of MBP mRNA. Recently, we found that activation of the Src family nonreceptor tyrosine kinase Fyn in oligodendrocytes leads to phosphorylation of hnRNP A2 and to increased translation of MBP mRNA. Here, we identify…

research product

Early developmental alterations of low-Mg2+ -induced epileptiform activity in the intact corticohippocampal formation of the newborn mouse in vitro.

Abstract The generation, propagation and pharmacological properties of low-Mg 2+ -induced epileptiform activity were examined in the intact corticohippocampal formation (CHF) of the newborn (P0–4) mouse in vitro. Multi-site field potential recordings in dentate gyrus (DG), CA3, CA1, entorhinal cortex (EC) and temporal cortex (TC) revealed in 0.2 mM Mg 2+ -containing ACSF a stable pattern of spontaneous epileptiform activity consisting of recurrent ictal-like events (ILEs) and interictal events (IEs). Although this activity could be consistently observed as early as P0, ILEs were smaller in amplitude, less frequent and showed a slower onset in P0–2 as compared to P3–4 animals. In all age gro…

research product

Rapid nucleus-scale reorganization of chromatin in neurons enables transcriptional adaptation for memory consolidation

AbstractThe interphase nucleus is functionally organized in active and repressed territories defining the transcriptional status of the cell. However, it remains poorly understood how the nuclear architecture of neurons adapts in response to behaviorally relevant stimuli that trigger fast alterations in gene expression patterns. Imaging of fluorescently tagged nucleosomes revealed that pharmacological manipulation of neuronal activity in vitro and auditory cued fear conditioning in vivo induce nucleus-scale restructuring of chromatin within minutes. Furthermore, the acquisition of auditory fear memory is impaired after infusion of a drug into auditory cortex which blocks chromatin reorganiz…

research product

BDNF-induced nitric oxide signals in cultured rat hippocampal neurons: time course, mechanism of generation, and effect on neurotrophin secretion

BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous ap…

research product

Long-Term Potentiation in the Neonatal Rat Barrel Cortex In Vivo

Long-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex, LTP has been studied only in vitro . We combined voltage-sensitive dye imaging with extracellular multielectrode recordings to study whisker stimulation-induced LTP in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo . Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats, with the strongest expression of LTP at P3–P5. The magnitude of LTP was largest in the activated barrel-related column, smaller in the surrounding septal region, and no LTP could b…

research product

Impaired calcium homeostasis in aged hippocampal neurons

Abstract Development of neurodegenerative diseases such as Alzheimer's and Parkinson's disease is strongly age-associated. The impairment of calcium homeostasis is considered to be a key pathological event leading to neuronal dysfunction and cell death. However, the exact impact of aging on calcium homeostasis in neurons remains largely unknown. In the present work we have investigated intracellular calcium levels in cultured primary hippocampal neurons from young (2 months) and aged (24 months) rat brains. Upon stimulation with glutamate or hydrogen peroxide aged neurons in comparison to young neurons demonstrated an increased vulnerability to these disease-related toxins. Measurement of c…

research product

A Neurovascular Blood–Brain Barrier In Vitro Model

The cerebral microvasculature possesses certain cellular features that constitute the blood-brain barrier (BBB) (Abbott et al., Neurobiol Dis 37:13-25, 2010). This dynamic barrier separates the brain parenchyma from peripheral blood flow and is of tremendous clinical importance: for example, BBB breakdown as in stroke is associated with the development of brain edema (Rosenberg and Yang, Neurosurg Focus 22:E4, 2007), inflammation (Kuhlmann et al., Neurosci Lett 449:168-172, 2009; Coisne and Engelhardt, Antioxid Redox Signal 15:1285-1303, 2011), and increased mortality. In vivo, the BBB consists of brain endothelial cells (BEC) that are embedded within a precisely regulated environment conta…

research product

Cajal–Retzius and subplate cells: transient cortical neurons and circuits with long-term impact

Abstract The laminar and columnar organization of the mature cerebral cortex is determined by a variety of early developmental processes. Two distinct populations of early generated neurons play important roles in corticogenesis. Cajal–Retzius neurons, located in the marginal zone (later layer 1), control the formation of neocortical layers by releasing the extracellular matrix protein reelin, which serves as a guiding signal for migrating neurons. Subplate neurons in the lower neocortical layer play an active role in axonal pathfinding of thalamocortical connections and in transient synaptic circuits, influence early cortical plasticity and the maturation of the columnar architecture. Both…

research product

Myelin Basic Protein synthesis is regulated by small non‐coding RNA 715

Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential for myelin formation in the central nervous system. During oligodendrocyte differentiation, MBP mRNA is kept in a translationally silenced state while intracellularly transported, until neuron-derived signals initiate localized MBP translation. Here we identify the small non-coding RNA 715 (sncRNA715) as an inhibitor of MBP translation. SncRNA715 localizes to cytoplasmic granular structures and associates with MBP mRNA transport granule components. We also detect increased levels of sncRNA715 in demyelinated chronic human multiple sclerosis lesions, which contain MBP mRNA but lack MBP protein.

