0000000000015263
AUTHOR
Isabel M. Müller
Cloning of Hsp70 genes from the marine sponges Sycon raphanus (Calcarea) and Rhabdocalyptus dawsoni (Hexactinellida). An approach to solve the phylogeny of sponges
The phylogenetic relationships among the three classes of the Porifera—Demospongiae, Calcarea and Hexactinellida—are still unresolved, despite the use of molecular analyses of rRNA. To determine whether phylogenetic resolution of these classes is possible based on genes coding for specific proteins, in the present study the genes for the 70 kDa heat shock protein [Hsp70] were isolated fromRhabdocalyptus dawsoni[Hexactinellida] and fromSycon raphanus[Calcarea], and compared to that previously isolated from the demospongeGeodia cydonium. The gene fromR. dawsoniis 2021 bp long and encodes a predicted Hsp70 of Mr77,697; the protein comprises the characteristic sites of eukaryotic, cytoplasmic H…
Contribution of sponge genes to unravel the genome of the hypothetical ancestor of Metazoa (Urmetazoa)
Recently the term Urmetazoa, as the hypothetical metazoan ancestor, was introduced to highlight the finding that all metazoan phyla including the Porifera (sponges) are derived from one common ancestor. Sponges as the evolutionarily oldest, still extant phylum, are provided with a complex network of structural and functional molecules. Analyses of sponge genomes from Demospongiae (Suberites domuncula and Geodia cydonium), Calcarea (Sycon raphanus) and Hexactinellida (Aphrocallistes vastus) have contributed also to the reconstruction of the evolutionary position of Metazoa with respect to Fungi. Furthermore, these analyses have provided evidence that the characteristic evolutionary novelties…
Identification and Expression of the SOS Response, aidB-Like, Gene in the Marine Sponge Geodia cydonium: Implication for the Phylogenetic Relationships of Metazoan Acyl-CoA Dehydrogenases and Acyl-CoA Oxidases
Sponges (Porifera) are the phylogenetically oldest metazoan organisms. From one member of the siliceous sponges, Geodia cydonium, the cDNA encoding a putative SOS protein, the AidB-like protein of the Ada system from bacteria, was isolated and characterized. The cDNA, GCaidB, comprises an open reading frame of 446 amino acid (aa) residues encoding a polypeptide with a calculated Mr of 49,335. This molecule shows high similarity to the bacterial AidB proteins from Mycobacterium tuberculosis and Escherichia coli and somewhat lower similarities to acyl-CoA dehydrogenases (ADHs) and acyl-CoA oxidases (AOXs). Northern blot analysis confirmed the presence of the complete transcript. The deduced s…
Cloning of Sponge (Geodia cydonium) and Tunicate (Botryllus schlosseri) Proteasome Subunit Epsilon (PRCE): Implications about the Vertebrate MHC-Encoded Homologue LMP7 (PRCC)
Proteasomes are large protein complexes that play a major role in selective degradation of intracellular proteins. Eukaryotes feature seven different alpha and beta subunits. Two of the vertebrate housekeeping beta-subunits have MHC-encoded homologues that can substitute for the housekeeping counterparts upon interferon-gamma induction. In the present study we report the cloning of invertebrate beta-subunit proteasome epsilon (PRCE), from the marine sponge Geodia cydonium and from the colonial tunicate Botryllus schlosseri. Sequence comparisons revealed that the sponge and tunicate proteins are strikingly similar to vertebrate and yeast PRCEs and their MHC-linked counterparts the PRCCs (als…
Aggregation of sponge cells. Isolation and characterization of an inhibitor of aggregation receptor from the cell surface.
From the cell membranes of the sponge Geodia cydonium a component was isolated and purified which inhibits the aggregation factor isolated from the same source; the component was termed anti-aggregation receptor. This molecule was characterized as a glycoprotein (54% neutral carbohydrate) and its molecular weight is in the range of 180,000 One biological site of the anti-aggregation receptor was determined to be D-galactose. Indirect evidence presented seems to indicate that this molecule is present in an active form in aggregation-deficient cells and absent in aggregation-susceptible cells.
Potential multidrug resistance genePOHL: An ecologically relevant indicator in marine sponges
Sponges are sessile filter feeders found in all aquatic habitats from the tropics to the arctic. Against potential environmental hazards, they are provided with efficient defense systems, e.g., protecting chaperones and/or the P-170/multidrug resistance pump system. Here we report on a further multidrug resistance pathway that is related to the pad one homologue (POH1) mechanism recently identified in humans. It is suggested that proteolysis is involved in the inactivation of xenobiotics by the POH1 system. Two cDNAs were cloned, one from the demosponge Geodia cydoniumand a second from the hexactinellid sponge Aphrocallistes vastus. The cDNA from G. cydonium, termed GCPOHL, encodes a deduce…
Molecular evolution of the metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium.
One crucial event during evolution to multicellularity was the development of either direct cell–cell contact or indirect interaction via extracellular matrix (ECM) molecules. The identification of those polypeptides provides conclusive data on the phylogenetic relationship of metazoan phyla and helps us to understand the position of the Metazoa among the other kingdoms. Recently it became evident that the ECM of sponges is amazingly complex; it is composed of fibrous molecules, e.g., collagen, and their corresponding receptors, which are highly similar to those existing in other metazoan phyla. While these data already support the view of monophyly of Metazoa, additional studies are requir…
Expression of the human XPB/ERCC-3 excision repair gene-homolog in the sponge Geodia cydonium after exposure to ultraviolet radiation.
Abstract The marine demosponge Geodia cydonium encodes a gene, termed GCXPB , which displays 62% identity to the human XPB/ERCC-3 gene that specifically corrects the repair defect in xeroderma pigmentosum and in Cockayne's syndrome. The cDNA was isolated and characterized the deduced aa sequence, XPB_GEOCY, with the calculated size of 91,541 Da comprises the characteristic domains found in the related helicases. Phylogenetic tree analysis revealed that the sponge sequence is grouped to the metazoan related XPB/ERCC-3 polypeptides. Northern Blot analyses have been performed with sponge samples collected at different depths, thus exposed to different intensities of UV sunlight in the field. T…
Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes).
The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly …
Promoter and exon–intron structure of the protein kinase C gene from the marine sponge Geodia cydonium: evolutionary considerations and promoter activity
Abstract We report the gene structure of a key signaling molecule from a marine sponge, Geodia cydonium. The selected gene, which codes for a classical protein kinase C (cPKC), comprises 13 exons and 12 introns; the introns are, in contrast to those found in cPKC from higher Metazoa, small in size ranging from 93 nt to 359 nt. The complete gene has a length of 4229 nt and contains exons which encode the characteristic putative regulatory and catalytic domains of metazoan cPKCs. While in the regulatory domain only one intron is in phase 0, in the catalytic domain most introns are phase 0 introns, suggesting that the latter only rarely undergo module duplication. The 5′-flanking sequence of t…
Species-specific aggregation factor in sponges : VIII. Nature and alteration of cell surface charge.
