0000000000931467
AUTHOR
Guy Millot
Spatial beam self-cleaning in multimode fibres
Multimode optical fibres are enjoying a renewed attention, boosted by the urgent need to overcome the current capacity crunch of single-mode fibre systems and by recent advances in multimode complex nonlinear optics [1-13]. In this work, we demonstrate that standard multimode fibres can be used as ultrafast all-optical tool for transverse beam manipulation of high power laser pulses. Our experimental data show that the Kerr effect in a graded-index multimode fibre is the driving mechanism for overcoming speckle distortions, leading to a somewhat counter-intuitive effect resulting in a spatially clean output beam robust against fibre bending. Our observations demonstrate that nonlinear beam …
Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave
Modulation instability (MI) generated by a picosecond coherent pulse has been recently identified as the key element of the generation of optical rogue-waves in supercontinuum-based systems [1]. Similar rare but highly energetic pulse structures can also appear in non-solitonic configurations such as Raman amplifiers driven by a partially incoherent pump wave propagating in fibres with low group velocity dispersion [2]. Therefore, one may wonder whether optical rogue-like event can also occur in MI-based amplifier because both Raman and parametric amplifiers benefit from a quasi-instantaneous gain. We provide here experimental evidence of rare optical events in a parametric amplifier in pre…
Attracteur de polarisation dans les fibres optiques
Nous etudions la dynamique non lineaire des etats de polarisation de deux ondes coherentes ou incoherentes se propageant dans une fibre optique. Nous presentons en particulier un effet original d'attraction de la polarisation.
Polarization mode dispersion and vectorial modulational instability in air silica microstructure fiber
The birefringence of an air-silica microstructure fiber has been studied by measurement of the fiber polarization mode dispersion (PMD) over the wavelength range 545-640 nm. The experimental results are shown to be in good agreement with vectorial numerical calculations, assuming an elliptical core with an eccentricity of 7%. We also report controlled experiments studying nonlinear vectorial modulation instability in the fiber, yielding 3.9-THz modulational instability sideband shifts that are in good agreement with theoretical predictions based on the calculated fiber dispersion and PMD characteristics.
Truncated thermalization of incoherent optical waves through supercontinuum generation in photonic crystal fibers
We revisit the process of optical wave thermalization through supercontinuum generation in photonic crystal fibers. We report theoretically and numerically a phenomenon of `truncated thermalization': The incoherent optical wave exhibits an irreversible evolution toward a Rayleigh-Jeans thermodynamic equilibrium state characterized by a compactly supported spectral shape. The theory then reveals the existence of a frequency cut-off which regularizes the ultraviolet catastrophe inherent to ensembles of classical nonlinear waves. This phenomenon sheds new light on the mechanisms underlying the formation of bounded supercontinuum spectra in photonic crystal fibers.
State-to-state vibrational and rotational energy transfer in CO2 gas from time-resolved raman-infrared double resonance experiments
A time-resolved Raman–infrared double resonance technique was used to study collisional relaxation rates of vibrational and rotational energy levels in CO2 gas at 295 K. A pulsed Raman excitation populated a selected rovibrational initial state. Measurements of the rates of transfer from the pumped initial state into specific final states were carried out using time-resolved laser absorption spectroscopy. First, the transfer rates were determined for the five lower vibrational energy levels. In particular, it was confirmed that the rate of transfer between the two Fermi levels (1000) and (0200) is very small [(5.3±0.2)×104 Torr-1 s-1]. The rotational structure inside the (0200) vibrational …
Parabolic pulse generation and applications
Parabolic pulses in optical fibers have stimulated an increasing number of applications. We review here the physics underlying the generation of such pulses as well as the results obtained in a wide-range of experimental configurations.
Observation of Kuznetsov-Ma soliton dynamics in optical fibre
International audience; The nonlinear Schro¨dinger equation (NLSE) is a central model of nonlinear science, applying to hydrodynamics, plasma physics, molecular biology and optics. The NLSE admits only few elementary analytic solutions, but one in particular describing a localized soliton on a finite background is of intense current interest in the context of understanding the physics of extreme waves. However, although the first solution of this type was the Kuznetzov-Ma (KM) soliton derived in 1977, there have in fact been no quantitative experiments confirming its validity. We report here novel experiments in optical fibre that confirm the KM soliton theory, completing an important serie…
Experimental generation of optical flaticon pulses
International audience; We experimentally investigate the nonlinear reshaping of a continuous wave which leads to chirp-free and flat-top intense pulses or flaticons exhibiting strong temporal oscillations at their edges and a stable self-similar expansion upon propagation of their central region. This study was performed in the normal dispersion regime of a non-zero dispersion-shifted fiber and involved a sinusoidal phase modulation of the continuous wave. Our fiber optics experiment is analogous to considering the collision between oppositely directed currents near the beach, and it may open the way to new investigations in the field of hydrodynamics.
Experimental demonstration of 160-GHz densely dispersion-managed soliton transmission in a single channel over 896 km of commercial fibers
International audience; We experimentally demonstrate the first 160-GHz densely dispersion-managed soliton transmission in a single channel at 1550 nm over nearly 900 km using commercially available non-zero dispersion-shifted fibers. This performance has been achieved by using a 16 km-long recirculating loop configuration and an appropriate design of the dispersion map.
Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber
International audience; We present a set of experimental observations that demonstrate the generation of vector trains of dark-soliton pulses in the orthogonal axes of a highly birefringent optical fiber. We generated dark-soliton trains with terahertz repetition rate in the normal group-velocity dispersion regime by inducing a polarization modulational instability by mixing two intense, orthogonal continuous laser beams. Numerical solutions of the propagation equations were used to optimize the emission of vector dark pulses at the fiber output.
Nonlinear beam self-cleaning in a coupled cavity composite laser based on multimode fiber
International audience; We study a coupled cavity laser configuration where a passively Q-switched Nd:YAG microchip laser is combined with an extended cavity, including a doped multimode fiber. For appropriate coupling levels with the extended cavity, we observed that beam self-cleaning was induced in the multimode fiber thanks to nonlinear modal coupling, leading to a quasi-single mode laser output. In the regime of beam self-cleaning, laser pulse duration was reduced from 525 to 225 ps. We also observed a Q-switched mode-locked operation, where spatial self-cleaning was accompanied by far-detuned nonlinear frequency conversion in the active multimode fiber.
Experimental observation of dispersive photon focusing dam break flows
International audience
Nonrecursive multiple shock formation via four-wave mixing: theory and experiment
We show theoretically and experimentally that a beat signal propagating along a normally dispersive fiber can trigger the formation of multiple shocks. This phenomenon critically depends on the input frequency separation and power of the beat signal.
Emergence of spectral incoherent solitons through supercontinuum generation in photonic crystal fibers
International audience; We report an experimental and numerical study of the spontaneous emergence of spectral incoherent solitons through supercontinuum generation in a two zero-dispersionwavelengths photonic crystal fiber. By using a simple experimental setup, we show that the highly nonlinear regime of supercontinuum generation is characterized by the emergence of a spectral incoherent soliton in the low-frequency edge of the supercontinuum spectrum. We show that a transition occurs from the discrete spectral incoherent soliton to its continuous counterpart as the power of the laser is increased. Contrary to conventional solitons, spectral incoherent solitons do not exhibit a confinement…
Flaticon pulses in optical fibers
International audience; We experimentally investigate the nonlinear reshaping of a continuous wave which leads to chirp-free and flat-top intense pulses or flaticons exhibiting strong temporal oscillations at their edges and a stable self-similar expansion upon propagation of their central region.
Optimization of wavelength division multiplexing in N×160Gbit/s terrestrial transmission systems
Abstract We analyze, from an engineering viewpoint, the prospects of an exploitable upgrade of terrestrial fiber systems based on standard monomode fiber and dispersion compensating units, for future N × 160 Gbit/s transmission systems. We show that dispersion swing, average dispersion and input pulse power are the key parameters that govern the system performances. We show that whenever the dispersion swing is arranged in a symmetrical setup and the compensation ratio is optimized accordingly, one may obtain a significant improvement of the transmission performances.
Kuznetsov-Ma Soliton Dynamics in Nonlinear Fiber Optics
The Kuznetzov-Ma (KM) soliton is a solution of the nonlinear Schrodinger equation derived in 1977 but never observed experimentally. Here we report experiments showing KM soliton dynamics in nonlinear breather evolution in optical fiber.
Generation of parabolic pulses and applications for optical telecommunications
International audience; Parabolic pulses in optical fibers have stimulated an increasing number of applications. We review here the physics underlying the generation of such self-similar pulses as well as the results obtained in a wide-range of passive or active experimental configurations.
Concept de laser à cavitté CONTINUUM et ses applications
Collisional Relaxation Processes Studied by Coherent Raman Spectroscopy for Major Species Present in Combustions
The effects of collisional relaxation processes on the Q-branch profile of major species present in combustions have been studied by high resolution stimulated Raman spectroscopy. Particular interest has focused on the following collisional systems: N2-N2, O2-O2, CO2-CO2, O2-N2, N2-CO2 and N2-H2O. For each colliding pair, starting from accurate determinations of line broadening coefficients over a wide temperature range, state-to-state rates for rotational energy transfers have been deduced by using various fitting laws. Among these rate laws, special attention has been paid to the temperature dependence of the energy corrected scaling (ECS) law combined with a hybrid exponential-power law …
Shot-by-shot frequency calibration of CARS spectra: Application to the measurement of the collisional line shift in oxygen
A technique using a Fabry-Perot interferometer has been developed to calibrate high-resolution spectra obtained by Coherent Anti-Stokes Raman Spectroscopy (CARS). This technique was used to measure simultaneously the Raman frequency and the Raman signal at each laser shot. We demonstrate the accuracy of the method by measuring theQ(15) line shifts of molecular oxygen due to collisions with oxygen and water vapour.
Modulational Instability and Stimulated Raman Scattering in Normally Dispersive Highly Birefringent Fibers
Abstract The nonlinear interaction of two laser beams in normally dispersive highly birefringent optical fibers leads to a large set of fascinating physical effects such as modulational instability (MI) and stimulated Raman scattering (SRS). These two nonlinear phenomena have a positive role as a mechanism for the generation of short optical pulses and represent a drawback in fiber-optics transmissions. Indeed, we will show that an induced process of modulational instability may be exploited for the generation of THz train of vector dark solitons. The technique of frequency-resolved optical gating is used to completely characterize the intensity and phase of the dark soliton trains. On the …
A universal all-fiber omnipolarizer
The all-optical control of light polarization is nowadays a fundamental issue which finds important applications in optical networks. In this field, the research has moved on the development of nonlinear methods of re-polarization of a partially coherent and initially depolarized light [1]. The main drawback of most of these devices is that they suffer from a large amount of output Relative-Intensity-Noise (RIN). However, a class of polarizers have been recently proposed which is based on the nonlinear interaction between two optical beams counter-propagating in a fiber [2]: in these devices the arbitrary state of polarization (SOP) of one of the two beams (signal) is attracted towards a sp…
Spectral incoherent solitons
Solitons have been usually considered as inherently coherent localized structures and the discovery of incoherent optical solitons has represented a significant progress [1]. As occurs for standard coherent solitons, incoherent solitons are characterized by a confinement of the field in the spatial or in the temporal domain. We introduce here a novel type of incoherent solitons that are neither spatial nor temporal, i.e., the incoherent field does not exhibit any confinement in the spatiotemporal domain; however, the uncorrelated frequency components that constitute the incoherent field exhibit a localized soliton behavior in the frequency domain [2].