research product

Oxygen and glucose deprivation induces major dysfunction in the somatosensory cortex of the newborn rat

The mechanisms and functional consequences of ischemia-induced injury during perinatal development are poorly understood. Subplate neurons (SPn) play a central role in early cortical development and a pathophysiological impairment of these neurons may have long-term detrimental effects on cortical function. The acute and long-term consequences of combined oxygen and glucose deprivation (OGD) were investigated in SPn and compared with OGD-induced dysfunction of immature layer V pyramidal cortical neurons (PCn) in somatosensory cortical slices from postnatal day (P)0-4 rats. OGD for 50 min followed by a 10-24-h period of normal oxygenation and glucose supply in vitro or in culture led to pron…

research product

Temporal refinement of sensory-evoked activity across layers in developing mouse barrel cortex.

Rhythmic whisking behavior in rodents fully develops during a critical period about 2 weeks after birth, in parallel with the maturation of other sensory modalities and the onset of exploratory locomotion. How whisker-related sensory processing develops during this period in the primary somatosensory cortex (S1) remains poorly understood. Here, we characterized neuronal activity evoked by single- or dual-whisker stimulation patterns in developing S1, before, during and after the occurrence of active whisking. Employing multi-electrode recordings in all layers of barrel cortex in urethane-anesthetized mice, we find layer-specific changes in multi-unit activity for principal and neighboring b…

research product

Polymer Complexes in Biological Applications

This chapter summarizes the influence of polyelectrolyte topology on biological functions and biomedical applications such as cell uptake, drug delivery, and gene transfection. Polyelectrolytes utilized are spherical structures derived from dendrimers and albumin or cylindrical brushes, all of which are decorated with various polypeptide chains.

research product

Fluvastatin stabilizes the blood–brain barrier in vitro by nitric oxide-dependent dephosphorylation of myosin light chains

Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme-A reductase and the downstream mevalonate pathway is in part responsible for the beneficial effects that statins exert on the cardiovascular system. In this study we aimed at analysing the stabilizing effects of fluvastatin on the blood-brain barrier (BBB) integrity, using an in vitro co-culture model of ECV304 and C6, or primary bovine endothelial cells and rat astrocytes. Fluvastatin dose-dependently (1-25 micromol/l) increased barrier integrity as analysed by measurements of transendothelial electrical resistance (TEER). This effect (117.4+/-2.6% at 25 micromol/l) was significantly reduced by the nitric oxide (NO) synthase inhibitor L…

research product

Mechanisms of C-reactive protein-induced blood-brain barrier disruption.

Background and Purpose— Increased mortality after stroke is associated with brain edema formation and high plasma levels of the acute phase reactant C-reactive protein (CRP). The aim of this study was to examine whether CRP directly affects blood–brain barrier stability and to analyze the underlying signaling pathways. Methods— We used a cell coculture model of the blood–brain barrier and the guinea pig isolated whole brain preparation. Results— We could show that CRP at clinically relevant concentrations (10 to 20 μg/mL) causes a disruption of the blood–brain barrier in both approaches. The results of our study further demonstrate CRP-induced activation of surface Fcγ receptors CD16/32 fo…

research product

Cell type-specific circuits of cortical layer IV spiny neurons

Sensory signal processing in cortical layer IV involves two major morphological classes of excitatory neurons: spiny stellate and pyramidal cells. It is essentially unknown how these two cell types are integrated into intracortical networks and whether they play different roles in cortical signal processing. We mapped their cell-specific intracortical afferents in rat somatosensory cortex through a combination of whole-cell patch-clamp recordings and caged glutamate photolysis. Spiny stellate cells received monosynaptic excitation and inhibition originating almost exclusively from neurons located within the same barrel. Pyramidal cells, by contrast, displayed additional excitatory inputs fr…

research product

Unraveling In vivo brain transport of protein‐coated fluorescent nanodiamonds

The blood–brain barrier is the biggest hurdle to overcome for the treatment of neurological disorders. Here, protein‐coated nanodiamonds are delivered to the brain and taken up by neurovascular unit cells after intravenous injection. Thus, for the first time, nanodiamonds with their unique properties and a flexible protein coating for the attachment of therapeutics emerge as a potential platform for nanotheranostics of neurological disorders.Nanotheranostics, combining diagnostics and therapy, has the potential to revolutionize treatment of neurological disorders. But one of the major obstacles for treating central nervous system diseases is the blood–brain barrier (BBB) preventing systemic…