Isolated cells from the siliceous spongeGeodia cydonium have been studied with respect to their partition behaviour in a two-phase aqueous polymer system. With this method it is possible to determine subtle changes in the cell surface charge. Addition of a homologous aggregation factor to the isolated cells lowers the partition rate, a finding which indicates that after binding of the aggregation factor to the cells their surface charge is reduced. The partition rate of the cells is strongly correlated with their content of membranebound sialic acid. Sixty-nine percent of the total, membrane-bound hexuronic acid is associated with the aggregation receptor; 1.8×107 aggregation receptor molec…
Characterization and phylogenetic analysis of a cDNA encoding the Fes/FER related, non-receptor protein-tyrosine kinase in the marine sponge Sycon raphanus
Abstract In search of ancient versions of phylogenetically conserved genes/proteins, which are typical for multicellular animals, we have decided to analyse marine sponges (Porifera), the most ancient and most primitive metazoan organisms. We report here the complete nucleotide sequence of Sycon raphanus cDNA coding for a 879 aa long protein (100 kDa), which displays high overall similarity in primary structure and organization of domains with non-receptor tyrosine kinases (TKs) from the Fes/FER family. The encoded protein, which we named Fes/FER_SR, has a highly conserved, 260 aa long tyrosine kinase domain at the C-terminus. Amino-terminal to the catalytic domain is an 85 aa long SH2 doma…
Origin of metazoan stem cell system in sponges: first approach to establish the model (Suberites domuncula).
Abstract It is established that Porifera (sponges) represent the earliest phylum which branched off from the common ancestor of all multicellular animals, the Urmetazoa. In the present study, the hypothesis is tested if, during this transition, pluripotent stem cells were formed which are provided—similar to the totipotent cells (archaeocytes/germ cells)—with a self-renewal capacity. As a model system, primmorphs from the sponge Suberites domuncula were used. These 3D-cell aggregates were cultivated in medium (RPMI 1640/seawater) either lacking silicate and ferric iron or in medium which was supplemented with these ‘morphogenetic’ factors. As molecular markers for the potential existence of…
Synthesis of the neurotoxin quinolinic acid in apoptotic tissue from Suberites domuncula: cell biological, molecular biological and chemical analyses
Sessile marine animals, such as sponges, are prone to infection by prokaryotic as well as by eukaryotic attacking organisms. In the present study we document for the first time that in tissue from sponges which underwent apoptosis, a toxic compound is produced which very likely controls the elimination of the dying tissue. The marine sponge Suberites domuncula develops in the field occasionally apoptotic tissue areas which are rapidly eliminated. In the present study apoptosis was induced in S. domuncula by exposing the specimens in aquaria to 5 µg/ml Dip or by maintaining the sponges for 3 - 5 days under non-aeration conditions. After that treatment only one eukaryotic epibiont, the mollus…
Putative multiadhesive protein from the marine spongeGeodia cydonium: Cloning of the cDNA encoding a fibronectin-, an SRCR-, and a complement control protein module†
Sponges (Porifera) representing the simplest metazoan phylum so far have been thought to possess no basal lamina tissue structures. One major extracellular matrix protein that is also a constitutive glycoprotein of the basal lamina is fibronectin. It was the aim of the present study to identify the native protein from the marine sponge Geodia cydonium and to isolate the corresponding cDNA. In crude extracts from this sponge protein(s) of Mr of Ý230 and Ý210 kDa could be visualized by Western blotting using an anti-fibronectin [human] antibody. By PCR cloning from a cDNA library of G. cydonium we isolated a cDNA comprising one element of fibronectin, the type-III (FN3) module. The cDNA (2.3 …
Origin of the Metazoan Immune System: Identification of the Molecules and Their Functions in Sponges
SYNOPSIS. During the evolutionary transition to Metazoa, cell-cell- as well as cell-matrix recognition molecules have been formed, which made a further step in evolution possible, the establishment of an immune system. Sponges [Porifera] represent the oldest still extant metazoan phylum and consequently testify to major features of the common metazoan ancestor, the Urmetazoa. Most studies with respect to evolution and phylogeny in sponges have been performed with the marine demosponges Suberites domuncula and Geodia cydonium. These animals possess effective defense systems against microbes and parasites which involve engulfment of bacteria into specific cells, but also signal transduction p…
Early evolution of metazoan serine/threonine and tyrosine kinases: identification of selected kinases in marine sponges.
The phylum Porifera (sponges) was the first to diverge from the common ancestor of the Metazoa. In this study, six cDNAs coding for protein-serine/threonine kinases (PS/TKs) are presented; they have been isolated from libraries obtained from the demosponges Geodia cydonium and Suberites domuncula and from the calcareous sponge Sycon raphanus. Sequence alignments of the catalytic domains revealed that two major families of PS/TK, the "conventional" (Ca(2+)-dependent) protein kinase C (PKC), the cPKC subfamily, as well as the "novel" (Ca(2+)-independent) PKC (nPKC), form two separate clusters. In each cluster, the sequence from S. raphanus diverges first. To approach the question about the or…
Bauplan of Urmetazoa: Basis for Genetic Complexity of Metazoa
Sponges were first grouped to the animal-plants or plant-animals then to the Zoophyta or Mesozoa and finally to the Parazoa. Only after the application of molecular biological techniques was it possible to place the Porifera monophyletically with the other metazoan phyla, justifying a unification of all multicellular animals to only one kingdom, the Metazoa. The first strong support came from the discovery that cell-cell and cell-matrix adhesion molecules that were cloned from sponges and were subsequently expressed share a high DNA sequence and protein function similarity with the corresponding molecules of other metazoans. Besides these evolutionary novelties for Metazoa, sponges also hav…
Expression of one sponge Iroquois homeobox gene in primmorphs from Suberites domuncula during canal formation
SUMMARY Sponges (Porifera) represent the evolutionary oldest multicellular animals. They are provided with the basic molecules involved in cell–cell and cell–matrix interactions. We report here the isolation and characterization of a complementary DNA from the sponge Suberites domuncula coding for the sponge homeobox gene, SUBDOIRX-a. The deduced polypeptide with a predicted Mr of 44,375 possesses the highly conserved Iroquois-homeodomain. We applied in situ hybridization to localize Iroquois in the sponge. The expression of this gene is highest in cells adjacent to the canals of the sponge in the medulla region. To study the expression of Iroquois during development, the in vitro primmorph…
Species-Specific Aggregation Factor in Sponges
An aggregation receptor (AR) from the siliceous sponge Suberites domuncula has been isolated and purified by chromatography to about 55% purity. The AR consists primarily of neutral carbohydrate and is characterized by a buoyant density of 1.59 g/ml and by an apparent molecular weight of 42,500. The average density of the AR on Suberite cells is about 3.8 × 10 5 per μm 2 . The AR contains considerable amounts of hexuronic acid. The isolated AR can bind not only to receptor-depleted Suberites cells but also to receptor depleted cells from another siliceous species (Geodia cydontum) . After being charged with Suberites ARs, Geodia cells form aggregates in the presence of the species-specific …
Expression of silicatein in spicules from the Baikalian sponge
Lake Baikal harbors the largest diversity of sponge species [phylum Porifera] among all freshwater biotopes. The abundantly occurring species Lubomirskia baicalensis was used to study the seasonal silicatein metabolism; the spicules of this species have an unusually thick axial filament, consisting of silicatein, which remains constant in diameter during their growth. In the course of maturation, the size of the silicic acid shell grows, until the final diameter of the spicules of about 8 microm is reached. The seasonal content of silicatein was assessed by use of antibodies raised against silicatein; they stained specifically the axial filaments. In addition we determined, by application o…
Species-Specific Aggregation Factor In Sponges.