Observation of induced modulational polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical fiber
Four-photon mixing in a low-birefringence fiber is strongly influenced by the orientation of the pump and signal waves with respect to the fiber axes. We experimentally investigated the dependence of the modulational gain spectra on pump power and polarization by mixing orthogonal pump and probe light beams in a birefringent optical fiber. With a pump on the fast fiber axis, a cascade of sidebands was generated in the regime of normal fiber dispersion. These sidebands are shown to correspond to 0.2–0.3-THz trains of pulses with complex polarization profiles. The analysis reveals that, at particular values of the input pump and probe powers and signal frequency detuning, trains of dark-solit…
Modal attraction on low order modes by Kerr effect in a graded refractive index multimode fiber
Modal attraction towards low order modes in a GRIN multimode fiber was experimentally observed at high power and characterized, thus enriching the dynamics of the Kerr self-cleaning effect leading to quasi fundamental mode generation.
Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves
Spatio-temporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-nanosecond pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predic…
Spatial and spectral nonlinear shaping of multimode waves
We demonstrate a novel nonlinear dynamics of multimode fibers that reshapes their spectral and spatial beam profiles, based on spatiotemporal modulation instability. Sidebands ranging from the visible to the near-infrared are carried by one and the same spatial bell-shaped profile.
Collisional line broadening and line shifting in N2-CO2 mixture studied by inverse Raman spectroscopy
Abstract Collisional effects in the Raman Q-branch of N 2 perturbed by CO 2 have been studied by high-resolution stimulated Raman spectroscopy. The Raman spectra recorded in the 0.3–1.0 atm and 295–1000 K pressure and temperature ranges are fitted with a theoretical profile taking into account line broadening, frequency shift and line mixing due to rotational energy transfers. The data at low density are used as basic data for the modeling of rotationally inelastic rates through sets of adjustable parameters. We have used in this study the two main models developed in the last decade and known as modified exponential gap (MEG) and energy corrected sudden (ECS) laws. Experimental spectra rec…
Dunham coefficients of 14N2 from CARS measurements of high vibrational states in a low-pressure discharge
Spectroscopic constants of the X1Σg+ ground state of 14N2 are deduced from CARS spectra recorded in a 4 Torr d.c. N2 glow discharge. Vibrational states up to ν = 14 have been observed but only the 11 lower levels which have a good signal-to-noise ratio have been processed. The Dunham constants that were deduced yield vibrational band centre positions in good agreement with those of Lofthus and Krupenie.
Nonlinear polarization effects in optical fibers: polarization attraction and modulation instability [Invited]
We review polarization stabilization techniques based on the polarization attraction effect in low-birefringence fibers. Polarization attraction or pulling may be based on cross-polarization modulation, on parametric amplification, and on Raman or Brillouin scattering. We also review methods for laser frequency conversion based on polarization modulation instabilities in low- and high-birefringence fibers, and photonic crystal fibers. Polarization instabilities in nonlinear fibers may also be exploited for sensing applications.
Even harmonic pulse train generation by cross-polarization-modulation seeded instability in optical fibers
International audience; We show that, by properly adjusting the relative state of polarization of the pump and of a weak modulation, with a frequency such that at least one of its even harmonics falls within the band of modulation instability, one obtains a fully modulated wave at the second or higher even harmonic of the initial modulation. An application of this principle to the generation of a 80-GHz optical pulse train with high extinction ratio from a 40-GHz weakly modulated pump is experimentally demonstrated using a nonzero dispersion shifted fiber in the telecom C band.
Strong reduction of optimum pump power for efficient wave conversion in optical fibers with dual-frequency circularly polarized pump waves.
We present experiments that show achievement of highly efficient generation of parametric sidebands in an optical fiber with dual-frequency, circularly polarized pump waves. An appropriate choice of the separation between the pump frequencies permits a strong reduction of the optimum power for highly efficient frequency conversion.
Study of collisional effects on band shapes of the ν1/2ν2 Fermi dyad in CO2 gas with stimulated Raman spectroscopy. III. Modeling of collisional narrowing and study of vibrational shifting and broadening at high temperature
High resolution stimulated Raman spectra (SRS) of the ν1/2ν2 Fermi dyad of CO2 have been recorded in the 0.4–22. amagat density range at 700 K and in the 0.6–16 amagat density range at 900 K. The data have been successfully analyzed with a theoretical model taking into account both rotational line mixing through the energy corrected sudden‐polynomial (ECS‐P) law for the relaxation matrix and vibrational line broadening γv and line shifting δv. The two vibrational parameters have been accurately determined from fit to the experimental spectra. These new high temperature data together with previous data obtained at 295 and 500 K [B. Lavorel et al., J. Chem. Phys. 93, 2176 (1990); B. Lavorel e…
The nonlinear Schrodinger equation and the propagation of weakly nonlinear waves in optical fibres and on the water surface
International audience; The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional par…
Spatiotemporal Dynamics in Multimode Nonlinear Optical Fibers
International audience
Multidimensional shaping of spatiotemporal waves in multimode nonlinear fibers
Recent experiments have shown that nonlinear wave propagation in multimode optical fibers leads to complex spatio-temporal phenomena. In this talk, we introduce new approaches for the control and optimization of nonlinear beam reshaping in the spatial, temporal and spectral dimensions. The first approach applies to spatial beam self-cleaning the technique of transverse wavefront shaping, which permits to launch an optimized input mode combination, that results in the stable generation of a whole nonlinear mode alphabet at the fiber output. The second approach introduces a longitudinal tapering of the core diameter of multimode active and passive fibers, which permits to generate ultra-wideb…
Buildup of terahertz vector dark-soliton trains from induced modulation instability in highly birefringent optical fiber.
We present the experimental observation of generation of vector dark-soliton pulse trains with terahertz repetition rates in the normal dispersion regime of an optical fiber. The polarization solitons build up from induced cross-phase modulation instability of two orthogonal pumps in a highly birefringent fiber.
Measurement and Analysis of the Raman Intensities of 12CD4
0022-2852; The stimulated Raman spectrum of 12CD4 was recorded at high resolution, in the spectral range 1963 to 2260 cm(-1). Intensities of the rovibrational transitions were estimated by fitting the line profiles. The recorded elementary spectrum was 1 cm(-1) wide; all recordings were then intensity calibrated. Afterward, the relative Raman intensities were analyzed by using a polarizability model developed previously [A. Boutahar and M. Loete, Can. J. Phys. 69, 26-35 (1991); J. P. Champion, M. Loete, and G. Pierre, in ''Spectroscopy of the Earth's Atmosphere and Interstellar Molecules'' (K. Narahari Rao and A. Weber, Eds.), pp. 388-397, Academic Press, Boston. 1992]. The investigated reg…
Extreme statistics in Raman fiber amplifiers : from experiments to analytical description
International audience; We describe the concept of an all-fibered device that enables the optical magnification of the amplitude jitter of low-fluctuation pulse trains, facilitating the measurement of the statistical properties by usual photodiodes and electronic equipments. Taking advantage of a highly nonlinear fiber with anomalous dispersion followed by central optical bandpass filtering, we experimentally demonstrate an amplification of small-scale fluctuations by a factor 10.
Emergence of extreme events in fiber based nonlinear devices
International audience
The cancellation of nonlinear and dispersive phase components on the fundamental optical fiber soliton: a pedagogical note
We consider the separate effects of nonlinear and dispersive propagation on a hyperbolic secant pulse propagating in an optical fiber. In particular, for small propagation distances, we present a straightforward derivation of the time-varying phase components developed across the pulse due to self-phase modulation (SPM) and group velocity dispersion (GVD). In this limit, we show that GVD is associated with a nonparabolic temporal phase which can exactly cancel the nonlinear phase component due to SPM across the entire pulse profile. The cancellation condition gives the launch condition for a fundamental optical fiber soliton.
Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre
International audience; A simple experimental technique to evaluate the second zero dispersion wavelength of very small core microstrutured fibres is described. Based on the effect of soliton self-frequency shift and its subsequent compensation in the vicinity of the second zero dispersion. the proposed method is applied to both standard and suspended core microstructured fibres by simply measuring the frequency stabilised soliton spectrum, avoiding any calculation and knowledge of any experimental parameters.
Instabilities of four-wave mixing
We predict that four-wave mixing driven by a dual frequency input undergoes different instability scenarios encompassing modulational instability or multiple shock formation in the anomalous and normal dispersion regime, respectively.
All-optical nonlinear simultaneous polarization and intensity regeneration of a 40-Gb/s telecommunication signal
We experimentally report the simultaneous all-optical regeneration of the polarization state and the intensity profile of a 40 Gb/s Return-to-Zero telecommunication signal by means of Kerr effect occurring in a single segment of fiber.
Spectral incoherent solitons: a localized soliton behavior in the frequency domain
We show both theoretically and experimentally in an optical fiber system that a noninstantaneous nonlinear environment supports the existence of spectral incoherent solitons. Contrary to conventional solitons, spectral incoherent solitons do not exhibit a confinement in the spatiotemporal domain, but exclusively in the frequency domain. The theory reveals that the causality condition inherent to the nonlinear response function is the key property underlying the existence of spectral incoherent solitons. These solitons constitute nonequilibrium stable states of the incoherent field and are shown to be robust with respect to binary collisions.
Temporal and Spectral Nonlinear Pulse Shaping Methods in Optical Fibers
The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.
Manakov Polarization Modulation Instability in Normal Dispersion Optical Fiber
We observed polarization modulation instability in the normal dispersion regime of randomly birefringent multi-km telecom optical fiber. The instability is pumped by two wavelength multiplexed and orthogonally polarized intense continuous lasers.
Collisional Broadening of Rotational Lines in the Stimulated Raman Pentad Q-Branch of CD4
Self- and argon-broadening coefficients are reported for a number of Raman Q-branch transitions in the nu(1) and nu(2) + nu(4) bands of (C-12)D4 at room temperature (296 K). The coefficients display a variation with j and with C exp n (symmetry species A, E, F) that is essentially independent of collision partner and which is similar to the j- and C exp n-dependence found in previous measurements of the IR line-broadening coefficients. The rotationally inelastic collision rates previously measured by Foy et al. (1988) for (C-13)D4 (V4 = 0, 1) in collision with (C-13)D4 or Ar account for only a part of the Raman broadening rate, suggesting possibly significant contributions to the linewidths…
Generation of a 160-GHz transform-limited pedestal-free pulse train through multiwave mixing compression of a dual-frequency beat signal.
International audience; We report the experimental generation of a 160-GHz picosecond pulse train at 1550 nm, using multiple four-wave mixing temporal compression of an initial dual-frequency beat signal in the anomalous-dispersion regime of a nonzero dispersion-shifted fiber. Complete intensity and phase characterizations of the pulse train were carried out by means of a frequency-resolved optical gating technique, showing that 1.27-ps transform-limited pedestal-free Gaussian pulses were generated.