research product

Cl−uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1

GABA is the principal inhibitory neurotransmitter in the mature brain, but during early postnatal development the elevated [Cl−]i in immature neocortical neurones causes GABAA receptor activation to be depolarizing. The molecular mechanisms underlying this intracellular Cl− accumulation remain controversial. Therefore, the GABA reversal potential (EGABA) or [Cl−]i in early postnatal rat neocortical neurones was measured by the gramicidin-perforated patch-clamp method, and the relative expression levels of the cation−Cl− cotransporter mRNAs (in the same cells) were examined by semiquantitative single-cell multiplex RT-PCR to look for statistical correlations with [Cl−]i. The mRNA expression …

research product

Optogenetic Modulation of a Minor Fraction of Parvalbumin-Positive Interneurons Specifically Affects Spatiotemporal Dynamics of Spontaneous and Sensory-Evoked Activity in Mouse Somatosensory Cortex in Vivo

Abstract Parvalbumin (PV) positive interneurons exert strong effects on the neocortical excitatory network, but it remains unclear how they impact the spatiotemporal dynamics of sensory processing in the somatosensory cortex. Here, we characterized the effects of optogenetic inhibition and activation of PV interneurons on spontaneous and sensory-evoked activity in mouse barrel cortex in vivo. Inhibiting PV interneurons led to a broad-spectrum power increase both in spontaneous and sensory-evoked activity. Whisker-evoked responses were significantly increased within 20 ms after stimulus onset during inhibition of PV interneurons, demonstrating high temporal precision of PV-shaped inhibition.…

research product

Intracellular ion signaling influences myelin basic protein synthesis in oligodendrocyte precursor cells

Myelination in the central nervous system depends on axon-oligodendrocyte precursor cell (OPC) interaction. We suggest that myelin synthesis may be influenced by [Na+]i and [Ca2+]i signaling in OPCs. Experiments were performed in mouse cultured OPCs at day in vitro (DIV) 2-6 or acute slices of the corpus callosum at postnatal days (P) 10-30. Synthesis of Myelin Basic Protein (MBP), an "executive molecule of myelin", was used as readout of myelination. Immunohistological data revealed that MBP synthesis in cultured OPCs starts around DIV4. Transient elevations of resting [Ca2+]i and [Na+]i levels were observed in the same temporal window (DIV4-5). At DIV4, but not at DIV2, both extracellular…

research product

Neuronal Activity Patterns in the Developing Barrel Cortex

International audience; The developing barrel cortex reveals a rich repertoire of neuronal activity patterns, which have been also found in other sensory neocortical areas and in other species including the somatosensory cortex of preterm human infants. The earliest stage is characterized by asyn-chronous, sparse single-cell firing at low frequencies. During the second stage neurons show correlated firing, which is initially mediated by electrical synapses and subsequently transforms into network bursts depending on chemical synapses. Activity patterns during this second stage are synchronous plateau assemblies, delta waves, spindle bursts and early gamma oscillations (EGOs). In newborn rod…

research product

Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons.

The impact of GABAergic transmission on neuronal excitability depends on the Cl--gradient across membranes. However, the Cl--fluxes through GABAA receptors alter the intracellular Cl- concentration ([Cl-]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl-]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. Th…

research product

Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.

Abstract Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous…

research product

Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures

We are pleased to note that our publication “Comparison of spike parameters from optically identified GABAergic and glutamatergic neurons in sparse cortical cultures” by Weir et al. (2015) raised some discussion on the feasibility of solely electrophysiological discrimination of distinct neuronal subpopulations in vitro. We agree with Becchetti and Wanke (2015) that their report and our study on the same question were conducted with different technical approaches and that this may explain the observed differences between both studies. Although we obviously recorded a reduced spontaneous neuronal activity under our sparse culture conditions, these conditions were necessary to enable the uneq…

research product

Layer-Specific Refinement of Sensory Coding in Developing Mouse Barrel Cortex

Rodent rhythmic whisking behavior matures during a critical period around 2 weeks after birth. The functional adaptations of neocortical circuitry during this developmental period remain poorly understood. Here, we characterized stimulus-evoked neuronal activity across all layers of mouse barrel cortex before, during, and after the onset of whisking behavior. Employing multi-electrode recordings and 2-photon calcium imaging in anesthetized mice, we tested responses to rostro-caudal whisker deflections, axial "tapping" stimuli, and their combination from postnatal day 10 (P10) to P28. Within this period, whisker-evoked activity of neurons displayed a general decrease in layer 2/3 (L2/3) and …

research product

Self-organization of repetitive spike patterns in developing neuronal networks in vitro

The appearance of spontaneous correlated activity is a fundamental feature of developing neuronal networks in vivo and in vitro. To elucidate whether the ontogeny of correlated activity is paralleled by the appearance of specific spike patterns we used a template-matching algorithm to detect repetitive spike patterns in multi-electrode array recordings from cultures of dissociated mouse neocortical neurons between 6 and 15 days in vitro (div). These experiments demonstrated that the number of spiking neurons increased significantly between 6 and 15 div, while a significantly synchronized network activity appeared at 9 div and became the main discharge pattern in the subsequent div. Repetiti…

research product

Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse.