In dissociated single cells from the sponge Geodia cydonium, DNA synthesis is initiated after incubation with a homologous, soluble aggregation factor. During the DNA-initiation phase the cyclic AMP- and cyclic GMP levels vary drastically; the cyclic AMP content drops from 2.2 pmol/10(6) cells to 0.3 pmol/10(6) cells while the cyclic GMP content increases from 0.6 pmol to 3.7 pmol/10(6) cells. The activity of neither the adenylate cyclase nor of the guanylate cyclase isolated from cells which have been incubated for different periods of time with the aggregation factor, is changed. The soluble as well as the particulate enzyme activities were checked in vitro. The cyclic nucleotide receptor…
The mitogen-activated protein kinase p38 pathway is conserved in metazoans: Cloning and activation of p38 of the SAPK2 subfamily from the sponge Suberites domuncula*
Our recent data suggest that during auto- and allograft recognition in sponges (Porifera), cytokines are differentially expressed. Since the mitogen-activated protein kinase (MAPK) signal transduction modulates the synthesis and release of cytokines, we intended to identify one key molecule of this pathway. Therefore, a cDNA from the marine sponge Suberites domuncula encoding the MAPK was isolated and analyzed. Its encoded protein is 366 amino acids long (calculated Mr 42 209), has a TGY dual phosphorylation motif in protein kinase subdomain VIII and displays highest overall similarity to the mammalian p38 stress activated protein kinase (SAPK2), one subfamily of MAPKs. The sponge protein w…
Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster.
The formation of spicules is a complicated morphogenetic process in sponges (phylum Porifera). The primmorph system was used to demonstrate that in the demosponge Suberites domuncula the synthesis of the siliceous spicules starts intracellularly and is dependent on the concentration of silicic acid. To understand spicule formation, a cluster of genes was isolated. In the center of this cluster is the silicatein gene, which codes for the enzyme that synthesizes spicules. This gene is flanked by an ankyrin repeat gene at one side and by a tumor necrosis factor receptor-associated factor and a protein kinase gene at the other side. All genes are strongly expressed in primmorphs and intact anim…
Phylogenetic Position of the Hexactinellida Within the Phylum Porifera Based on the Amino Acid Sequence of the Protein Kinase C from Rhabdocalyptus dawsoni
Recent analyses of genes encoding proteins typical for multicellularity, especially adhesion molecules and receptors, favor the conclusion that all metazoan phyla, including the phylum Porifera (sponges), are of monophyletic origin. However, none of these data includes cDNA encoding a protein from the sponge class Hexactinellida. We have now isolated and characterized the cDNA encoding a protein kinase C, belonging to the C subfamily (cPKC), from the hexactinellid sponge Rhabdocalyptus dawsoni. The two conserved regions, the regulatory part with the pseudosubstrate site, the two zinc fingers, and the C2 domain, as well as the catalytic domain were used for phylogenetic analyses. Sequence al…
Histoincompatibility reactions in the hydrocoral Millepora dichotoma
The xenogeneic- and allogeneic immunological specificity of the hydrocoral Millepora dichotoma has been investigated. Xenogeneic histoicompatibility reactions have been observed between this hydrocoral and a series of species belonging to the Demospongiae and to the Anthozoa (both Hexacorallia and Octocorallia). The xenogeneic histoincompatibility reactions proceed in the following sequence: (a) Species-unspecific sensitization; (b) necrosis formation, which is very likely due to an autolytic process; (c) callus formation, due to an hyperplastic growth of stolons; and (d) formation of a contact barrier in form of a barrier layer or a restored stolonial layer. Allogeneic histoincompatibility…
Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium.
To date, no conclusive evidence has been presented for the existence of neuronal-like elements in Porifera (sponges). In the present study, isolated cells from the marine sponge Geodia cydonium are shown to react to the excitatory amino acid glutamate with an increase in the concentration of intracellular calcium [Ca2+]i. This effect can also be observed when the compounds L-quisqualic acid (L-QA) or L-(+)-2-amino-4-phosphonobutyric acid (L-AP-4) are used. The effect of L-QA and L-AP-4, both agonists for metabotropic glutamate receptors (mGluRs), can be abolished by the antagonist of group I mGluRs, (RS)-alpha-methyl-4-carboxyphenylglycine. These data suggest that sponge cells contain an mG…
Increased Expression of Integrin and Receptor Tyrosine Kinase Genes During Autograft Fusion in the SpongeGeodia cydonium
Recently cDNAs coding for cell surface molecules have been isolated from sponges. The molecules for alpha-integrin, galectin, and receptor tyrosine kinase (RTK), obtained from the marine sponge, Geodia cydonium, have been described earlier. In the present study also the cDNA for one putative beta-integrin has been identified from G. cydonium. The deduced aa sequence comprises the characteristic signatures, found in other metazoan beta-integrin molecules; the estimated size is 95,215 Da. To obtain first insights into the molecular events which proceed during autograft fusion, the expressions of these genes were determined on transcriptional and translational level. The cDNAs as well as antib…
Receptor Tyrosine Kinase, an Autapomorphic Character of Metazoa: Identification in Marine Sponges
In the present review we summarize sequence data obtained from cloning of sponge receptor tyrosine kinases [RTK]. The cDNA sequences were mainly obtained from the marine sponge Geodia cydonium. RTKs (i) with immunoglobulin [Ig]-like domains in the extracellular region, (ii) of the type of insulinlike receptors, as well as (iii) RTKs with one extracellular speract domain, have been identified. The analyses revealed that the RTK genes are constructed in blocks [domains], suggesting a blockwise evolution. The phylogenetic relationships of the sequences obtained revealed that all sponge sequences fall into one branch of the evolutionary tree, while related sequences from higher Metazoa, human, …
Analysis of the Sponge [Porifera] Gene Repertoire: Implications for the Evolution of the Metazoan Body Plan
Sponges [phylum Porifera] form the basis of the metazoan kingdom and represent the evolutionary earliest phylum still extant. Hence, as living fossils, they are the taxon closest related to the hypothetical ancestor of all Metazoa, the Urmetazoa. Until recently, it was still unclear whether sponges are provided with a defined body plan. Only after the cloning, expression and functional studies of characteristic metazoan genes, could it be demonstrated that these animals comprise the structural elements which allow the sponge cells to organize themselves according to a body plan. Adhesion molecules involved in cell—cell and cell—matrix interactions have been identified. Among the cell—cell a…
Arginine kinase in the demosponge Suberites domuncula:regulation of its expression and catalytic activity by silicic acid
SUMMARY In Demospongiae (phylum Porifera) the formation of the siliceous skeleton,composed of spicules, is an energetically expensive reaction. The present study demonstrates that primmorphs from the demosponge Suberites domuncula express the gene for arginine kinase after exposure to exogenous silicic acid. The deduced sponge arginine kinase sequence displays the two characteristic domains of the ATP:guanido phosphotransferases; it can be grouped to the `usual' mono-domain 40 kDa guanidino kinases (arginine kinases). Phylogenetic studies indicate that the metazoan guanidino kinases evolved from this ancestral sponge enzyme; among them are also the `unusual'two-domain 80 kDa guanidino kinas…
Phylogenetic relationship of ubiquitin repeats in the polyubiquitin gene from the marine sponge Geodia cydonium
Ubiquitin is a 76-residue protein which is highly conserved among eukaryotes. Sponge (Porifera) ubiquitin, isolated from Geodia cydonium, is encoded by a gene (termed GCUBI) with six repeats, GCUBI-1 to GCUBI-6. All repeat units encode the same protein (with one exception: GCUBI-4 encodes ubiquitin with a change of Leu to Val at position 71). On the nt level the sequences of the six repeats differ considerably. All changes (except in GCUBI-4) are silent substitutions, which do not affect the protein structure. However, there is one major difference between the repeats: Codons from both codon families (TCN and AGPy) are simultaneously used for the serine at position 65. Using this characteri…
Evolutionary relationships of the metazoan βγ–crystallins, including that from the marine spongeGeodia cydonium