Observation of modulational instability induced by velocity-matched cross-phase modulation in a normally dispersive bimodal fiber
We demonstrate experimentally the existence of cross-phase-modulation-induced modulational instability in the absence of group-velocity mismatch between the interacting nonlinear dispersive waves. The experiment is performed by means of a normally dispersive isotropic bimodal fiber. The group-velocity mismatch between the fundamental and the first-order modes that constitute the two interacting waves is controlled by wavelength tuning. A strong power dependence of the modulational instability spectra is observed near the condition of group-velocity matching.
Spatiotemporal light-beam compression from nonlinear mode coupling
We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to four-fold shortening of the injected sub-nanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.
Shallow water rogue wavetrains in nonlinear optical fibers
International audience; In addition to deep-water rogue waves which develop from the modulation instability of an optical CW, wave propagation in optical fibers may also produce shallow water rogue waves. These extreme wave events are generated in the modulationally stable normal dispersion regime. A suitable phase or frequency modulation of a CW laser leads to chirp-free and flat-top pulses or flaticons which exhibit a stable self-similar evolution. Upon collision, flaticons at different carrier frequencies, which may also occur in wavelength division multiplexed transmission systems, merge into a single, high-intensity, temporally and spatially localized rogue pulse.
Shallow water rogue waves in nonlinear optical fibers
The dynamics of extreme waves, often known as freak or rogue waves (RW), is presently a subject of intensive research. In oceanography, RW are mostly known as a sudden deep-water event which is responsible for ship wreakages and can be modeled by the 1D Nonlinear Schrodinger Equation (NLSE). In this framework, an ideal testbed is provided by optical pulse propagation in nonlinear optical fibers: extreme solitary wave emissions during supercontinuum generation or the first experimental observation of the Peregrine solitons have indeed been carried out exploiting the modulation instability occuring in fibers with anomalous dispersion.
Incoherent modulation instability in instantaneous nonlinear Kerr media
We demonstrate theoretically and experimentally in an optical fiber system that partially temporally incoherent light exhibits modulational instability during its propagation in an instantaneous response nonlinear medium. We show that the modulation frequency and gain are substantially increased with respect to the corresponding values of coherent modulational instability.
Parabolic Pulse Amplifiers
International audience; Recent studies in nonlinear optics have led to the discovery of a new class of ultrashort pulse generated in fiber amplifiers by the self-similar propagation of an arbitrary input pulse. These pulses with a parabolic shape and linear chirp, called `optical similaritons,' represent asymptotic solutions of the nonlinear Schrödinger equation with gain, towards which any initial pulse of given energy converges, independently of its intensity profile. Parabolic pulse amplifiers can be easily developed with standard optical fibers and commercial devices. Our goal here is to emphasize the main properties of similaritons and to discuss a few of their numerous new application…
Spatiotemporal Nonlinear Interactions in Multimode Fibers (invited)
International audience
Turbulent Dynamics of an Incoherently Pumped Passive Optical Fibre Cavity: quasi-solitons and dispersive waves
International audience; We study numerically and experimentally the dynamics of an incoherently pumped passive optical fibre ring cavity. We show that the cavity exhibits a quasi-soliton turbulence dynamics, whose properties are controlled by the degree of coherence of the injected pump wave: as the coherence of the pump is degraded, the cavity exhibits a transition from the quasi-soliton turbulent regime toward the weakly nonlinear turbulent regime characterized by short-lived rogue wave events. This behavior is reminiscent of the corresponding dynamics obtained in the purely conservative (Hamiltonian) problem. Experimental results are reported by using a standard telecommunication optical…
Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers
The fundamental asymptotic nature of parabolic similariton pulses in normal-dispersion fiber amplifiers is experimentally demonstrated. With frequency-resolved optical gating characterization measurements with a fixed input pulse energy, the output parabolic pulse characteristics are shown to be invariant with the input pulse profile and duration and to be completely determined only by the amplifier parameters.
High-resolution stimulated Raman spectroscopy of O2
Abstract The S S and O O branches of the fundamental vibrational band of molecular oxygen in its electronic ground state have been resolved for the first time in Raman spectroscopy. The spectra have been observed, at room temperature and low pressure, with a stimulated Raman scattering (S.R.S.) spectrometer including a multipass cell. From these accurate Raman data combined with microwave data, we have improved the values of the vibrational, rotational, spin-spin, and spin-rotation interactions constants in the v = 1 vibrational state. Moreover, Raman Q branches of the first and second hot-bands have been recorded, allowing us to determine a set of molecular parameters for the v = 2 and v =…
Generation and detection of optical rogue-wave-like fluctuations in fiber Raman amplifiers
Rogue wave-like statistics is reported in a fiber Raman amplifier. The pump-signal noise transfer leads to the development of large peak-power fluctuations following a powerlaw probability distribution. Discrimination of the rarest events is demonstrated.
Effects of structural irregularities on modulational instability phase matching in photonic crystal fibers
International audience; The effect of structural irregularities in photonic crystal fibers on scalar and vector modulational instability (MI) processes is studied by numerical simulations and experiments. For an anomalous-dispersion regime pump, variations in core ellipticity as small as 0.5% over length scales of the order of several meters are shown to have a negligible effect on scalar MI, yet they completely suppress vector MI. In contrast, for a normal-dispersion regime pump, vector MI is shown to be robust against such fluctuations.
Cross-phase modulational instability induced by Raman scattering in highly birefringent fiber
We report experimental and theoretical studies of Raman-induced cross-phase modulational instabilities (XPMI) in a high-birefringence, normally dispersive optical fiber. Experimental results reveal that the Raman-Stokes wave, generated by a quasi-CW pump beam, interacts with the latter to create a novel type of XPMI sidebands. These sidebands are characterized by a narrow gain bandwidth. The sideband frequencies are well reproduced by a linear stability analysis as well as by full numerical solutions of the coupled generalized nonlinear Schrödinger equations.
Collision of Akhmediev Breathers in Nonlinear Fiber Optics
We report here a novel fiber-based test bed using tailored spectral shaping of an optical-frequency comb to excite the formation of two Akhmediev breathers that collide during propagation. We have found specific initial conditions by controlling the phase and velocity differences between breathers that lead, with certainty, to their efficient collision and the appearance of a giant-amplitude wave. Temporal and spectral characteristics of the collision dynamics are in agreement with the corresponding analytical solution. We anticipate that experimental evidence of breather-collision dynamics is of fundamental importance in the understanding of extreme ocean waves and in other disciplines dri…
Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications
International audience; In many photonics applications, especially in optical fibre based systems, the state of polarization of light remains so far an elusive uncontrolled variable, which can dramatically affect the performances of that systems and which one would like to control as finely as possible. Here, we experimentally demonstrate light-by-light polarization control via a nonlinear effect occurring in single mode optical fibre. We observe a polarization attraction and stabilization of a 10 Gbit/s optical telecommunication signal around 1550 nm. We also validate the potentiality of the device to annihilate very fast nanosecond polarization bursts. This result confirms yet another fas…
Cascadability and reshaping properties of a saturable absorber inserted inside a RZ transmission line for future 160-Gbit/s all-optical 2R-regenerators
International audience; In this prospective work, we analyze the behavior of a quantum-well microcavity saturable absorber component cascaded into a 100-km SMF RZ transmission line in order to annihilate the ghost-pulse phenomenon in the following simplified “...010101...” 160-Gbit/s 2-bit pattern at 1555 nm. Recirculating-loop experiments show a maximal ghost-pulse extinction up to 11.6 dB as well as an intensity extinction ratio enhancement higher than 6 dB over at least 800 km of propagation.
Complete characterization of terahertz pulse trains generated from nonlinear processes in optical fibers
The measurement technique of frequency-resolved optical gating (FROG) is used to characterize the intensity and phase of terahertz pulse trains generated from nonlinear and dispersive interactions in optical fibers. We show that existing FROG retrieval algorithms are easily adapted to allow the retrieval of periodic pulse characteristics and, using synthetic pulse trains generated from numerical simulations, we demonstrate how FROG can differentiate between periodic pulse trains with fundamentally different intensity and phase characteristics, yet qualitatively similar autocorrelation functions and spectra. Experimental results are presented for the FROG characterization of a 0.3-THz sinuso…
Seeded intermodal four-wave mixing in a highly multimode fiber
International audience; We experimentally and theoretically investigate the process of seeded intermodal four-wave mixing in a graded-index multimode fiber, pumped in the normal dispersion regime. By using a fiber with a 100-mu m core diameter, we generate a parametric sideband in the C-band (1530-1565 nm), hence allowing the use of an erbium-based laser to seed the mixing process. To limit nonlinear coupling between the pump and the seed to low-order fiber modes, the waist diameter of the pump beam is properly adjusted. We observe that the superimposed seed stimulates the generation of new spectral sidebands. A detailed characterization of the spectral and spatial properties of these sideb…
Spatiotemporal Nonlinear Beam Shaping
The reshaping of multimode waves in optical fibers is a process where the spatial and spectral degrees of freedom are inherently coupled. Our experiments demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to supercontinuum generation with a uniform bell-shaped spatial beam profile.
Experimental observation of incoherent modulation instability in standard optical fibers
In this work, we demonstrate theoretically and experimentally that a partially temporally incoherent light can exhibit modulational instability when propagating in an optical fiber with instantaneous nonlinear Kerr response.
Supercontinuum to solitons: New nonlinear structures in fiber propagation
We review our recent work in the field of optical rogue wave physics and applications. Beginning from a brief survey of the well-known noise and incoherence processes in optical fiber supercontinuum generation, we trace the links to recent developments in studying the emergence of high contrast localised breather structures in both spontaneous and induced nonlinear instabilities. In the latter case, we discuss our recent measurements that have reported the experimental observation of the Peregrine soliton, a unique class of rational soliton predicted to exist over 25 years ago and never previously observed.
Laser impulsionnel Raman à verrouillage de modes passif fonctionnant à 1 GHz
National audience
Instabilité modulationnelle incohérente
Dans cet article, nous presentons une etude theorique et experimentale de l'instabilite de modulation d'une onde partiellement coherente. Les experiences ont ete realisees dans une fibre optique standard au voisinage de 1320 nm. En particulier, et en comparaison avec le cas coherent, nous observons que l'utilisation d'une onde incoherente conduit a une augmentation significative du gain et de la frequence de modulation.
Thermodynamic approach of supercontinuum generation in photonic crystal fiber
We show that the spectral broadening process inherent to supercontinuum generation may be described as a thermalization process, which results from the natural irreversible evolution of the optical field towards a thermodynamic equilibrium state.
Quasi-soliton spatial autoguidé en milieu non lineaire quadratique
International audience; Nous démontrons ici des phénomènes d'autoguidage optique existant dans les milieux à non-linéarités quadratiques. En plus de la formation puis disparition d'un phénomène auto confiné, nous observons des effets de commutation ultrarapide et de démultiplication spatiale, ainsi qu'une restructuration temporelle suivie d'élargissements spectraux.