The immature brain has a higher susceptibility to develop seizures, which often respond poorly to classical pharmacological treatment. It has been recently suggested that bumetanide, which blocks Na(+)-dependent K(+)-Cl(-)-cotransporter isoform 1 (NKCC1) and thus attenuates depolarizing GABAergic responses, could soothe epileptiform activity in immature nervous systems. To evaluate whether bumetanide consistently attenuates epileptiform activity, we investigated the effect of 10 microM bumetanide in five different in-vitro epilepsy models using field potential recordings in the CA3 region of intact mouse hippocampal preparations at postnatal day 4-7. Bumetanide reduced amplitude and frequen…

research product

MK801 blocks hypoxic blood-brain-barrier disruption and leukocyte adhesion.

The aim of the present study was to examine the signaling pathways of hypoxia followed by reoxygenation (H/R)-induced disruption of the blood-brain-barrier (BBB) in a co-culture of astrocytes and brain endothelial cells (BEC) in vitro. We analyzed the possible stabilizing effect of MK801, a highly selective N-methyl-d-aspartate receptor (NMDAR) antagonist, on BBB integrity. Levels of reactive oxygen species (ROS), glutamate (Glut) release and monocyte adhesion were measured under normoxia and H/R. BBB integrity was monitored measuring the trans-endothelial electrical resistance (TEER). TEER values dropped under H/R conditions which was abolished by MK801. Glut release from astrocytes, but n…

research product

MOBP levels are regulated by Fyn kinase and affect the morphological differentiation of oligodendrocytes.

Oligodendrocytes are the myelinating glial cells of the central nervous system (CNS). Myelin is formed by extensive wrapping of oligodendroglial processes around axonal segments which ultimately allows a rapid saltatory conduction of action potentials within the CNS and sustains neuronal health. The non-receptor tyrosine kinase Fyn is an important signaling molecule in oligodendrocytes. It controls the morphological differentiation of oligodendrocytes and is an integrator of axon-glial signaling cascades leading to localized synthesis of Myelin Basic Protein (MBP) which is essential for myelin formation. The abundant Myelin-Associated Oligodendrocytic Basic Protein (MOBP) resembles MBP in s…

research product

Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats.

In the developing cerebral cortex, the marginal zone (MZ), consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA) in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl(-)]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using …

research product

Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons

AbstractThe impact of GABAergic transmission on neuronal excitability depends on the Cl−-gradient across membranes. However, the Cl−-fluxes through GABAA receptors alter the intracellular Cl− concentration ([Cl−]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl−]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl− dynamics simulating either a simple ball-and-stick topology or a reconstructed immatu…

research product

Resonance properties of different neuronal populations in the immature mouse neocortex

In vivo recordings in the immature neocortex revealed spontaneous and sensory-driven oscillatory activity from delta (0.5-4 Hz) to gamma (30-100 Hz) frequencies. In order to investigate whether the resonance properties of distinct neuronal populations in the immature neocortex contribute to these network oscillations, we performed whole-cell patch-clamp recordings from visually identified neurons in tangential and coronal neocortical slices from postnatal day (P)0-P7 C57Bl/6 mice. Subthreshold resonance was analysed by sinusoidal current injection of varying frequency. All Cajal-Retzius cells showed subthreshold resonance, with an average frequency of 2.6 ± 0.1 Hz (n = 60), which was massiv…

research product

CRP-induced levels of oxidative stress are higher in brain than aortic endothelial cells

C-reactive protein (CRP) has been demonstrated to induce blood-brain barrier disruption (BBB) involving NAD(P)H-oxidase dependent oxidative stress. It is unclear why CRP affects the BBB and not other vascular beds following stroke. Therefore we examined CRP receptor and NAD(P)H-oxidase expression levels in bovine brain- (BEC) and aortic endothelial cells. Dichlorodihydrofluorescein measurements revealed significantly higher CRP-induced reactive oxygen species (ROS) levels in BEC. Protein expression of the CRP-receptors CD16, CD32 and of the NAD(P)H-oxidase subunit p22phox were also significantly higher in BEC. In conclusion BEC show a higher vulnerability to CRP due to increased levels of C…

research product

Autism Related Neuroligin-4 Knockout Impairs Intracortical Processing but not Sensory Inputs in Mouse Barrel Cortex

Neuroligin-4 (Nlgn4) is a cell adhesion protein that regulates synapse organization and function. Mutations in human NLGN4 are among the causes of autism spectrum disorders. In mouse, Nlgn4 knockout (KO) perturbs GABAergic synaptic transmission and oscillatory activity in hippocampus, and causes social interaction deficits. The complex profile of cellular and circuit changes that are caused by Nlgn4-KO is still only partly understood. Using Nlgn4-KO mice, we found that Nlgn4-KO increases the power in the alpha frequency band of spontaneous network activity in the barrel cortex under urethane anesthesia in vivo. Nlgn4-KO did not affect single-whisker-induced local field potentials, but suppr…

research product

Early GABAergic circuitry in the cerebral cortex.