beta gamma-crystallins are one major component of vertebrate lenses. Here the isolation and characterization of a cDNA, coding for the first beta gamma-crystallin molecule from an invertebrate species, the marine sponge Geodia cydonium, is described. The size of the transcript as determined by Northern blotting was 0.7 kb in length. The deduced amino acid sequence consists of 163 aa residues and comprises four repeated motifs which compose the two domains of the beta gamma-crystallin. Motif 3 contains the characteristic beta gamma-crystallin 'Greek key' motif signature, while in each of the three other repeats, one aa residue is replaced by an aa with the same physico-chemical property. The…
EVOLUTION OF THE INNATE AND ADAPTIVE IMMUNE SYSTEMS
Porifera (sponge) form the lowest metazoan phylum and share a common ancestor with other metazoan phyla. In the present study, it is reported that sponges possess molecules that are similar in structure to those molecules involved in the immune system in mammals. Experiments with the marine sponges Geodia cydonium and Suberites domuncula have been performed on tissue (auto- and allografting) as well as on a cellular level. The studies revealed that sponges are provided with elements of the mammalian innate immune system, such as molecules containing scavenger receptor cysteine-rich domains. Furthermore, macrophage-derived cytokine-like molecules have been identified that are up-regulated du…
Molecular response of the sponge Suberites domuncula to bacterial infection
The aim of this study was the documentation of the molecular immune response of Suberites domuncula upon bacterial infection. Additionally, the bacteria that are naturally present in the sponge after prolonged aquarium maintenance were characterized. After 6 months of maintenance of S. domuncula in seawater aquaria, only one bacterial 16S rDNA sequence could be recovered, which belongs to the genus Pseudomonas. Concomitantly, morphologically uniform bacteria were found encapsulated in bacteriocytes. These findings indicate that certain bacteria, possibly of the genus Pseudomonas, are able to persist for long periods in host bacteriocytes. Subsequent to performing a previously established in…
Molecular cloning of a tyrosine kinase gene from the marine spongeGeodia cydonium: a new member belonging to the receptor tyrosine kinase class II family
We have isolated and characterized a cDNA from the marine sponge Geodia cydonium coding for a new member of the tyrosine protein kinase (TK) family. The cDNA encodes a protein of M(r) = 68,710, termed GCTK, which is homologous to class II receptor tyrosine kinases (RTKs). GCTK contains conserved amino acids (aa) characteristic of all protein kinases, and the sequences DLATRN and PIRWMATE which are highly specific for TKs. Furthermore, the sequence N-L-Y-x(3)-Y-Y-R is highly homologous to the sequence D-[LIV]-Y-x(3)-Y-Y-R found only in class II RTKs. The sponge TK, when compared with mammalian class II RTKs, shows maximum 31% homology in the TK domain indicating that this the oldest member o…
Towards an understanding of the molecular basis of immune responses in sponges: The marine demospongeGeodia cydonium as a model
The phylogenetic position of the phylum Porifera (sponges) is near the base of the kingdom Metazoa. During the last few years, not only rRNA sequences but, more importantly, cDNA/genes that code for proteins have been isolated and characterized from sponges, in particular from the marine demosponge Geodia cydonium. The analysis of the deduced amino acid sequences of these proteins allowed a molecular biological approach to the question of the monophyly of the Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin, and galectin as prominent examples, and of cell-surface receptors (tyrosine kinase receptor), elements of sensory systems (crystallin…
Species-Specific Aggregation Factor in Sponges
An aggregation factor (AF) from the siliceous sponge Suberites domuncula has been isolated and purified by the following steps: Sepharose 2 B gel chromatography, sucrose gradient, Nonidet treatment, Sephadex G-100 gel chromatography and DEAE-Sephadex ion-exchange chromatography. By this procedure the AF was purified 1340-fold with a 63% yield nearly to homogeneity. The AF is originally associated with large particles, characterized by a sedimentation of 2200 S. These particles have been visualized electron microscopically; they are characterized by a filament-like shape of a length of 3400 A and a cross-sectional diameter of 230 A. The purified, low-molecular weight AF has a buoyant density…
Isolation and cloning of a C-type lectin from the hexactinellid sponge Aphrocallistes vastus: a putative aggregation factor
Among the sponges (Porifera), the oldest group of metazoans in phylogenetic terms, the Hexactinellida is considered to have diverged earliest from the two other sponge classes, the Demospongiae and Calcarea. The Hexactinellida are unusual among all Metazoa in possessing mostly syncytial rather than cellular tissues. Here we describe the purification of a cell adhesion molecule with a size of 34 kDa (in its native form; 24 kDa after deglycosylation) from the hexactinellid sponge Aphrocallistes vastus. This adhesion molecule was previously found to agglutinate preserved cells and membranes in a non-species-specific manner (Müller, W. E. G., Zahn, R. K, Conrad, J., Kurelec, B., and Uhlenbruck,…
Molecular evolution of the metazoan protein kinase C multigene family
Protein kinases C (PKCs) comprise closely related Ser/Thr kinases, ubiquitously present in animal tissues ; they respond to second messengers, e.g., Ca2+ and/or diacylglycerol, to express their activities. Two PKCs have been sequenced from Geodia cydonium, a member of the lowest multicellular animals, the sponges (Porifera). One sponge G. cydonium PKC, GCPKC1, belongs to the ''novel'' (Ca2+-independent) PKC (nPKC) subfamily while the second one, GCPKC2, has the hall-marks of the ''conventional'' (Ca2+-dependent) PKC (cPKC) subfamily. The alignment of the Ser/Thr catalytic kinase domains, of the predicted aa sequences for these cDNAs with respective segments from previously reported sequence…
Cloning and expression of new receptors belonging to the immunoglobulin superfamily from the marine sponge Geodia cydonium
A cDNA encoding a receptor tyrosine kinase (RTK) was previously cloned and expressed from the marine sponge (Porifera) Geodia cydonium. In addition to the two intracellular regions characteristic for RTKs, two immunoglobulin (Ig)-like domains are found in the extracellular part of the sponge RTK. In the present study it is shown that no further Ig-like domain is present in the upstream region of the cDNA as well as of the gene hitherto known from the sponge RTK. Two different full-length cDNAs have been isolated and characterized in the present study, which possess two Ig-like domains, one transmembrane segment, and only a short intracellular part, without a TK domain. The two deduced polyp…
Immunoglobulin-like domain is present in the extracellular part of the receptor tyrosine kinase from the marine sponge Geodia cydonium.
We have isolated and characterized two cDNAs from the marine sponge Geodia cydonium coding for a new member of a receptor tyrosine kinase of class II. The deduced amino acid sequence shows two characteristic domains: (i) the tyrosine kinase domain; and (ii) and immunoglobulin-like domain. The latter part shows high homology to the vertebrate C2 type immunoglobulin domain. This result demonstrates that immunoglobulin domains are not recent achievements of higher animals but exist also in those animals which have diverged from other organisms about 800 million years ago.
A homolog of the putative tumor suppressor QM in the sponge Suberites domuncula: downregulation during the transition from immortal to mortal (apoptotic) cells
Abstract The activation of components of the transcription factors such as AP-1 or c-jun is essential for a physiological response of metazoan cells during aging. The activity of such proto-oncoproteins is under enzymatic control. The function of c-jun is additionally modulated by the QM protein. Here, we studied the expression of the gene, encoding the QM-like protein in the sponge Suberites domuncula . These animals contain high levels of telomerase in their somatic cells. To understand the switch from telomerase-positive immortal cells to telomerase-negative mortal cells which undergo apoptosis, the expression of the QM-like gene was measured in this system. The cDNA, termed QMSD , encod…
Sponge proteins are more similar to those of Homo sapiens than to Caenorhabditis elegans
We compared 42 phylogenetically conserved proteins from four marine sponges [Porifera] with almost the complete set of Caenorhabditis elegans proteins and all known proteins from humans. The majority of the sponge proteins are significantly more similar to human than to C. elegans orthologues/homologues. This finding reflects the accelerated evolutionary rate in the C. elegans lineage, since sponges split off first from the common ancestor of all multicellular animals. Furthermore, three sponge/human proteins were not found in C. elegans: (2–5)A synthetase, DNA repair helicase and lens βγ -crystallin. Sponges are the source of the most ancient proteins already present in the common ancestor…
Molecular evolution: Evidence for the monophyletic origin of multicellular animals
Molecular and functional analysis of the (6-4) photolyase from the hexactinellid Aphrocallistes vastus.