Optical Wave Turbulence in Fibers
Stimulated Raman spectroscopy as the essential tool for studying collisional effects : application to combustion
No abstract available
Nonlinear repolarization dynamics in optical fibers: transient polarization attraction
International audience; In this work, we present a theoretical and experimental study of the response of a lossless polarizer to a signal beam with a time-varying state of polarization (SOP). By lossless polarizer, we mean a nonlinear conservative medium (e.g., an optical fiber) that is counterpumped by an intense and fully polarized pump beam. Such a medium transforms input uniform or random distributions of the SOP of an intense signal beam into output distributions that are tightly localized around a well-defined SOP. We introduce and characterize an important parameter of a lossless polarizer--its response time. Whenever the fluctuations of the SOP of the input signal beam are slower th…
Influence of parametric four-wave mixing effects on stimulated Raman scattering in bimodal optical fibers.
We analyze stimulated Raman scattering in normally dispersive bimodal fibers under single-frequency pumping conditions. Experiments show that whenever the interacting nonlinear waves propagate in the LP(01) and LP(11) modes, a parametric four-wave mixing enters unavoidably into play in the wave-coupling behavior, which causes qualitatively different phenomena compared with the ordinary process of Raman scattering, such as the parametric suppression of the first-order Raman Stokes radiation.
HIGH RESOLUTION STIMULATED RAMAN SPECTROSCOPY WITH A 3 MHz ACCURACY WAVEMETER
Nonlinear spatial self-cleaning in multimode amplifying fiber and fiber laser cavity
During the last years, multimode fibers (MMFs) were used as an experimental platform for the observation of complex nonlinear propagation phenomena, thanks to their additional spatiotemporal degrees of freedom with respect to single mode fibers. Multimode solitons [1], geometric parametric instability [2], self-induced beam cleaning (SBC) [3] and supercontinuum generation have been reported [4]. In all of these situations considered so far the MMFs were standard graded-index fibers: the intermodal interactions took place in a conservative system (propagation losses were negligible). In this work we have experimentally investigated the Kerr SBC in three dissipative systems: a MMF with signif…
Scaling laws for inelastic collision processes in diatomic molecules
International audience
Sources d'impulsions paraboliques pico- et femto- secondes à fibres optiques
National audience
Multiple four-wave mixing in optical fibers: 1.5–3.4-THz femtosecond pulse sources and real-time monitoring of a 20-GHz picosecond source
International audience; In this work, we report recent progress on the design of all-fibered ultra-high repetition-rate pulse sources for telecommunication applications around 1550 nm. The sources are based on the non-linear compression of an initial beat-signal through a multiple four-wave mixing process taking place into an optical fiber. We experimentally demonstrate real-time monitoring of a 20 GHz pulse source having an integrated phase noise 0.01 radian by phase locking the initial beat note against a reference RF oscillator. Based on this technique, we also experimentally demonstrate a well-separated high-quality 110 fs pulse source having a repetition rate of 2 THz. Finally, we show…
Accurate spectroscopic constants of nitrogen determined from stimulated Raman spectra of the fundamental and first hot bands
Nitrogen spectra of the Q-branch of the fundamental and the first hot bands were recorde with a high-resolution stimulated Raman spectrometer at atmospheric pressure and ca. 1300 K. The absolute frequencies of the Raman lines were measured with high accuracy, leading to a refinement of spectroscopic constants. A temperature estimation was also performed from the Raman intensities.
Weak Langmuir turbulence in disordered multimode optical fibers
We consider the propagation of temporally incoherent waves in multimode optical fibers (MMFs) in the framework of the multimode nonlinear Schr\"odinger (NLS) equation accounting for the impact of the natural structural disorder that affects light propagation in standard MMFs (random mode coupling and polarization fluctuations). By averaging the dynamics over the fast disordered fluctuations, we derive a Manakov equation from the multimode NLS equation, which reveals that the Raman effect introduces a previously unrecognized nonlinear coupling among the modes. Applying the wave turbulence theory on the Manakov equation, we derive a very simple scalar kinetic equation describing the evolution…
Two-stage linear-nonlinear shaping of an optical frequency comb as rogue nonlinear-Schrödinger-equation-solution generator
International audience; We report a wave generator of complex solutions of the nonlinear Schrödinger equation (NLSE) combining both intensity and phase spectral shaping of an initial optical frequency comb with subsequent nonlinear propagation in an optical fiber. We apply the explicit analytical form of the two-breather solutions of the NLSE as a linear spectral filter to shape ideal modulation of a continuous wave. The additional nonlinear propagation of the tailored wave provides experimental evidence of both the growth and decay of the fundamental second-order periodic breather solution. The temporal and spectral profiles of the higher-order breather are in excellent agreement with the …
Experimental investigation of a polarization attractor at telecommunication wavelengths
We report the experimental observation of a polarization attraction process taking place in an optical fiber around 1550 nm and based on a nonlinear interaction between two counter-propagating waves.
Generation and detection of optical rogue-wave like fluctuations in fiber Raman amplifiers
International audience; Rogue wave-like statistics is reported in a fiber Raman amplifier. The pump-signal noise transfer leads to the development of large peak-power fluctuations following a power-law probability distribution. Discrimination of the rarest events is demonstrated.
Comparaison expérimentale de techniques de caractérisation en intensité et phase d'impulsions optiques ultracourtes
Nous comparons experimentalement les resultats de la caracterisation en intensite et en phase d'impulsions optiques ultracourtes obtenus par differentes techniques employant un montage auto/inter-correlateur en intensite et un analyseur de spectre. Nous employons pour ces tests une impulsion en limite de Fourier, une impulsion affectee par l'auto-modulation de phase et une impulsion similariton.
High speed optical transmission at 2 μm in subwavelength waveguides made of various materials
We report the transmission of a 10 Gbps telecommunication signal at 2 μm in waveguides made of three different materials: Si, SiGe and TiO2. Bit error rates below 10−9 can be achieved after transmission in the devices with subwavelength dimensions.
Collisional shifting and broadening coefficients for the rovibrational anisotropic S(J) lines of nitrogen studied by inverse Raman spectroscopy
0377-0486; Line shifting and broadening coefficients of the anisotropic S(J) lines (v = 0, J --> v = 1, J + 2) of the nitrogen molecule were measured at room temperature using high-resolution stimulated Raman spectroscopy. A rotational quantum number dependence of the S(J) line shifts was observed. In order to avoid an asymmetry of experimental origin, a suitable theoretical profile was fitted to the experimental lineshapes. This study allows the testing of the theoretical methods for calculating the line broadening coefficients in anisotropic Raman scattering, which have already been used in the analysis of infrared absorption data. The behaviour of the modified sum rule and the RPA (rando…
Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber
International audience; We present an experimental analysis of polarization and intermodal noise-seeded parametric amplification, in which dispersion is phase matched by group velocity mismatch between either polarization or spatial modes in birefringent holey fiber with elliptical core composed of a triple defect. By injecting quasi-CW intense linearly polarized pump pulses either parallel or at 45 degrees with respect to the fiber polarization axes, we observed the simultaneous generation of polarization or intermodal modulation instability sidebands. Furthermore, by shifting the pump wavelength from 532 to 625 nm, we observed a shift of polarization sidebands from 3 to 8 THz, whereas int…
Thermodynamic approach of supercontinuum generation
International audience; This paper is aimed at providing an overview on recent theoretical and experimental works in which a thermodynamic description of the incoherent regime of supercontinuum generation has been formulated. On the basis of the wave turbulence theory, we show that this highly nonlinear and quasi-continuous-wave regime of supercontinuum generation is characterized by two different phenomena. (i) A process of optical wave thermalization ruled by the four-wave mixing effects: The spectral broadening inherent to supercontinuum generation is shown to result from the natural tendency of the optical field to reach its thermodynamic equilibrium state, i. e., the state of maximum n…
Optical OCDMA enhanced by nonlinear optics
International audience; Intended for the next generation of optical access networks, OCDMA is of great interest to meet the demand of increasing the number of users per access fiber, especially as spectral phase coding increases its performance in the optical domain. This, however, requires handling broad spectra and short pulses, which are best dealt with using opto-electronic or all-optical devices instead of slower electronics. Among others, we demonstrate spectral-phase-coded OCDMA using a fiber-based saturable absorber as thresholding in the receiver.
Collisional shifting and broadening coefficients for the rovibrational anisotropic lines of the ν1/2ν2 fermi dyad in CO2 gas studied by stimulated Raman spectroscopy
High-resolution stimulated Raman spectroscopy was applied to the study of collisional broadening and shifting for rovibrational anisotropic Raman lines of the Fermi dyad of molecular carbon dioxide. The O(J) lines of the ν1 band and the S(J) lines of the 2ν2 band were recorded at 295 K. The pressure-induced line shifts were obtained and compared with the overall shift of the high-density Raman Q-branch. A rotational quantum number dependence of the rovibrational line broadening coefficients was observed. The experimental line broadening coefficients were used in order to check the ability of two theoretical methods (random phase approximation and sum rule) for calculating the line broadenin…
Determination of temperature by stimulated raman scattering of molecular nitrogen, oxygen, and carbon dioxide
We have determined the temperature from SRS spectra of N2-N2, N2-CO2, O2-O2, and CO2-CO2 recorded in wide pressure and temperature ranges. The fitting procedure takes simultaneously into account the Dicke effect and motional narrowing. We have quantified the accuracy of the MEG and ECS-P models for rotational relaxation. The temperature extracted from each model is compared with thermocouple measurements. The influence of vibrational broadening and shifting is discussed in detail.
Observation of Manakov polarization modulation instability in the normal dispersion regime of randomly birefringent telecom optical fiber
Four-wave mixing instabilities in telecom fibers
Instabilities in fiber four-wave mixing are investigated, revealing the formation of colliding dispersive shock waves in the normal GVD regime and collective modulation instabilities in the anomalous GVD regime.
Real time measurement of long parabolic optical similaritons
International audience; Long optical similaritons using a Raman fibre amplifier are generated. These pulses, with a highly parabolic profile, are monitored in real time on a high speed oscilloscope. Tunability of both the temporal and spectral widths of the pulses is then investigated.
Nonlinear modal control by Kerr beam self-cleaning and wavefront shaping in graded-index multimode fiber
International audience
Elargissement spectral d’impulsions par ondes de choc dispersives dans les fibres optiques
National audience; Nous étudions l’élargissement spectral induit par ondes de choc dispersives d’impulsions générées par modulation électro-optique dans une fibre optique en dispersion normale.
Effets de polarisation non-linéaires et événements extrêmes dans les fibres optiques
Rotational collisional line broadening at high temperatures in the N2 fundamental Q-branch studied with stimulated Raman spectroscopy
Self broadened N 2 Q-branch spectra are measured by high resolution stimulated Raman spectroscopy in the pressure region 0.25-1.9 atm. and in the temperature range 295-1310 K. Non additivity of the Q(J) components due to line overlap arising in the highest pressure range explored is carefully taken into account. Excellent fit of the whole spectra is thus obtained for each pressure with linearly density-dependent line widths. Semi-classical calculations of the line-broadening coefficients lead to consistent values with all the measured ones. These calculations are extended to higher J values and to higher temperatures (up to 2500 K). At last, a simple phenomenological model based on a polyno…
Random walks and random numbers from supercontinuum generation
International audience; We report a numerical study showing how the random intensity and phase fluctuations across the bandwidth of a broadband optical supercontinuum can be interpreted in terms of the random processes of random walks and L´evy flights. We also describe how the intensity fluctuations can be applied to physical random number generation. We conclude that the optical supercontinuum provides a highly versatile means of studying and generating a wide class of random processes at optical wavelengths.