In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual devel…

research product

Cellular Mechanisms of Subplate-Driven and Cholinergic Input-Dependent Network Activity in the Neonatal Rat Somatosensory Cortex

Early coordinated network activity promotes the development of cortical structures. Although these early activity patterns have been recently characterized with respect to their developmental, spatial and dynamic properties, the cellular mechanisms by which specific neuronal populations trigger coordinated activity in the neonatal cerebral cortex are still poorly understood. Here we characterize the cellular and molecular processes leading to generation of network activity during early postnatal development. We show that the somatosensory cortex of newborn rats expresses cholinergic-driven calcium transients which are synchronized within the deeply located subplate. Correspondingly, endogen…

research product

Plasticity-Related Gene 1 Affects Mouse Barrel Cortex Function via Strengthening of Glutamatergic Thalamocortical Transmission

Plasticity-related gene-1 (PRG-1) is a brain-specific protein that modulates glutamatergic synaptic transmission. Here we investigated the functional role of PRG-1 in adolescent and adult mouse barrel cortex both in vitro and in vivo. Compared with wild-type (WT) animals, PRG-1-deficient (KO) mice showed specific behavioral deficits in tests assessing sensorimotor integration and whisker-based sensory discrimination as shown in the beam balance/walking test and sandpaper tactile discrimination test, respectively. At P25-31, spontaneous network activity in the barrel cortex in vivo was higher in KO mice compared with WT littermates, but not at P16-19. At P16-19, sensory evoked cortical respo…

research product

α2 isoform of Na+,K+-ATPase via Na+,Ca2+ exchanger modulates myelin basic protein synthesis in oligodendrocyte lineage cells in vitro

Abstract Oligodendrocytes in the CNS myelinate neuronal axons, facilitating rapid propagation of action potentials. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination. In oligodendrocyte lineage cell (OLC) monocultures MBP synthesis starts at DIV4. Ouabain (10 nM), a Na+,K+-ATPase (NKA) blocker, stimulates MBP synthesis. As OLCs express the α2 isoform of NKA (α2-NKA) that has a high affinity for ouabain, we hypothesized that α2-NKA mediates this effect. Knockdown of α2-NKA with small interfering (si)RNA (α2-siRNA) significantly potentiated MBP synthesis at DIV4 and 5. This effect was completely blocked by KB-R7943 (1 μM), a Na+,C…

research product

Models of cortical malformation--Chemical and physical.

Abstract Pharmaco-resistant epilepsies, and also some neuropsychiatric disorders, are often associated with malformations in hippocampal and neocortical structures. The mechanisms leading to these cortical malformations causing an imbalance between the excitatory and inhibitory system are largely unknown. Animal models using chemical or physical manipulations reproduce different human pathologies by interfering with cell generation and neuronal migration. The model of in utero injection of methylazoxymethanol (MAM) acetate mimics periventricular nodular heterotopia. The freeze lesion model reproduces (poly)microgyria, focal heterotopia and schizencephaly. The in utero irradiation model caus…

research product

Modelling the spatial and temporal constrains of the GABAergic influence on neuronal excitability

GABA (γ-amino butyric acid) is an inhibitory neurotransmitter in the adult brain that can mediate depolarizing responses during development or after neuropathological insults. Under which conditions GABAergic membrane depolarizations are sufficient to impose excitatory effects is hard to predict, as shunting inhibition and GABAergic effects on spatiotemporal filtering of excitatory inputs must be considered. To evaluate at which reversal potential a net excitatory effect was imposed by GABA (EGABAThr), we performed a detailed in-silico study using simple neuronal topologies and distinct spatiotemporal relations between GABAergic and glutamatergic inputs. These simulations revealed for GABAe…

research product

Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!

International audience; During brain development, there is a progressive reduction of intracellular chloride associated with a shift in GABA polarity: GABA depolarizes and occasionally excites immature neurons, subsequently hyperpolarizing them at later stages of development. This sequence, which has been observed in a wide range of animal species, brain structures and preparations, is thought to play an important role in activity-dependent formation and modulation of functional circuits. This sequence has also been considerably reinforced recently with new data pointing to an evolutionary preserved rule. In a recent ``Hypothesis and Theory Article,'' the excitatory action of GABA in early …

research product

Taurine potentiates the anticonvulsive effect of the GABAAagonist muscimol and pentobarbital in the immature mouse hippocampus

Objective The high incidence of epileptic seizures in neonates and their frequent refractoriness to pharmacologic therapies require identification of new therapeutical options. Therefore, we investigated whether the modulatory effect of taurine on γ-aminobutyric acid (GABA)A receptors can enhance the anticonvulsive potential of the GABAA receptor agonist muscimol and of the barbiturate pentobarbital. Methods We performed field potential recordings in in toto hippocampus preparations of immature (postnatal days 4-7) C57Bl/6 mouse pups. Spontaneous epileptiform activity was induced by the continuous presence of the potassium channel blocker 4-aminopyridine and the glycinergic antagonist stryc…

research product

Cellular physiology of the neonatal rat cerebral cortex.