The hexactinellid sponges (phylum Porifera) represent the phylogenetically oldest metazoans that evolved 570-750 million years ago. At this period exposure to ultraviolet (UV) light exceeded that of today and it may be assumed that this old taxon has developed a specific protection system against UV-caused DNA damage. A cDNA was isolated from the hexactinellid Aphrocallistes vastus which comprises high sequence similarity to genes encoding the protostomian and deuterostomian (6-4) photolyases. Subsequently functional studies were performed. It could be shown that the sponge gene, after transfection into mutated Escherichia coli, causes resistance of the bacteria against UV light. Recombinan…
A novel member of an ancient superfamily: sponge (Geodia cydonium, Porifera) putative protein that features scavenger receptor cysteine-rich repeats
Proteins featuring scavenger receptor cysteine-rich (SRCR) domains are prominent receptors known from vertebrates and from one phylum of invertebrates, the echinoderms. In the present study we report the first putative SRCR protein from the marine sponge Geodia cydonium (Porifera), a member of the lowest phylum of contemporary Metazoans. Two forms of SRCR molecules were characterized, which apparently represent alternative splicing of the same transcript. The long putative SRCR protein, of 1536 aa, features twelve SRCR repeats, a C-terminal transmembrane domain and a cytoplasmic tail. The sequence of the short form is identical with the long form except that it lacks a coding region near th…
Increased gene expression of a cytokine-related molecule and profilin after activation of Suberites domuncula cells with xenogeneic sponge molecule(s)
Porifera (sponges) constitute the lowest metazoan phylum, Experiments examined whether sponges can recognize self/nonself molecules. Cells from the marine sponge Suberites domuncula were incubated with membranes from either S. domuncula or another marine sponge, Geodia cydonium, as well as with recombinant alpha-integrin from G. cydonium. The cells responded immediately with a rise of intracellular Ca2+ ([Ca-i(2+)]) if they were treated with membranes from G. cydonium but not after treatment by those from S. domuncula. This change of [Ca-i(2+)] was also recorded with G. cydonium alpha-integrin. In parallel, the expression of two genes was strongly upregulated; one codes for a cytokine-relat…
Co-expression and Functional Interaction of Silicatein with Galectin
Sponges (phylum Porifera) of the class of Demospongiae are stabilized by a siliceous skeleton. It is composed of silica needles (spicules), which provide the morphogenetic scaffold of these metazoans. In the center of the spicules there is an axial filament that consists predominantly of silicatein, an enzyme that catalyzes the synthesis of biosilica. By differential display of transcripts we identified additional proteins involved in silica formation. Two genes were isolated from the marine demosponge Suberites domuncula; one codes for a galectin and the other for a fibrillar collagen. The galectin forms aggregates to which silicatein molecules bind. The extent of the silicatein-mediated s…
Axial (apical-basal) expression of pro-apoptotic and pro-survival genes in the lake baikal demosponge Lubomirskia baicalensis.
Like in all other Metazoa, also in sponges (Porifera) proliferation, differentiation, and death of cells are controlled by apoptotic processes, thus allowing the establishment of a Bauplan (body plan). The demosponge Lubomirskia baicalensis from the Lake Baikal is especially suitable to assess the role of the apoptotic molecules, since its grade of construction is highly elaborated into an encrusting base and branches composed of modules lined up along the apical-basal axis. The four cDNAs, ALG-2, BAK, MA-3, and Bcl-2, were isolated from this sponge species. The expression levels of these genes follow characteristic gradients. While the proapoptotic genes are highly expressed at the base of…
Cloning of sponge heat shock proteins: evolutionary relationships between the major kingdoms
In the present study we have cloned from sponges (Porifera) those molecules which are involved in the protection of organisms against physiological and stress conditions; the inducible heat shock protein Mr 70,000, hsp70, from the marine sponge Geodia cydonium, its interacting hsp40, a DnaJ-like protein (from G. cydonium) and the constitutively expressed counterpart the glucose-regulated protein Mr 78,000, GRP78 from Suberites domuncula. Alignments of the sequences revealed that the deduced aa sequences of all sponge hsp's share high homology to other metazoan sequences, and are separated from related sequences from plants and fungi (hsp70, GRP78, DnaJ) as well as Bacteria (DnaK, the hsp70 …
Molecular cloning and primary structure of a Rhesus (Rh)-like protein from the marine sponge Geodia cydonium
In humans, the 30,000 M(r) Rhesus (Rh) polypeptide D (RhD) is a dominant antigen (Ag) of the Rh blood group system. To date, an Rh-like protein has been found in chimpanzees, gorillas, gibbons, and rhesus monkeys. Related to the 30,000 M(r) Rh Ag protein are two polypeptides of 50,000 M(r), the human 50,000 M(r) Rh Ag and the RhD-like protein from Caenorhabditis elegans. The function of all these proteins is not sufficiently known. Here we characterize a cDNA clone (GCRH) encoding a putative 57,000 M(r) polypeptide from the marine sponge Geodia cydonium, which shares sequence similarity both to the RhD Ag and the Rh50 glycoprotein. The sponge Rh-like protein comprises 523 aa residues; hydro…
Identification of highly conserved genes: SNZ and SNO in the marine sponge Suberites domuncula: their gene structure and promoter activity in mammalian cells
Abstract Recently, we reported that cells from the sponge Suberites domuncula respond to ethylene with an increase in intracellular Ca 2+ level [Ca 2+ ] i , and with an upregulation of the expression of (at least) two genes, a Ca 2+ /calmodulin-dependent protein kinase and the potential ethylene-responsive gene, termed SDSNZERR (A. Krasko, H.C. Schroder, S. Perovic, R. Steffen, M. Kruse, W. Reichert, I.M. Muller, W.E.G. Muller, J. Biol. Chem. 274 (1999)). Here, we describe for the first time that also mammalian (3T3) cells respond to ethylene, generated by ethephon, with an immediate and transient, strong increase in [Ca 2+ ] i . Next, the promoter for the sponge SDSNZERR gene was isolated …
Cloning and expression of the sponge longevity gene SDLAGL.
Porifera show a characteristic Bauplan in spite of the fact that (almost) all cells are telomerase-positive and presumably provided with an unlimited potency for cell proliferation. One gene, SDLAGL, was identified in the marine sponge Suberites domuncula whose deduced polypeptide showed high sequence similarity to the longevity assurance genes from other Metazoa. While in single cells no transcripts of SDLAGL could be identified, high expression was seen after re-aggregation of single cells and in proliferating cells of primmorphs.
Differentiation capacity of epithelial cells in the sponge Suberites domuncula.