320GHz, 640GHz and 1THz femtosecond pulse sources based on multiple four wave mixing in highly non linear optical fibers
Ultra-high repetition rate, transform-limited femtosecond pulse trains have been generated around 1555 nm at 320 GHz, 640 GHz and 1 THz through the compression of a dual frequency beat-signal in a highly nonlinear optical fiber.
Sensitivity of SHG-FROG for the characterization of ultrahigh-repetition-rate telecommunication laser sources
International audience; We analyze experimentally the sensitivity of second-harmonic generation frequency-resolved optical gating (SHG-FROG) for the complete intensity and phase characterization of both a sinusoidal beat signal and a train of 1.3 ps pulses at a repetition rate of 160 GHz at 1550 nm. Using a commercially-available optical spectrum analyzer in the SHG-FROG set-up, incident pulses with energies of only 125 and 190 fJ, which correspond to the beat signal and the 1.3 ps pulse train, respectively, have been accurately characterized.
Thermodynamic approach of statistical nonlinear optics
The coherence properties of random nonlinear optical fields can be described in detail by thermodynamic arguments based on the wave turbulence theory. We shall review recent progress on this kinetic approach of statistical nonlinear optics.
High-Resolution Nonlinear Raman-Spectroscopy in Gases
0377-0486; The resolution in the Raman spectra of gases has been greatly improved by the development of the different methods of non-linear Raman scattering. When two laser beams, one of which has a tunable frequency, are focused in a sample, a stimulated Raman process occurs as soon as the frequency difference between the two lasers is equal to a Raman-active rovibrational or rotational transition frequency. The Raman resonance can be detected in different ways: by coherent anti-Stokes Raman scattering (CARS) or the corresponding Stokes process (CSRS), by a gain in one of the beams (stimulated Raman gain spectroscopy, SRGS) or a loss in the other (inverse Raman spectroscopy, IRS), or even …
Incoherent solitons generated in instantaneous response nonlinear Kerr media
We show theoretically and experimentally in an optical fiber system, that incoherent domain wall solitons can be generated spontaneously from incoherent light, despite of the instantaneous response of the fiber Kerr nonlinearity.
Nonlinear dynamics induced by optical shocks formation
This paper reports on recent studies suggesting that optical shocks can rule the dynamics of cw (or quasi-cw) optical field propagating in glass when common phenomena such as four-wave mixing in fibers or catastrophic self-focusing in bulk are considered. The post-shock oscillations evolve into colliding dark solitons that determine the output pattern in a non-recurrent fashion. This scenario based on the defocusing nonlinear Schrodinger equation and its reduction to a hydrodynamical model is substantially confirmed by our experimental data consisting of recorded output spectra and temporal patterns retrieved from SHG-FROG traces. Numerical results also indicate that, during self-focusing, …
Large-signal enhanced frequency conversion in birefringent optical fibers: theory and experiments
Strong frequency conversion among light waves propagating in a low-birefringence optical fiber in the normal-dispersion regime is experimentally investigated. Modulational gain spectra are obtained by injection of a signal orthogonally polarized with respect to a pump beam aligned with the slow fiber axis. Measurements reveal that, for signal power levels above a certain threshold value, peak conversion is obtained at pump signal frequency detunings far from the phase-matching condition. The large-signal three-wave mixing regime is well described by integrable nonlinear coupled-wave equations.
All-optical control and stabilization of the polarization state of a 10-Gbit/s RZ telecommunication signal
International audience; We report the experimental observation of an all-fibered polarization attractor at telecommunication wavelengths. We experimentally show that is possible to all-optical control the state of polarization of a 10 Gbit/s telecommunication signal through the injection of a counterpropagating pump wave.
Spatial beam cleaning in quadratic nonlinear medium
We show experimentally that a laser beam scrambled by propagation in a short segment of multimode fiber may be cleaned by the nonlinear propagation in KTP cristal with type-II second-harmonic generation.
Synthesis of optical pulses by use of similaritons.
We propose and demonstrate experimentally a novel method for synthesizing chirp-free pulses of any desired temporal shape by means of chirp compensation and spectral filtering of optical Raman similaritons. The synthesized pulse shape is independent of the waveform, wavelength and energy of the initial pulses that are used for the similariton generation. Pulses are fully characterized by means of different techniques including cross-correlation and spectrum measurements, and the PICASO technique.
Shallow water optical rogue waves: Optical tsunamis
Observation of Modulational Instability induced by a dynamical Bragg grating in an optical fiber
We present a detailed experimental study on Bragg Modulational Instability in a highly birefringent fiber. The originality of our scheme is that the index modulation is obtained through cross phase modulation with a beating wave.
Coherent wavelength generation in multimode fibers
National audience
Nonlinear spectral shaping and optical rogue events in fiber-based systems
International audience; We provide an overview of our recent work on the shaping and stability of optical continua in the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled using a carefully chosen seed. A particular example of this is the first experimental observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves.
Taper à fibre optique microstructurée air/slice à dispersion modifiée pour une émission large bande et accordée autour de 2 µM par mélange à quatre ondes dégénérées
International audience; Ce travail rapporte la conception, la fabrication et la caractérisation d'une fibre optique mircrostructurée air/silice effilée permettant une conversion de fréquence large bande par le processus de mélange à quatre ondes vers le moyen infra-rouge. Nous démontrons expérimentalement une bande de gain paramétrique de près de 100 nm. Une utilisation envisagée de ce taper réside dans le développement de sources laser femtosecondes.
Façonnage optique non-linéaire dans les fibres optiques
National audience
Multidimensional Shaping of SpatiotemporalWaves in Multimode Nonlinear Fibers (invited)
International audience
Polarization modulation instability in a Manakov fiber system
International audience; The Manakov model is the simplest multicomponent model of nonlinear wave theory: It describes elementary stable soliton propagation and multisoliton solutions, and it applies to nonlinear optics, hydrodynamics, and Bose-Einstein condensates. It is also of fundamental interest as an asymptotic model in the context of the widely used wavelength-division-multiplexed optical fiber transmission systems. However, although its physical relevance was confirmed by the experimental observation of Manakov (vector) solitons in a planar waveguide in 1996, there have in fact been no quantitative experiments confirming its validity for nonlinear dynamics other than soliton formatio…
All-fibered high-quality low duty-cycle 20-GHz and 40-GHz picosecond pulse sources
International audience; In this work, we demonstrate all-fibered 20-GHz and 40-GHz picosecond pulse sources with duty cycles as low as 1/14. The pulse train is achieved via the high-quality compression of an initial sinusoidal beating through four segments of optical fibers. General design rules are proposed and experimental results are in agreement with numerical predictions.
Une nouvelle famille d'ondes scélérates dans les fibres optiques
National audience; Nous démontrons une nouvelle famile d'ondes scélérates qui peut émerger dans les fibres optiques à dispersion normale.
Extreme statistics in Raman fiber amplifiers : influence of pump depletion and dispersion
OSA 2010 NonLinear Photonics Best Student Poster Award; International audience; We experimentally and theoretically investigate the influence of pump depletion effects on extreme statistics observed in fiber Raman amplifiers. We also report on the impact of the dispersion of the fiber.
On the designing of densely dispersion-managed optical fiber systems for ultrafast optical communication
We present some theoretical and experimental results which suggest the possibility of constructing a non-empirical methodology of designing optical transmission systems with ultra high bit-rate per channel. Theoretically, we present an average dispersion decreasing densely dispersion-managed (A4dm) fiber system, which exhibits many advantages over the densely dispersion-managed fiber system, such as the possibility of transmitting chirp-free Gaussian pulses at 160 Gbit/s per channel over transoceanic distances, with a reduced energy and minimal intra-channel interaction. Experimentally we present generation of a 160-GHz picosecond pulse train at 1550 nm using multiple four-wave mixing tempo…
Optical peregrine soliton generation in standard telecommunication fibers
By combining real time characterization with cut-back measurements, we provide the first direct observation of Peregrine-like soliton longitudinal evolution dynamics and report a new effect associated with the breakup of a Peregrine soliton into two subpulses, each providing similar characteristics of localization upon finite background. Experimental results are in good agreement with simulations.
Observation of Frequency Tunable Cross-Phase Modulation Instabilities in Highly Birefringent Photonic Crystal Fiber
We observed frequency tunable modulation instability owing to cross-phase modulation in normal group velocity dispersion regime of a birefringent holey fiber. Sideband shifts were 3-8 THz for polarization and 30-60 THz for modal instabilities.
Nonlinear virtues of multimode fibre
The finding that multimode optical fibres support a rich and complex mix of spatial and temporal nonlinear phenomena could yield a plethora of promising applications.
Spatio-temporal beam dynamics in multimode nonlinear optical fibers
We overview recent advances in the spatio-temporal nonlinear dynamics of optical pulses propagating in multimode optical fibers. The Kerr effect leads to spatial beam self-cleaning in a graded-index multimode optical fiber, followed by sideband series generation spanning multiple octaves. Effectively single mode supercontinuum spanning from the visible to the mid-infrared was also demonstrated. Enhancement of Kerr beam self-cleaning was observed in active fiber with quasi-step index profile. Moreover, mutual self-cleaning was recently reported for both the fundamental and the second harmonic beams in optically poled multimode fibers with cubic and quadratic nonlinearity.
160-GHz picosecond pulse train generation through multiwave mixing compression of a dual frequency beat signal
We report the experimental generation and characterization of a 160-GHz picosecond puise train using multiple four-wave mixing temporal compression of an initial dual frequency beat signal in the anomalous-dispersion regime of a non-zero dispersion shifted fiber.
Generation of High-Repetition-Rate Dark Soliton Trains and Frequency Conversion in Optical Fibers
Induced modurational polarization instability in birefringent fibers leads to trains of dark soliton-like pulses. Optimal large-signal cw and soliton frequency conversion is also analysed.
High-harmonic km-long self-pulsed Raman fiber laser
Raman all-fiber lasers have attracted considerable interest during the past two decades due to their convenient use and extended wavelength coverage when compared to rare-earth-doped fiber lasers. Still, little is known about their potential as pulsed laser sources. Mode locked Raman fiber lasers have been demonstrated quite recently [1,2], as well as harmonic mode-locking with a record of 500,000 intra-cavity pulses in a dissipative four-wave mixing configuration using a fiber Bragg grating [3].
Control processes for stimulated Raman scattering in optical fibers by dual-frequency pumping
We pointed out that with nondegenerate frequency, and orthogonally polarized pump waves, the SRS may be suppressed in one of the axes of a highly birefringent fiber either via a four wave mixing (FWM) parametric process, or through the orthogonal component of the Raman nonlinearity.