The early development of the cerebral cortex is characterized by neurogenesis, neuronal migration, cellular differentiation and programmed cell death. Cajal-Retzius cells, developing cortical plate neurons and subplate cells form a transient synaptic circuit which may serve as a template for the formation of cortical layers and columns. These three neuronal cell types show distinct electrophysiological properties and synaptic inputs. Endogenous or exogenous harmful disturbances during this developmental period may lead to the preservation of early cortical circuits, which may act as trigger zones for the initiation of pathophysiological activity.

research product

A novel miniature telemetric system for recording EEG activity in freely moving rats

Telemetric recording systems offer the advantage to monitor physiological parameters in freely moving animals without any restrictions in their explorative behaviour. We present a novel, inexpensive, portable and reusable telemetric system to record the electroencephalogram (EEG) from adult freely moving rats under various experimental conditions. Our system consists of an implantable transmitter which communicates at a sampling rate of 500 Hz bi-directional with a receiver via radio transmission (in EU: 868.35 MHz; in USA: 916.5 MHz) over a distance of up to 3 m. The switching time between receiving and transmitting signals is 20s and the data transmission rate amounts to 115.2 kbps. The r…

research product

Homogenous glycine receptor expression in cortical plate neurons and cajal-retzius cells of neonatal rat cerebral cortex

Glycinergic membrane responses have been described in cortical plate neurons (CPn) and Cajal-Retzius cells (CRc) during early neocortical development. In order to elucidate the functional properties and molecular identity of glycine receptors in these two neuronal cell types, we performed whole-cell patch-clamp recordings and subsequent single-cell multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analyses on visually identified neurons in tangential and coronal slices as well as in situ hybridizations of coronal slices from neonatal rat cerebral cortex (postnatal days 0-4). In both CPn and CRc the glycinergic agonists glycine, beta-alanine and taurine induced inward curren…

research product

Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury.

The role of the endothelial contractile apparatus in the process of brain edema formation after brain trauma is not characterized. Phosphorylation of myosin light chains by myosin light chain kinases (MLCK) activates endothelial contractile elements and results in a rearrangement of the cytoskeleton. This may enhance post-traumatic blood-brain barrier dysfunction. In order to investigate the role of the MLCK on brain edema formation and blood-brain barrier permeability after brain injury, mice were anesthetized and subjected to a controlled cortical impact (CCI). MLCK expression is significantly up-regulated after CCI with a maximum 12 h post-injury. Specific inhibition of MLCK by ML-7 resu…

research product

Electrical activity patterns and the functional maturation of the neocortex

At the earliest developmental stages, sensory neocortical areas in various species reveal distinct patterns of spontaneous neuronal network activity. These activity patterns either propagate over large neocortical areas or synchronize local neuronal ensembles. In vitro and in vivo experiments indicate that these spontaneous activity patterns are generated from neuronal networks in the cerebral cortex, in subcortical structures or in the sensory periphery (retina, cochlea, whiskers). At early stages spontaneous periphery-driven and also sensory evoked activity is relayed to the developing cerebral cortex via the thalamus and the neocortical subplate, which amplifies the afferent sensory inpu…

research product

Malformations of Cortical Development and Neocortical Focus

Abstract Developmental neocortical malformations resulting from abnormal neurogenesis, disturbances in programmed cell death, or neuronal migration disorders may cause a long-term hyperexcitability. Early generated Cajal–Retzius and subplate neurons play important roles in transient cortical circuits, and structural/functional disorders in early cortical development may induce persistent network disturbances and epileptic disorders. In particular, depolarizing GABAergic responses are important for the regulation of neurodevelopmental events, like neurogenesis or migration, while pathophysiological alterations in chloride homeostasis may cause epileptic activity. Although modern imaging tech…

research product

Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP

Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/ mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1 +/ mice, which are animal correlates of human PRG-1 +/mut carriers, showed an altered cortical networ…

research product

A critical role for VEGF and VEGFR2 in NMDA receptor synaptic function and fear-related behavior