Sponges (phylum Porifera) represent the oldest metazoans. Their characteristic metazoan adhesion molecules and transcription factors enable them to establish a complex "Bauplan" ; three major differentiated cell types (epithelial cells, skeletal cells/sclerocytes, and contractile cells) can be distinguished. Since no molecular markers are as yet available to distinguish these somatic cells or the corresponding embryonic cells from which they originate, we have selected the following three genes for their characterization: noggin (a signaling molecule in development), a caspase that encodes an apoptotic molecule, and silicatein. Silicatein is an enzyme that is involved in the synthesis of si…
Induction of heat-shock (stress) protein gene expression by selected natural and anthropogenic disturbances in the octocoral Dendronephthya klunzingeri
Previously it was found that the expression of selected heat-shock proteins is upregulated in corals after exposure to elevated temperature. We published that HSPs are suitable markers in sponges to monitor the degree of environmental stress on these animals. In the present study the heat-shock proteins (HSPs) with a molecular weight of 90 kDa have been selected to prove their potential usefulness as biomarkers under controlled laboratory conditions and in the field. The studies have been performed with the octocoral Dendronephthya klunzingeri from which the cDNA coding for HSP90 was cloned first. The expression of the HSP90 gene is upregulated by thermal stress; treatment of the animals fo…
Oxygen-Controlled Bacterial Growth in the Sponge Suberites domuncula: toward a Molecular Understanding of the Symbiotic Relationships between Sponge and Bacteria†
ABSTRACT Sponges (phylum Porifera), known to be the richest producers among the metazoans of bioactive secondary metabolites, are assumed to live in a symbiotic relationship with microorganisms, especially bacteria. Until now, the molecular basis of the mutual symbiosis, the exchange of metabolites for the benefit of the other partner, has not been understood. We show with the demosponge Suberites domuncula as a model that the sponge expresses under optimal aeration conditions the enzyme tyrosinase, which synthesizes diphenols from monophenolic compounds. The cDNA isolated was used as a probe to determine the steady-state level of gene expression. The gene expression level parallels the lev…
Suppression of allograft rejection in the sponge Suberites domuncula by FK506 and expression of genes encoding FK506-binding proteins in allografts.
SUMMARY Porifera (sponges) are, evolutionarily, the oldest metazoan phylum. Recent molecular data suggest that these animals possess molecules similar to and homologous with those of the innate and adaptive immune systems of higher Metazoa. Applying the biological system of parabiosis and the technique of differential display of mRNA, two cDNAs encoding putative FK506-binding proteins were isolated. FK506 is successfully used in clinics as a drug to prevent allograft rejection and is toxic to Suberites domuncula cells in vitro at doses above 100ng ml−1. Autograft fusion of transplants from S. domuncula was not affected by FK506. Allograft non-fusion was not affected by FK506 at toxic doses;…
Cell-cell recognition system in gorgonians: description of the basic mechanism
The dissociation of the gorgonian Eunicella cavolinii (Koch) into single cells was successfully accomplished. These cells readily formed aggregates of a size of 2 100 μm during incubation in roller tubes; no aggregate formation was observed in non-rotating Petri dishes. The formation of aggregates was not influenced by Ca++, urea or trypsin; it was also independent of temperature (4° to 30°C) and pH (5.5–9.0). The intercellular material of the gorgonian contains a galactose-specific lectin, as determined by double diffusion experiments and haemagglutination inhibition experiments using a series of galactoglycoconjugates. This lectin converted the aggregation-susceptible cells to aggregation…
Molecular Mechanism of Spicule Formation in the Demosponge Suberites domuncula: Silicatein-Collagen-Myotrophin
In living organisms four major groups of biominerals exist: (1) iron compounds, which are restricted primarily to Prokaryota; (2) calcium phosphates, found in Metazoa; (3) calcium carbonates, used by Prokaryota, Protozoa, Plantae, Fungi and Metazoa and (4) silica (opal) present in sponges and diatoms (reviewed in: Bengtson 1994; Baeuerlein 2000). It is surprising that the occurrence of silica as a major skeletal element is restricted to some Protozoa and to sponges (Porifera). The element silicon (Si) contributes to 28% of the earth crust and is - after oxygen - the second most abundant element on earth (Windholz 1983).
Gene structure and function of tyrosine kinases in the marine sponge Geodia cydonium: Autapomorphic characters of Metazoa
Abstract Porifera (sponges) represent the most ancient, extant metazoan phylum. They existed already prior to the ‘Cambrian Explosion’. Based on the analysis of aa sequences of informative proteins, it is highly likely that all metazoan phyla evolved from only one common ancestor (monophyletic origin). As ‘autapomorphic’ proteins which are restricted to Metazoa only, integrin receptors, receptors with scavenger receptor cysteine-rich repeats, neuronal-like receptors and protein–tyrosine kinases (PTKs) have been identified in Porifera. From the marine sponge Geodia cydonium , a receptor tyrosine kinase (RTK) has been cloned that comprises the characteristic structural topology known from oth…
Protein synthesis of the sponge Geodia cydonium: characterization of the system.
Abstract The ribosomal population of the sponge Geodia cydonium has been examined. The monosomes have a sedimentation constant of 80 S, the sizes of the subunits are approximately 60 S and 45 S respectively. The polyribosomes contain up to 40 ribosomal units. Cell free protein synthesizing systems (cell homogenate as well as reconstituted system) have been prepared and characterized with respect to Mg2+, KCI and ATP concentrations, temperature, pH and time course of the reaction. In the cell-free system and in the cellular system the protein biosynthesis is inhibited by chloramphenicol. It is not affected by cycloheximide.
Innate Immune Defense of the Sponge Suberites domuncula against Bacteria Involves a MyD88-dependent Signaling Pathway
Sponges (phylum Porifera) are the phylogenetically oldest metazoa; as filter feeders, they are abundantly exposed to marine microorganisms. Here we present data indicating that the demosponge Suberites domuncula is provided with a recognition system for Gram-negative bacteria. The lipopolysaccharide (LPS)-interacting protein was identified as a receptor on the sponge cell surface, which recognizes the bacterial endotoxin LPS. The cDNA was isolated, and the protein (Mr 49,937) was expressed. During binding to LPS, the protein dimerizes and interacts with MyD88, which was also identified and cloned. The sponge MyD88 (Mr 28,441) is composed of two protein interaction domains, a Toll/interleuki…
Cultural Heritage: Porifera (Sponges), A Taxon Successfully Progressing Paleontology, Biology, Biochemistry, Biotechnology and Biomedicine
In 1876, Campbell (Campbell, 1876 [p. 446]) wrote “those beautiful ‘glass-rope sponges’, Hyalonema etc., have been found by our researchers to be ‘the most characteristic inhabitants of the great depths all over the world, and with them ordinary siliceous sponges, some of which rival Hyalospongiae in beauty’ “. The admiration for the beauty of sponges is documented since Aristotle (cited in Camus 1783), however the nature of these organisms and their phylogenetic position remained enigmatic until less than 10 years ago. E.g., in 1988 Loomis (Loomis, 1988 [p. 186]) wrote “the sponge cells are unspecialized flagellates held together by a glycoprotein extracellular matrix... they are multicell…
On the origin of Metazoan adhesion receptors: cloning of integrin alpha subunit from the sponge Geodia cydonium
Integrins are prominent receptors known from vertebrates and the higher phyla of invertebrates. Until now, no evidence has been provided for the existence of integrins in the lowest Metazoa, the sponges (Porifera). We have isolated and characterized a cDNA clone encoding the alpha subunit of integrin from the marine sponge Geodia cydonium (GCINTEG). The open reading frame encodes a polypeptide of 1,086 residues (118 kDa). The intracellular domain features the sequence Tyr-Phe-x-Gly-Phe-Phe-x-Arg, which is different in one residue from the characteristic consensus pattern for integrin alpha subunits. We conclude that sponges, the oldest multicellular animal phylum, already utilize the struct…