Rapid characterisation of Photonic Crystal Fibre dispersive properties by a stochastic and tunable picosecond pump source
International audience
Supercontinuum Generation and Intermodal Four-Wave Mixing in a Step-Index Few-Mode Fibre
International audience; The complex spatiotemporal dynamics of nonlinear light propagation in multimode fibers (MMFs) has recently witnessed a renewed interest because of their experimental realization in emerging key areas of laser physics and fiber optics [1]. Specifically, MMFs have a number of linear and nonlinear optical properties that make them very attractive to investigate new spatiotemporal effects fundamentally different from standard single-mode fibers. These include the observation of multimode solitons [2], intermodal four-wave mixing (FWM) [3], geometric parametric instabilities [4], spatial beam self-cleaning [5], and the generation of supercontinuum (SC) light when pumping …
Experimental evidence of Brillouin-induced polarization wheeling in highly birefringent optical fibers
International audience; We study the influence of Stimulated Brillouin Scattering on the polarization stabilization of a light beam propagating in a highly-birefringent optical fiber. In particular, due to a saturation effect, we find that the output polarization lies on a ring when the polarization is represented onto the Poincaré sphere.
Emergence of extreme events in fiber-based nonlinear devices
We review our experimental and theoretical results showing the emergence of rogue events during light propagation in fiber-based nonlinear systems. Distinct statistical properties are underlined through parametric and Raman amplifications, supercontinuum generation and optical turbulence.
NONLINEAR OPTICS Nonlinear virtues of multimode fibre
The finding that multimode optical bres support a rich and complex mix of spatial and temporal nonlinear phenomena could yield a plethora of promising applications.
Experimental observation of modal attraction in optical fibers
We investigate experimentally nonlinear optical attractors based on four-photon mixing interaction of counterpropagating waves in optical fibers.
CONVERSIONS DE FREQUENCE ULTRA LARGE BANDE PAR MELANGE A QUATRE ONDES INTERMODAL EN CASCADE DANS LES FIBRES MULTIMODES
International audience; Nous mettons en évidence des effets de conversion spectrale paramétrique avec des décalages spectraux très importants (~200THz) dans une fibre à gradient d'indice qui, pompée avec une source laser picoseconde à 1064nm, supporte quatre modes de propagation. À travers des études expérimentales, analytiques et numériques détaillées, nous montrons que les multiples raies paramétriques sont générées par un processus en cascade complexe faisant intervenir des mélanges à quatre ondes intermodaux. Les longueurs d'onde paramétriques résultantes s'étendent dans le visible jusqu'à 410nm et dans le proche infrarouge jusqu'à 1355nm. MOTS-CLEFS : dynamique spatio-temporelle ; conv…
Pressure broadening, shift, and interference effect for a multiplet line in the rovibrational anisotropic stimulated raman spectrum of molecular oxygen
0022-2852; High-resolution stimulated inverse Raman spectroscopy has been applied to the study of collisional broadening, shifting, and line mixing for the O-o(J, N = 5) triplet line of the fundamental vibrational band of molecular oxygen. Accurate line broadening coefficients for the individual J components within the triplet have been measured for the first time and show a significant J dependence. The line broadening coefficients are larger than those previously obtained for unresolved pure rotational Raman lines. The additional broadening is expected to result from electronic spin relaxation. The pressure-induced line shift has been obtained for this Line and compared to the value obtai…
Nonlinear pulse shaping in normally dispersive fibers : experimental examples
International audience; While the combination of Kerr nonlinearity with dispersion in optical fibers can seriously impair high speed optical transmissions, it also provides an attractive solution to generate new temporal and spectral waveforms. We explain in this talk how to take advantage of the progressive temporal and spectral reshapings that occur upon propagation in a normally dispersive fiber. We base our discussion on several experimental results obtained at telecommunication wavelengths.
Vector Modulational Instabilities and Soliton Experiments
In optical fibers, the interaction between nonlinear and dispersive effects leads to phenomena such as modulational instability (MI)[1, 2, 3, 4, 5, 6], in which a continuous or quasi-continuous wave undergoes a modulation of its amplitude or phase in the presence of noise or any other small perturbation. The perturbation can originate from quantum noise (spontaneous-MI) or from a frequency shifted signal wave (induced-MI). MI has been observed for the first time for a single pump wave propagating in a standard non birefringe.nt fiber (scalar MI)[7]. It has been shown that scalar MI only occurs when the group velocity dispersion (GVD) is negative (anomalous dispersion regime).
Collision de similaritons optiques dans un amplificateur fibré Raman
Nous abordons les aspects theoriques et experimentaux de la generation et propagation de deux similaritons optiques de frequences centrales differentes dans un amplificateur optique fibre Raman a dispersion normale. Nous observons les effets intervenant durant la collision des deux similaritons: un battement sinusoidal apparait dans la zone de recouvrement temporel des impulsions et des effets de la modulation de phase croisee modifient le spectre des similaritons. Les similaritons retrouvent neanmoins, apres collision, leurs caracteristiques paraboliques.
Enhancement of sensitivity in high-resolution stimulated Raman spectroscopy of gases: Applicaion to the 2ν2 (1285 cm−1) band of CO2
The application of a multiple-pass gas cell to quasi-cw stimulated Raman scattering is demonstrated to be a powerful method for significantly increasing the sensitivity. As a consequence, such a device offers the possibility of working in the 0.1–1 Torr pressure range for weak bands. As a striking example, experimental results are given for the 2ν2 band of CO2 at 1285 cm−1. The band is almost completely resolved with a very good signal-to-noise ratio. The Raman frequencies and the collisional broadening coefficients are determined as a function of quantum number J. Moreover, the possibility of auto-stimulated Raman effect on CO2 at moderate pressure via the sharp ν1 band (1388 cm−1) is demo…
Optical rogue waves and localized structures in nonlinear fiber optics
We review our recent work in the field of optical rogue wave physics. Beginning from a brief survey of the well-known instabilities in optical fiber, we trace the links to recent developments in studying the emergence of high contrast localized breather structures in both spontaneous and induced nonlinear instabilities.
Modélisation mathématique et étude expérimentale des instabilités non-linéaires, des vagues scélérates et des phénomènes extrêmes
Highly efficient few-mode spatial beam self-cleaning at 15µm
We experimentally demonstrate that spatial beam self-cleaning can be highly efficient when obtained with a few-mode excitation in graded-index multimode optical fibers. By using 160 ps long, highly chirped (6 nm bandwidth at -3dB) optical pulses at 1562 nm, we demonstrate a one-decade reduction of the power threshold for spatial beam self-cleaning, with respect to previous experiments using pulses with laser wavelengths at 1030-1064 nm. Self-cleaned beams remain spatio-temporally stable for more than a decade of their peak power variation. The impact of input pulse temporal duration is also studied.
Nonlinear Multimode Fiber Optics
We overview recent advances in the nonlinear optics of multimode optical fibers, including ultrabroadband sideband and supercontinuum generation, Kerr and Raman beam cleanup, modal modulation instabilities, four wave mixing, and second harmonic beam cleaning.
Ligth by light polarization control for telecommunication applications
International audience; In this work, we report for the first time the experimental achievement of an all-fibered polarization attraction, which can occur in optical fibers at telecommunication wavelengths. More precisely, we have experimentally shown that is possible to all-optically control and stabilize the state of polarization of a 10 Gbit/s telecommunication signal through the injection of a counter-propagating control pump wave. Eye diagrams recordings and bit error rate measurements have shown that this new type of all-optical function, almost lossless and instantaneous has a promising potential for telecommunication applications.
Extreme events in fiber based amplifiers
International audience; We present experimental and theoretical results showing the emergence of rogue wave-like extreme intensity spikes during fiber-based amplification processes such as Raman effect or induced-modulational instability that rely on quasi-instantaneous gain. We outline that under certain circumstances, a partially incoherent pumping can induce large fluctuations of the amplified signal, and we propose various means to spectrally select the most extreme structures.
Stabilisation de la polarisation d'une onde lumineuse par effet Brillouin dans une fibre optique fortement birefringente
National audience
Modulational instability and critical regime in a highly birefringent fiber
We report experimental observations of modulational instability of copropagating waves in a highly birefringent fiber for the normal dispersion regime. We first investigate carefully the system behavior by means of nonlinear Schr\"odinger equations and phase-matching conditions, and then, experimentally, we use two distinct techniques for observing MI (modulational instability) in the fiber; namely, the single-frequency copropagation, where two pump waves of identical frequency copropagate with orthogonal polarizations parallel to the two birefringence axes of the fiber, and the two-frequency copropagation, where the two polarized waves copropagate with different frequencies. In both cases …
Experimental properties of parabolic pulses generated via Raman amplification in standard optical fibers
Parabolic pulses at 1550 nm have been generated in a standard telecommunications fiber using Raman amplification. The parabolic output pulse characteristics are studied as a function of input pulse energy and duration.
Line mixing in the stimulated Raman spectrum of the ν1 band of SiH4 at 0.4–1.0 bar
The stimulated Raman spectrum of the ν1 band of SiH4 has been recorded at 0.4 and 1.0 bar pressures and room temperature. Line mixing of the fine structure components of this spectrum was taken into account in a calculated profile by considering coupling between the main transitions and using a simple model (strong collision model, SCM) for the relaxation matrix.
Cascaded intermodal four-wave mixing in a few-mode fiber
During the last few years, intensive works on multimode fibers allowed for the observation of a series of complex and novel nonlinear spatiotemporal phenomena such as: multimode solitons, geometric parametric instability, supercontinuum generation, and self-induced beam cleaning [1-4]. Among these phenomena, intermodal four-wave mixing (IMFWM) demonstrated larger frequency shifts in comparison with single-mode fibers. In this work, we studied IMFWM in a few-mode graded-index fiber (GRIN-FMF) pumped in the normal dispersion regime at 1064 nm. We report parametric sidebands detuned by hundreds of THz from the pump.
Nonlinear dynamics of modulated signals in optical fibers
International audience; The nonlinear Schrodinger equation (NLSE) describes the nonlinear waves localization dynamics in weakly dispersive media, and it has been extensively studied in various contexts in nonlinear science. A particular class of solutions of the NLSE that has recently attracted considerable attention is that of the solitons on finite background as their localization dynamics have been proposed as an important mechanism underlying the formation of extreme amplitude waves on the surface of the ocean. Much of this work has also been motivated by an extensive parallel research effort research in optics that has shown how nonlinear optical fiber systems can be used to implement …
Ondes scélérates en optique
National audience
High-resolution non-linear Raman spectroscopy in gases
The resolution in the Raman spectra of gases has been greatly improved by the development of the different methods of non-linear Raman scattering. When two laser beams, one of which has a tunable frequency, are focused in a sample, a stimulated Raman process occurs as soon as the frequency difference between the two lasers is equal to a Raman-active rovibrational or rotational transition frequency. The Raman resonance can be detected in different ways: by coherent anti-Stokes Raman scattering (CARS) or the corresponding Stokes process (CSRS), by a gain in one of the beams (stimulated Raman gain spectroscopy, SRGS) or a loss in the other (inverse Raman spectroscopy, IRS), or even by detectio…
Optical Fibers Enter a New Space-Time Era
We show experimentally a new type of parametric instability associated with the original phenomenon of beam self-cleaning in multimode fibers. Our experimental results are in good agreement with numerical solutions of the Gross-Pitaevskii equation.