Vascular endothelial growth factor (VEGF) is known to be required for the action of antidepressant therapies but its impact on brain synaptic function is poorly characterized. Using a combination of electrophysiological, single-molecule imaging and conditional transgenic approaches, we identified the molecular basis of the VEGF effect on synaptic transmission and plasticity. VEGF increases the postsynaptic responses mediated by the N-methyl-D-aspartate type of glutamate receptors (GluNRs) in hippocampal neurons. This is concurrent with the formation of new synapses and with the synaptic recruitment of GluNR expressing the GluN2B subunit (GluNR-2B). VEGF induces a rapid redistribution of Glu…

research product

The expression mechanism of the residual LTP in the CA1 region of BDNF k.o. mice is insensitive to NO synthase inhibition

Abstract BDNF and nitric oxide signaling both contribute to long-term potentiation (LTP) at glutamatergic synapses, but to date, few studies analyzed the interaction of both signaling cascades in the same synaptic pathway. Here we addressed the question whether the residual LTP in the CA1 region of hippocampal slices from heterozygous BDNF knockout mice (BDNF +/− ) is dependent on nitric oxide (NO) signaling. Extracellular recording of synaptic field potentials elicited by presynaptic Schaffer collateral stimulation was performed in the CA1 region of hippocampal slices of 4- to 6-week-old mice, and LTP was induced by a theta burst stimulation protocol. Application of the nitric oxide inhibi…

research product

Brain Delivery of Multifunctional Dendrimer Protein Bioconjugates

Abstract Neurological disorders are undoubtedly among the most alarming diseases humans might face. In treatment of neurological disorders, the blood‐brain barrier (BBB) is a challenging obstacle preventing drug penetration into the brain. Advances in dendrimer chemistry for central nervous system (CNS) treatments are presented here. A poly(amido)amine (PAMAM) dendrimer bioconjugate with a streptavidin adapter for the attachment of dendrons or any biotinylated drug is constructed. In vitro studies on porcine or murine models and in vivo mouse studies are performed and reveal the permeation of dendronized streptavidin (DSA) into the CNS. The bioconjugate is taken up mainly by the caveolae pa…

research product

GABA transporters control GABAergic neurotransmission in the mouse subplate.

The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited b…

research product

Functional nicotinic acetylcholine receptors on subplate neurons in neonatal rat somatosensory cortex.

The establishment of cortical synaptic circuits during early development requires the presence of subplate neurons (SPn's), a heterogeneous population of neurons capable to integrate and process synaptic information from the thalamus, cortical plate, and neighboring SPn's. An accumulation of cholinergic afferents and nicotinic acetylcholine receptors (nAChRs) has been documentated in the subplate around birth. To assess the developmental role of the cholinergic innervation onto SPn's, we used whole cell patch-clamp recordings of visually identified and biocytin-labeled SPn's in neonatal rat somatosensory cortex. Functional nAChRs were present in 92% of the investigated SPn's. Activation of…

research product

Glycine Receptors Mediate Excitation of Subplate Neurons in Neonatal Rat Cerebral Cortex

The development of the cerebral cortex depends on genetic factors and early electrical activity patterns that form immature neuronal networks. Subplate neurons (SPn) are involved in the construction of thalamocortical innervation, generation of oscillatory network activity, and in the proper formation of the cortical columnar architecture. Because glycine receptors play an important role during early corticogenesis, we analyzed the functional consequences of glycine receptor activation in visually identified SPn in neocortical slices from postnatal day 0 (P0) to P4 rats using whole cell and perforated patch-clamp recordings. In all SPn the glycinergic agonists glycine, β-alanine, and taurin…

research product

Development of the whisker-to-barrel cortex system.

This review provides an overview on the development of the rodent whisker-to-barrel cortex system from late embryonic stage to the end of the first postnatal month. During this period the system shows a remarkable transition from a mostly genetic-molecular driven generation of crude connectivity, providing the template for activity-dependent structural and functional maturation and plasticity, to the manifestation of a complex behavioral repertoire including social interactions. Spontaneous and sensory-evoked activity is present in neonatal barrel cortex and control the generation of the cortical architecture. Half a century after its first description by Woolsey and van der Loos the whiske…

research product

A comment on “The growth of cognition: Free energy minimization and the embryogenesis of cortical computation”

research product

Barrel Cortex Function Special Issue Editorial

research product

Thalamic Network Oscillations Synchronize Ontogenetic Columns in the Newborn Rat Barrel Cortex

Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma b…

research product

Optogenetically Controlled Activity Pattern Determines Survival Rate of Developing Neocortical Neurons

A substantial proportion of neurons undergoes programmed cell death (apoptosis) during early development. This process is attenuated by increased levels of neuronal activity and enhanced by suppression of activity. To uncover whether the mere level of activity or also the temporal structure of electrical activity affects neuronal death rates, we optogenetically controlled spontaneous activity of synaptically-isolated neurons in developing cortical cultures. Our results demonstrate that action potential firing of primary cortical neurons promotes neuronal survival throughout development. Chronic patterned optogenetic stimulation allowed to effectively modulate the firing pattern of single ne…

research product

NKCC1-Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal-Retzius Cells.