Increased expression of the potential proapoptotic molecule DD2 and increased synthesis of leukotriene B4 during allograft rejection in a marine sponge
Sponges (Porifera) are a classical model to study the events during tissue transplantation. Applying the 'insertion technique' autografts from the marine sponge Geodia cydonium fuse within 5 days. In contrast, allografts are rejected and destroyed. Here we show that during allograft rejection the cells in the grafts undergo apoptosis; 5 days after transplantation 46% of the cells show signs of apoptosis. In a previous study it was shown that during this process a tumor necrosis factor-like molecule is induced in allo- and xenografts. Molecules grouped to the superfamily of tumor necrosis factor receptors and a series of associated adapter molecules contain the characteristic death domain. T…
Transition from Protozoa to Metazoa: An Experimental Approach
Until recently, stromatolites were thought to be the oldest fossils on earth that were very abundant 2000 to 3000 Ma (million years) ago (Walter 1994). Recently, the biological origin of these fossils has been questioned (Walter 1996). The universal phylogenetic tree exhibits a tripartite division of the living world into Bacteria (“eubacterial”), Archaea (“archebacterial”), and Eucarya [“eukaryotic” (Woese 1987; Woese et al. 1991)]. Based on comparisons of amino acid (aa) sequence data from enzymes, it has been proposed that the common ancestor of prokaryotes and eukaryotes lived about 2000 Ma ago (Doolittle et al. 1996). Phylogenetic analysis of the 70kDa heat-shock proteins suggested tha…
Emergence and Disappearance of an Immune Molecule, an Antimicrobial Lectin, in Basal Metazoa
Sponges (phylum Porifera) represent the evolutionarily oldest metazoans that comprise already a complex immune system and are related to the crown taxa of the protostomians and the deuterostomians. Here, we demonstrate the existence of a tachylectin-related protein in the demosponge Suberites domuncula, termed Suberites lectin. The MAPK pathway was activated in response to lipopolysaccharide treatment of the three-dimensional cell aggregates, the primmorphs; this process was abolished by the monosaccharide D-GlcNAc. The cDNA encoding the S. domuncula lectin was identified and cloned; it comprises 238 amino acids (26 kDa) in the open reading frame. The deduced protein has one potential trans…
Evolutionary relationships of Metazoa within the eukaryotes based on molecular data from Porifera
Recent molecular data provide strong support for the view that all metazoan phyla, including Porifera, are of monophyletic origin. The relationship of Metazoa, including the Porifera, to Plantae, Fungi and unicellular eukaryotes has only rarely been studied by using cDNAs coding for proteins. Sequence data from rDNA suggested a relationship of Porifera to unicellular eukaryotes (choanoflagellates). However, ultrastructural studies of choanocytes did not support these findings. In the present study, we compared amino acid sequences that are found in a variety of metazoans (including sponges) with those of Plantae, Fungi and unicellular eukaryotes, to obtain an answer to this question. We use…
Species-specific aggregation factor in sponges V. Influence on programmed syntheses
Isolated cells from the siliceous sponge Geodia cydonium as well as small primary aggregates (diameter: 70 mum) consisting of them show no increase in rates of programmed syntheses and mitotic activity with time. After addition of a highly purified aggregation factor to a culture with primary aggregates which subsequently form secondary aggregates (diameter: larger than 1000 mum), a dramatic increase of DNA, RNA and protein synthesis occurs. Together with this increase, the cells show a high mitotic activity. The values for the mitotic coefficient reach a first maximum 8 h after the beginning of the secondary aggregation process. The stimulation of the mitotic activity of cells during the a…
The Chemokine Networks in Sponges: Potential Roles in Morphogenesis, Immunity and Stem Cell Formation
Porifera (sponges) are now well accepted as the phylum which branched off first from the common ancestor of all metazoans, the Urmetazoa. The transition to the Metazoa became possible because during this phase, cell-cell as well as cell-matrix adhesion molecules evolved which allowed the formation of a colonial stage of animals. The next prerequisite for the evolution to the Urmetazoa was the establishment of an effective immune system which, flanked by apoptosis, allowed the formation of a first level of individuation.
Isolation and characterization of a cDNA encoding a potential morphogen from the marine sponge Geodia cydonium that is conserved in higher metazoans.
Species belonging to the lowest metazoan phylum, the sponges (Porifera), exhibit a surprisingly complex and multifaceted Bauplan (body plan). Recently, key molecules have been isolated from sponges which demonstrate that the cells of these animals are provided with characteristic metazoan adhesion and signal transduction molecules, allowing tissue formation. In order to understand which factors control the spatial organization of these cells in the sponge body plan, we screened for a cDNA encoding a soluble modulator of the behaviour of endothelial cells. A cDNA encoding a putative protein, which is highly similar to the human and mouse endothelial monocyte-activating polypeptide (EMAP) II …
Two different aggregation principles in reaggregation process of dissociated sponge cells (Geodia cydonium)
Chemisch dissoziierte Zellen des KieselschwammesGeodia cydonium reaggregieren aufgrund zweier verschiedenr Reaggregationsprinzipien. Der Aggnegationsfaktor, auf den die Primaraggregation zuruckgeht, ist membrangebunden und wird durch Proteasen nicht inaktiviert. Der sekundare Aggregationsfaktor wurde 500fach angereichert. Das Molekulargewicht dieses Aggregationsfaktors betragt etwa 20000 Daltons; er ist mit einem ringformigen Makromolekul (2×109 Daltons) assoziiert.
Ethylene modulates gene expression in cells of the marine sponge Suberites domuncula and reduces the degree of apoptosis.
Sponges (phylum Porifera) live in an aqueous milieu that contains dissolved organic carbon. This is degraded photochemically by ultraviolet radiation to alkenes, particularly to ethylene. This study demonstrates that sponge cells (here the demosponge Suberites domuncula has been used), which have assembled to primmorphs, react to 5 microM ethylene with a significant up-regulation of intracellular Ca(2+) concentration and with a reduction of starvation-induced apoptosis. In primmorphs from S. domuncula the expression of two genes is up-regulated after exposure to ethylene. The cDNA of the first gene (SDERR) isolated from S. domuncula encodes a potential ethylene-responsive protein, termed ER…
The putative sponge aggregation receptor. Isolation and characterization of a molecule composed of scavenger receptor cysteine-rich domains and short consensus repeats.
Porifera (sponges) are the oldest extant metazoan phylum. Dissociated sponge cells serve as a classic system to study processes of cell reaggregation. The reaggregation of dissociated cells is mediated by an extracellularly localized aggregation factor (AF), based on heterophilic interactions of the third order; the AF bridges two cells by ligating a cell-surface-bound aggregation receptor (AR). In the present study we report cloning, expression and immunohistochemical localization of a polypeptide from the marine sponge Geodia cydonium, which very likely represents the AR. The presumed AR gene gives rise to at least three forms of alternatively spliced transcripts of 6.5, 4.9 and 3.9 kb, a…
Novel mechanism for the radiation-induced bystander effect: nitric oxide and ethylene determine the response in sponge cells.
Until now the bystander effect had only been described in vertebrates. In the present study the existence of this effect has been demonstrated for the phylogenetically oldest metazoan phylum, the Porifera. We used the demosponge Suberites domuncula for the experiments in the two-chamber-system. The lower dish contained irradiated "donor" cells (single cells) and the upper dish the primmorphs ("recipient" primmorphs). The "donor" cells were treated with UV-B light (40 mJ/cm2) and 100 microM hydrogen peroxide (H2O2), factors that exist also in the natural marine aquatic environment of sponges; these factors caused a high level of DNA strand breaks followed by a reduced viability of the cells.…
Experimental indication in favor of the introns-late theory: the receptor tyrosine kinase gene from the sponge Geodia cydonium.