High Resolution Coherent Raman Spectroscopy: Studies of Molecular Structures
One of the main advantages of the non-linear coherent Raman techniques is the high resolution that can be achieved in rovibrational spectroscopy. Typically an instrumental function of the order of several thousandths of a wavenumber is routinely achieved in SRS or CARS experiments. Since the first recording of the stimulated Raman spectrum of 12CH4 in 1978 [1], numerous studies of molecules have been performed [2–8]. We have built a stimulated Raman experiment in Dijon in which particular attention has been paid to the frequency measurement of the Raman lines [9]. We will describe the application of our experiment to a wide variety of molecules over the last few years: linear molecules, sph…
All-optical extinction-ratio enhancement of a 160 GHz pulse train by a saturable-absorber vertical microcavity
International audience; A vertical-access passive all-optical gate has been used to improve the extinction ratio of a 160 GHz pico-second pulse train at 1555 nm. An extinction ratio enhancement of 6 dB is observed within an 8 nm bandwidth. Such a device is a promising candidate for low-cost all optical reamplication and reshaping (211) regeneration at 160 Gbits/s.
Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber
International audience; We report an experimental, numerical and theoretical study of the incoherent regime of supercontinuum generation in a two zero dispersion wavelengths fiber. By using a simple experimental setup, we show that the phenomenon of spectral broadening inherent to supercontinuum generation can be described as a thermalization process, which is characterized by an irreversible evolution of the optical field towards a thermal equilibrium state. In particular, the thermodynamic equilibrium spectrum predicted by the kinetic wave theory is characterized by a double peak structure, which has been found in quantitative agreement with the numerical simulations without adjustable pa…
Spatial Beam Evolution in Nonlinear Multimode Fibers
We discuss some recent results illustrating the role of input wave-front shaping, propagation dynamics and output beam diagnostics in order to observe spatial beam cleaning in nonlinear multimode fibers and amplifiers.
Intense Stimulated Raman Scattering in CO2-filled Hollow Core Fiber
International audience; Frequency combs are of constant significant interest for their use in diverse areas of physics ranging from metrology to biomedical and environmental spectroscopy. One of interesting techniques to obtain multi-octave comb-like optical spectra is based on generation of higher-order stimulated Raman scattering (SRS) in a hollow-core photonic crystal fibers (HC-PCFs) filled with hydrogen gas [1]. The ability of these types of fibers to strongly confine together gases and laser pump, while keeping their interaction length over several meters, has allowed to reduce, by six-order of magnitude, the laser power in comparison to previous equivalent techniques using a gas cell…
Supercontinuum généré par fibre optique à cristal photonique pour l'accès multiple à répartition par code
National audience
Line coupling in Anisotropic Raman Branches
Direct connection between collisional Raman cross sections and state‐to‐state rotational ones permits, within the sudden approximation, to evidence drastic decouplings from isotropic to anisotropic lines. These decouplings are consistent with the results obtained by using the strong collision model. Convenient energy corrections to the sudden approximation are used for N2 to calculate the resulting effects on the isotropic and anisotropic Q‐branch profiles in a large density range (several hundred bars). The comparison of the calculations with experimental coherent anti‐Stokes Raman scattering (CARS) and stimulated Raman (SRS) spectra of nitrogen exhibits a good agreement. Such effects coul…
Second harmonic generation and beam cleaning in optically poled multimode graded-index fibers
Recent experimental results have confirmed that nonlinear effects in multimode graded-index (MM-GRIN) fibers lead to a wealth of observable spatiotemporal effects. In spite of the large number of modes supported by the fiber, by increasing the input power the transverse profile evolves in a clean bell-shaped beam [1, 2]. Next, the input laser line experiences a strong spectral broadening and Geometric Parametric Instability (GPl) peaks are observed [3].
Nonlinear dynamics in multimode optical fibers (invited)
International audience
Optical wave turbulence: Toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics
International audience; The nonlinear propagation of coherent optical fields has been extensively explored in the framework of nonlinear optics, while the linear propagation of incoherent fields has been widely studied in the framework of statistical optics. However, these two fundamental fields of optics have been mostly developed independently of each other, so that a satisfactory understanding of statistical nonlinear optics is still lacking. This article is aimed at reviewing a unified theoretical formulation of statistical nonlinear optics on the basis of the wave turbulence theory, which provides a nonequilibrium thermodynamic description of the system of incoherent nonlinear waves. W…
Spatio-Temporal Beam Mapping for Studying Nonlinear Dynamics in Graded Index Multimode Fiber
We experimentally demonstrate high-resolution mapping of the spatio-temporal dynamics of the beam cleaning process in graded index multimode fibers. This high-resolution characterization reveals the time-dependent nature of the beam self-cleaning process.
Multiple four-wave mixing-induced modulational instability in highly birefringent fibers.
Theoretical and experimental results are presented that illustrate efficient generation of new optical frequencies by means of induced modulational instability in birefringent fibers for an initially highly phase-mismatched process. Modulational instability is assisted by multiple four-wave mixing interactions. This technique relaxes the strict spectral limitations imposed by the phase-matching conditions on the signal used for frequency conversion by means of modulational instability.
Spatiotemporal pulse shaping with multimode nonlinear guided waves
We experimentally and theoretically investigate complex temporal pulse reshaping that accompanies Kerr beam self-cleaning in multimode optical fibers. We also study the output beam shape dependence on initial conditions.
Optical Dark Rogue Wave
AbstractPhotonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena and lead to novel space-time analogies, for example with multi-parti…
Les breathers d'Akhmediev comme source à très haut-débit ou à ultra large bande
All-optical regeneration of polarization of a 40 Gbit/s return-to-zero telecommunication signal
International audience; We report all-optical regeneration of the state of polarization of a 40 Gbit/s return-to-zero telecommunication signal. The device discussed here consists of a 6.2-km-long nonzero dispersion-shifted fiber, with low polarization mode dispersion, pumped from the output end by a backward propagating wave coming from either an external continuous source or a reflection of the signal. An initially scrambled signal acquires a degree of polarization close to 100% toward the polarization generator output. All-optical regeneration is confirmed by means of polarization and bit-error-rate measurements as well as real-time observation of the eye diagrams. We show that the physic…
All-optical simultaneous polarization attraction and intensity regeneration of a 40-Gbit/s RZ signal
We experimentally report the dual all-optical instantaneous regeneration of both the state of polarization and the intensity profile of a 40 Gbit/s Return-to-Zero telecommunication signal by means of a unique segment fiber.
Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion
International audience; We analyse theoretically and experimentally the Raman-assisted parametric coupling between non-phase-matched waves propagating in normally dispersive single-mode fibres. We perform a careful analysis of the wave-coupling behaviour, which shows that scalar and vector three-wave mixing (TWM) interactions induce a relatively small periodic power flow between a central-frequency pump at frequency ω0 and a pair of up-shifted (anti-Stokes) and down-shifted (Stokes) sidebands at frequencies View the MathML source and View the MathML source, respectively. For sufficiently high pump powers, the stimulated Raman scattering enters into play, causing a unilateral transfer of ene…
Interactions et collisions de similaritons optiques
National audience; We investigate theoretically and experimentally the dynamics of the self-similar amplification of two optical parabolic pulses in a normally dispersive Raman amplifier. The interaction between pulses of same wavelengths creates an oscillation which further evolves into a train of dark solitons through the combined effects of non-linearity, normal dispersion and adiabatic Raman gain. In the case of pulses of different wavelengths, collisions can occur. We demonstrate that similaritons are stable against collisions: they interact during their overlap but regain their parabolic shape after collision. The collision induces a sinusoidal modulation inside the overlap region, wh…
Optical Peregrine soliton generation in standard telecommunications fiber
International audience; We present detailled experimental and numerical results showing the generation and breakup of the optical Peregrine soliton in standard telecommunications fiber. The impact of non-ideal initial conditions is studied through direct cut back measurements of the longitudinal evolution of the emerging soliton dynamics, and is shown to be associated with the splitting of the Peregrine soliton into two subpulses.
Second harmonic generation in multimode graded-index fibers: spatial beam cleaning and multiple harmonic sideband generation
We study experimentally and numerically the spectral and spatial dynamics of second harmonic generation in an all-optically poled multimode graded-index fiber. In contrast with poled single-mode fibers, in a multimode graded-index fiber a pump can generate a series of sharp sidebands around its second harmonic (SH) that originate from the sub-millimetric periodic evolution of the intensity at the fundamental frequency. The mutual interaction between the fundamental and its SH may also strongly affect the spatial distribution of guided light for both colors: when increasing the pump power, both fundamental and SH output beams evolve from disordered multimode speckles into two bell-shaped bea…
The Peregrine soliton in nonlinear fibre optics
International audience; The Peregrine soliton is a localized nonlinear structure predicted to exist over 25 years ago, but not so far experimentally observed in any physical system. It is of fundamental significance because it is localized in both time and space, and because it defines the limit of a wide class of solutions to the nonlinear Schrödinger equation (NLSE). Here, we use an analytic description of NLSE breather propagation to implement experiments in optical fibre generating femtosecond pulses with strong temporal and spatial localization, and near-ideal temporal Peregrine soliton characteristics. In showing that Peregrine soliton characteristics appear with initial conditions th…
GigaHertz to TeraHertz Ultrashort Pulse Sources at 1555 nm
We experimentally study the generation of ultrashort pulses through multiple four wave-mixing in optical fibers. Well-separated transform-limited Gaussian pulses are generated at repetition rates ranging from 20 GHz to 1 THz around 1555 nm.
Source optique fibrée pour la microscopie CARS
Modulational instability processes in optical isotropic fibers under dual-frequency pumping
Experiments are presented showing that under dual-frequency, circular polarization pumping, a host modulational instability processes can be generated in a single isotropic fiber, by carefully tuning the frequency spacing between the pumps.
Plug-and-play measurement of chromatic dispersion by means of two-photon interferometry
International audience; Since the first proof-of-principle experiments 25 years ago, quantum metrology has matured from fundamental concepts to versatile and powerful tools in a large variety of research branches, such as gravitational-wave detection, atomic clocks, plasmonic sensing, and magnetometry. At the same time, two-photon interferometry, which underpins the possibility of entanglement to probe optical materials with unprecedented levels of precision and accuracy, holds the promise to stand at the heart of innovative functional quantum sensing systems. We report a novel quantum-based method for measuring the frequency dependence of the velocity in a transparent medium, i.e, the chro…
Study of interacting bands of silane: Analysis of infrared and Raman spectra
Abstract The ν 1 ν 3 interacting bands of natural silane have been studied by Fourier transform spectroscopy and stimulated Raman spectroscopy, respectively, in the regions 2040–2320 and 2180–2187 cm−1. These data combined with available microwave observations have been analyzed using a reduced effective Hamiltonian developed through the fifth order for 28SiH4 and through the fourth order for 29SiH4 and 30SiH4. The observed infrared and Raman transitions have been very well reproduced with a standard deviation of about 0.0004 cm−1 for 28SiH4. Some anomalies in the Hamiltonian expansion have been found, but they did not perturb the analysis.
Simultaneous achievement of polarization attraction and Raman amplification in optical fibers
We present a theoretical analysis and experimental demonstration of the combined effects of polarization attraction and Raman amplification in isotropic optical fibers. The polarization attraction is based on four-wave mixing interaction of counterpropagating waves.
Regenerative 40 Gbit/s wavelength converter based on similariton generation.