During early development, a substantial proportion of central neurons undergoes programmed cell death. This activity-dependent process is essential for the proper structural and functional development of the brain. To uncover cell type-specific differences in the regulation of neuronal survival versus apoptosis, we studied activity-regulated cell death in Cajal-Retzius neurons (CRNs) and the overall neuronal population in the developing mouse cerebral cortex. CRNs in the upper neocortical layer represent an early-born neuronal population, which is important for cortical development and largely disappears by apoptosis during neonatal stages. In contrast to the overall neuronal population, ac…

research product

Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation.

Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell–cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen–glucose deprivation, a model of cerebral ischaemia. We show the transfer from…

research product

Pathology-selective antiepileptic effects in the focal freeze-lesion rat model of malformation of cortical development

Malformations of cortical development (MCD) represent a group of rare diseases with severe clinical presentation as epileptic and pharmacoresistant encephalopathies. Morphological studies in tissue from MCD patients have revealed reduced GABAergic efficacy and increased intracellular chloride concentration in neuronal cells as important pathophysiological mechanisms in MCD. Also, in various animal models, alterations of GABAergic inhibition have been postulated as a predominant factor contributing to perilesional hyperexcitability. Along with this line, the NKCC1 inhibitor bumetanide has been postulated as a potential drug for treatment of epilepsy, mediating its antiepileptic effect by red…

research product

An Alternative Pathway of Imiquimod-Induced Psoriasis-Like Skin Inflammation in the Absence of Interleukin-17 Receptor A Signaling

Topical application of imiquimod (IMQ) on the skin of mice induces inflammation with common features found in psoriatic skin. Recently, it was postulated that IL-17 has an important role both in psoriasis and in the IMQ model. To further investigate the impact of IL-17RA signaling in psoriasis, we generated IL-17 receptor A (IL-17RA)-deficient mice (IL-17RA(del)) and challenged these mice with IMQ. Interestingly, the disease was only partially reduced and delayed but not abolished when compared with controls. In the absence of IL-17RA, we found persisting signs of inflammation such as neutrophil and macrophage infiltration within the skin. Surprisingly, already in the naive state, the skin …

research product

Three Patterns of Oscillatory Activity Differentially Synchronize Developing Neocortical Networks In Vivo

Coordinated patterns of electrical activity are important for the early development of sensory systems. The spatiotemporal dynamics of these early activity patterns and the role of the peripheral sensory input for their generation are essentially unknown. We performed extracellular multielectrode recordings in the somatosensory cortex of postnatal day 0 to 7 rats in vivo and observed three distinct patterns of synchronized oscillatory activity. (1) Spontaneous and periphery-driven spindle bursts of 1-2 s in duration and approximately 10 Hz in frequency occurred approximately every 10 s. (2) Spontaneous and sensory-driven gamma oscillations of 150-300 ms duration and 30-40 Hz in frequency oc…

research product

Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.

Self-generated neuronal activity originating from subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neural activity patterns and role of primary motor cortex (M1) in these early movements are still unknown. Combining voltage-sensitive dye imaging (VSDI) with simultaneous extracellular multielectrode recordings in postnatal day 3 (P3)-P5 rat primary somatosensory cortex (S1) and M1 in vivo, we observed that tactile forepaw stimulation induced spindle bursts in S1 and gamma and spindle bursts in M1. Approximately 40% of the spontaneous gamma and spindle bursts in M1 were driven by early motor activity, whereas …

research product

Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex

We used a 60-channel microelectrode array to study in thick (600-1000 microm) somatosensory cortical slices from postnatal day (P)0-P3 mice the spatio-temporal properties of early network oscillations. We recorded local non-propagating as well as large-scale propagating spontaneous oscillatory activity. Both types of activity patterns could never be observed in neocortical slices of conventional thickness (400 microm). Local non-propagating spontaneous oscillations with an average peak frequency of 15.6 Hz, duration of 1.7 s and maximal amplitude of 66.8 microV were highly synchronized in a network of approximately 200 microm in diameter. Spontaneous oscillations of lower frequency (10.4 Hz…

research product

Carbachol-induced network oscillations in the intact cerebral cortex of the newborn rat.

In mature cortex, activation of the cholinergic system induces oscillatory network activity and facilitates synaptic plasticity. We used an in vitro preparation of the intact cerebral cortex and cortical slices of the neonatal rat to study carbachol (CCh, >or=30 micro M)-induced network oscillations during the early postnatal period. Multi-site extracellular recordings revealed CCh-induced transient beta oscillations with an average duration of 4.6 +/- 0.2 s, amplitude of 123 +/- 7.4 microV and frequency of 17.7 +/- 0.5 Hz. These oscillations propagated uniformly at 0.5-1.5 mm/s over the cortex and were reversibly blocked by tetrodotoxin (TTX) and atropine, indicating that they depended on …

research product