Abstract We have analyzed the gene that encodes receptor tyrosine kinase (RTK) from the marine sponge Geodia cydonium, which belongs to the most ancient and simple metazoan groups, the Porifera. RTKs are enzymes found only in metazoa. The sponge gene contains two introns in the extracellular part of the protein. However, the rest of the protein (transmembrane and intracellular part), including the tyrosine kinase (TK)-domain, is encoded by a single exon. In contrast, all TK genes, so far known only from higher animals (vertebrates), contain several introns especially in the TK-domain. The TK-domain of G. cydonium shows similarity with numerous members of receptor as well as nonreceptor TKs.…
Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin‐related molecule from Suberites domuncula
The body wall of sponges (Porifera), the lowest metazoan phylum, is formed by two epithelial cell layers of exopinacocytes and endopinacocytes, both of which are associated with collagen fibrils. Here we show that a myotrophin-like polypeptide from the sponge Suberites domuncula causes the expression of collagen in cells from the same sponge in vitro. The cDNA of the sponge myotrophin was isolated; the potential open reading frame of 360 nt encodes a 120 aa long protein (Mr of 12,837). The sequence SUBDOMYOL shares high similarity with the known metazoan myotrophin sequences. The expression of SUBDOMYOL is low in single cells but high after formation of primmorph aggregates as well as in in…
Selenium affects biosilica formation in the demosponge Suberites domuncula
Selenium is a trace element found in freshwater and the marine environment. We show that it plays a major role in spicule formation in the demosponge Suberites domuncula. If added to primmorphs, an in vitro sponge cell culture system, it stimulates the formation of siliceous spicules. Using differential display of transcripts, we demonstrate that, after a 72-h exposure of primmorphs to selenium, two genes are up-regulated; one codes for selenoprotein M and the other for a novel spicule-associated protein. The deduced protein sequence of selenoprotein M (14 kDa) shows characteristic features of metazoan selenoproteins. The spicule-associated protein (26 kDa) comprises six characteristic repe…
Iron Induces Proliferation and Morphogenesis in Primmorphs from the Marine SpongeSuberites domuncula
Dissociated cells from marine demosponges retain their proliferation capacity if they are allowed to form special aggregates, the primmorphs. On the basis of incorporation studies and septin gene expression, we show that Fe3+ ions are required for the proliferation of cells in primmorphs from Suberites domuncula. In parallel, Fe3+ induced the expression of ferritin and strongly stimulated the synthesis of spicules. This result is supported by the finding that the enzymatic activity of silicatein, converting organosilicon to silicic acid, depends on Fe3+. Moreover, the expression of a scavenger receptor molecule, possibly involved in the morphology of spicules, depends on the presence of Fe3…
A (1->3)-beta-D-glucan recognition protein from the sponge Suberites domuncula. Mediated activation of fibrinogen-like protein and epidermal growth factor gene expression
Sponges (phylum Porifera) live in a symbiotic relationship with microorganisms, primarily bacteria. Until now, molecular proof for the capacity of sponges to recognize fungi in the surrounding aqueous milieu has not been available. Here we demonstrate, for the demosponge Suberites domuncula (Porifera, Demospongiae, Hadromerida), a cell surface receptor that recognizes (1--3)-beta-D-glucans, e.g. curdlan or laminarin. This receptor, the (1--3)-beta-D-glucan-binding protein, was identified and its cDNA analysed. The gene coding for the 45 kDa protein was found to be upregulated in tissue after incubation with carbohydrate. Simultaneously with the increased expression of this gene, two further…
Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin
The major skeletal elements in the (Porifera) sponges, are spicules formed from inorganic material. The spicules in the Demospongiae class are composed of hydrated, amorphous silica. Recently an enzyme, silicatein, which polymerizes alkoxide substrates to silica was described from the sponge Tethya aurantia. In the present study the cDNA encoding silicatein was isolated from the sponge Suberites domuncula. The deduced polypeptide comprises 331 amino acids and has a calculated size of Mr 36 306. This cDNA was used as a probe to study the potential role of silicate on the expression of the silicatein gene. For these studies, primmorphs, a special form of aggregates composed of proliferating c…
Molecular phylogeny of the freshwater sponges in Lake Baikal
The phylogenetic relationship of the freshwater sponges (Porifera) in Lake Baikal is not well understood. A polyphyletic and/or monophyletic origin have been proposed. The (endemic) Baikalian sponges have been subdivided into two families: endemic Lubomirskiidae and cosmopolitan Spongillidae. In the present study, two new approaches have been made to resolve the phylogenetic relationship of Baikalian sponges; analysis of (1) nucleotide sequences from one mitochondrial gene, the cytochrome oxidase subunit I (COI) and of (2) one selected intron from the tubulin gene. Specimens from the following endemic Baikalian sponge species have been studied; Lubomirskia baicalensis, Baikalospongia interm…
Conservation of the positions of metazoan introns from sponges to humans
Abstract Sponges (phylum Porifera) are the phylogenetic oldest Metazoa still extant. They can be considered as reference animals (Urmetazoa) for the understanding of the evolutionary processes resulting in the creation of Metazoa in general and also for the metazoan gene organization in particular. In the marine sponge Suberites domuncula , genes encoding p38 and JNK kinases contain nine and twelve introns, respectively. Eight introns in both genes share the same positions and the identical phases. One p38 intron slipped for six bases and the JNK gene has three more introns. However, the sequences of the introns are not conserved and the introns in JNK gene are generally much longer. Intron…
Sponge homologue to human and yeast gene encoding the longevity assurance polypeptide: differential expression in telomerase-positive and telomerase-negative cells of Suberites domuncula.
Porifera show a characteristic Bauplan in spite of the fact that (almost) all cells are telomerase-positive and presumably provided with an unlimited potency for cell proliferation. Studies revealed that telomerase-positive cells can be triggered to telomerase-negative cells by dissociating them into single cells. Single cells from the demosponge Suberites domuncula, in contrast to cells present in primmorphs (a special form of cell aggregates), lack the property to proliferate and they undergo apoptosis. One gene, SDLAGL, was identified in primmorphs that showed high sequence similarity to the longevity assurance genes from other Metazoa. In single cells no transcripts of SDLAGL could be i…
Molecular markers for germ cell differentiation in the demosponge Suberites domuncula
Sponges (phylum Porifera) are simple metazoans for which no molecular information on gametogenesis and larval development is available. To support the current study, it was confirmed by histology that oocytes and larvae were produced by the demosponge Suberites domuncula. Three genes/expressed products from S. domuncula whose expression correlated with sexual reproduction were identified and characterized (they are used here as marker genes): i) a receptor tyrosine kinase (RTK) with sequence similarity in the tyrosine kinase domain to fibroblast growth factor receptors; ii) the sex-determining protein FEM1 and iii) the sperm associated antigen (SAA) of triploblasts. Antibodies against the e…
Xenograft rejection in marine sponges. Isolation and purification of an inhibitory aggregation factor from Geodia cydonium.
In sponges there exists a graft rejection mechanism in which an inhibitory aggregation factor is involved. The inhibitory aggregation factor has been isolated from a culture medium containing dissociated cells of the sponge Geodia cydonium. Using ion-exchange and gel fractionation the factor was purified and shown to be electrophoretically pure. The factor has a molecular weight of 27000 and was characterized as a glycoprotein. The activity of the inhibitory aggregation factor was not affected by heat treatment, but treatment with trichloroacetic acid resulted in the irreversible loss of activity. The inhibitory aggregation factor affects the aggregation-factor-mediated reaggregation of dis…