International audience; We present an all-optical regeneration technique based on spectral filtering of self-similar parabolic pulses (similaritons). In particular, we demonstrate numerically and experimentally that ghost pulses, which occur in the zero bit slots of telecommunication pulse trains, can be effectively suppressed. These results are obtained with a 40 Gbit/s pulse train.
Catastrophic process of coherence degradation
We predict a catastrophic process of coherence degradation characterized by a virtually unlimited spectral broadening of the waves. This effect is described by self-similar solutions of the kinetic equations inherent to the wave turbulence theory.
Incoherent solitons and condensation processes
International audience; We study the nonlinear interaction of partially incoherent nonlinear optical waves. We show that, in spite of the incoherence of the waves, coherent phase effects may play a relevant role during the propagation, in contrast with the usual wave turbulence description of the interaction. These nonlinear phase effects may lead the system to unexpected processes of self-organization, such as condensation, or incoherent soliton generation in instantaneous response nonlinear media. Such self-organization processes may be characterized by a reduction of the non-equilibrium entropy, which violates the Boltzmann's H-theorem of entropy growth inherent to the wave turbulence th…
Design of a continuously tunable delay line using vectorial modulational instability and chromatic dispersion in optical fibers
International audience; We design an all-optical tunable delay line based on both dispersive and wavelength conversion stages involving modulational instability of a two-frequency pump field propagating in a highly birefringent fiber. More precisely, we numerically show that, by varying the frequency separation between the two orthogonally polarized pump waves, we achieve a controllable and continuous delay of hundreds of picoseconds for signal pulse durations from picoseconds to nanoseconds, without pulse distortion and with only small peak power fluctuations. The proposed method does not require any tunable bandpass filter and can be applied to delay digital data streams at tens of Gbit/s…
Strong four-photon conversion regime of cross-phase-modulation-induced modulational instability
We investigate theoretically and experimentally the strong conversion regime of parametric four-photon amplification or induced modulational instability in the normal dispersion regime of propagation in a highly birefringent fiber. Such optical mixing is observed by injecting a tunable linearly polarized (along the fast axis) anti-Stokes signal wave copropagating with a pump equisplitted between the fiber axes (i.e., linearly polarized at 45\ifmmode^\circ\else\textdegree\fi{}) which entail that the two pump modes experience cross-phase modulation. In agreement with a four-wave model developed to study the depleted regime of the mixing process, we observe that the strongest conversion occurs…
Amplification parabolique : aspects fondamentaux
National audience
Collision de mascarets optiques dans les fibres optiques
Une vidéo de la conférence est disponible à l'adresse suivante : https://youtu.be/c_R9D-VNMZo; National audience; Les instabilités optiques générées par mélange à quatre ondes sont étudiées expérimentalement dans les fibres optiques. En régime de dispersion normale, elles se traduisent par la génération d’ondes de choc et par des collisions successives de ces trains d’ondes.
A Rotational Thermalization Model for the Calculation of Collisionally Narrowed Isotropic Raman-Scattering Spectra - Application to the Srs-N2 Q-Branch
Abstract A model for the calculation of collisionally narrowed isotropic. Raman scattering spectra is proposed. In this model, the rotational transition probabilities are calculated within the strong collision approximation, allowing the rotational energy transfer rates to be expressed in terms of the sole individual Q( J ) line broadening coefficients. These transfer rates satisfy both detailed balance principle and unitarity of the scattering matrix in contrast with most of the previous approaches. Under further approximation concerning the rotational distribution of the collisional frequency, simpler expressions for transfer rates are deduced, which do not satisfy necessarily both unitar…
Self-similarity in ultrafast nonlinear optics
International audience; Recent developments in nonlinear optics have led to the discovery of a new class of ultrashort pulse, the `optical similariton'. Optical similaritons arise when the interaction of nonlinearity, dispersion and gain in a high-power fibre amplifier causes the shape of an arbitrary input pulse to converge asymptotically to a pulse whose shape is self-similar. In comparison with optical solitons, which rely on a delicate balance of nonlinearity and anomalous dispersion and which can become unstable with increasing intensity, similaritons are more robust at high pulse powers. The simplicity and widespread availability of the components needed to build a self-similar amplif…
Interaction between optical parabolic pulses in a Raman fiber amplifier
We investigate the interaction between optical parabolic pulses in a Raman fiber amplifier. Self-similar amplification of two identical time-delayed pulses creates an oscillation which further evolves into a train of dark solitons through the combined effects of non-linearity, normal dispersion and adiabatic Raman gain. Theoretical predictions are in good agreement with experimental results.
All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source
International audience; In this paper, we report the experimental demonstration of an all-optical fiber-based 160-GHz femtosecond pulse source exhibiting a duty cycle as low as 1/17. The 380-fs wellseparated Gaussian pulses are generated thanks to the strong temporal compression of an initial beat-signal propagating into three distinct segments of optical fiber. Experimental results are supported by numerical simulations based on the generalized nonlinear Schrödinger equation. (© 2008 by Astro Ltd., Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA)
Line of polarization attraction in highly birefringent optical fibers
We investigate the phenomenon of polarization attraction in a highly birefringent fiber. This polarization process originates from the nonlinear interaction of two counter-propagating beams. We show that all polarization states of the forward (signal) beam are attracted toward a specific line of polarization states on the surface of the Poincare sphere, whose characteristics are determined by the polarization state of the injected backward (pump) beam. This phenomenon of polarization attraction takes place without any loss of energy for the signal beam. The stability of different stationary solutions is also discussed through intensive numerical simulations. On the basis of mathematical tec…
All-fibered high-quality low duty-cycle picosecond high-repetition rate pulse sources
International audience
Solitons sur fond continu en optique non-linéaire fibrée
National audience
Generation and characterization of 06-THz polarization domain-wall trains in an ultralow-birefringence spun fiber
Polarization domain-wall (PDW) trains have been generated at a repetition rate of 0.6 THz in an ultralow-birefringence spun optical fiber and measured by use of an adapted frequency-resolved optical gating technique. Characterization of the intensity and the phase of the PDW train shows complete switching between adjacent domains of counterrotating circular polarizations and directly confirms predictions based on numerical simulations of the incoherently coupled nonlinear Schrödinger equations.
Temporal and spectral nonlinear shaping techniques in optical fibers
International audience
Control of signal coherence in parametric frequency mixing with incoherent pumps: Narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm
International audience; We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband amplified spontaneous emission pumps or continua (spectral widths > 10 THz), group-velocity matching of a near-IR pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal coherence…
Experimental Study of Modulational Instability and Vector Solitons in Optical Fibers
This chapter brings forth the experimental study of modulational instability and vector solitons in optical fibers.
A universal optical all-fiber omnipolarizer
International audience; Wherever the polarization properties of a light beam are of concern, polarizers and polarizing beamsplitters (PBS) are indispensable devices in linear-, nonlinear- and quantum-optical schemes. By the very nature of their operation principle, transformation of incoming unpolarized or partially polarized beams through these devices introduces large intensity variations in the fully polarized outcoming beam(s). Such intensity fluctuations are often detrimental, particularly when light is post-processed by nonlinear crystals or other polarization-sensitive optic elements. Here we demonstrate the unexpected capability of light to self-organize its own state-of-polarizatio…
All-Optical Polarization Control for Telecom Applications
We describe a phenomenon of self-organization of the light state-of-polarization in optical fibers based on a nonlinear cross-polarization interaction between an incident signal and its backward replica. Several proof-of-principles for telecom applications are reported.
Nonlinear pulse shaping in optical fibers
International audience
Étude expérimentale d'un système hybride WDM/DS-OCDMA pour un réseau d'accès optique haut-débit
National audience; Nous présentons une solution hybride WDM/DS-OCDMA pour l'application réseau d'accès optique haut-débit.
Group birefringence cancellation in highly birefringent photonic crystal fibre at telecommunication wavelengths
International audience; The spectral dependence of the group modal birefringence in a highly birefringent nonlinear photonic crystal fibre is studied both numerically and experimentally. The sign inversion and the cancellation of the group modal birefringence in the telecommunication window is demonstrated. Two simple experimental techniques are used to evaluate the wavelength of zero polarisation mode dispersion. The experimental results are in excellent agreement with numerical calculations based on vectorial beam propagation method simulations.
Complete intensity and phase characterisation of optical pulse trains at terahertz repetition rates
Complete intensity and phase characterisation of optical pulse trains at terahertz repetition rates is carried out using an adapted frequency-resolved optical gating technique. The experimental characterisation of a 2.5 THz train of dark solitons in an optical fibre is in good agreement with numerical simulations.
Peregrine soliton generation and breakup in standard telecommunications fiber
International audience; We present experimental and numerical results showing the generation and breakup of the Peregrine soliton in standard telecommunications fiber. The impact of non-ideal initial conditions is studied through direct cut back measurements of the longitudinal evolution of the emerging soliton dynamics, and is shown to be associated with the splitting of the Peregrine soliton into two subpulses, with each subpulse itself exhibiting Peregrine soliton characteristics. Experimental results are in good agreement with simulations.
Experiments on breathers in nonlinear fibre
International audience
Temporal Dynamics of Incoherent Nonlinear Waves
We review different formalisms describing incoherent waves: the wave turbulence kinetic equation, the Vlasov equation in analogy with Gravitation, the weak Langmuir turbulence equation describing spectral solitons and incoherent dispersive shocks.
Supercontinuum generation by cascaded intermodal Raman and FWM processes in step-index few-mode fibers
International audience; This work shows that step-index few-mode fibers can be combined with a simple microchip picosecond laser to give a multi-octave spanning supercontinuum output by cascaded Raman scattering and intermodal FWM.
Dynamique des solitons de Kuznetsov-Ma observée en optique fibrée non-linéaire
International audience; Le soliton de Kuznetzov-Ma est une solution de l'équation de Schrödinger non-linéaire qui a été identifiée dès 1977 mais qui à ce jour n'avait encore jamais été observée expérimentalement. Nous décrivons ici une expérience mettant en évidence la dynamique du soliton KM à travers la propagation non-linéaire de breathers dans une fibre optique.
Polarization and modal attractors in conservative counterpropagating four-wave interaction
An experimental and theoretical study of the resonant four-wave interaction scheme in the counterpropagating configuration reveals the existence of a novel attraction process in Hamiltonian systems. We show analytically that it is the specificity of the boundary conditions inherent in the counterpropagating configuration that makes attraction dynamics possible in spite of the reversible nature of the four-wave interaction. In the context of optics, this novel dynamical feature could be the basic mechanism of a universal polarizer performing total polarization conversion of unpolarized light with, in principle, 100% efficiency.
Experimental investigation of Brillouin and Raman scattering in a 2SG sulfide glass microstructured chalcogenide fiber.
International audience; In this work, we investigate the Brillouin and Raman scattering properties of a Ge15Sb20S65 chalcogenide glass microstructured single mode fiber around 1.55 microm. Through a fair comparison between a 2-m long chalcogenide fiber and a 7.9-km long classical single mode silica fiber, we have found a Brillouin and Raman gain coefficients 100 and 180 larger than fused silica, respectively.
High-Resolution Stimulated Raman Spectroscopy of Methane 13CD4 in the Pentad Region
Abstract We present the first Raman spectrum of 13CD4 recorded at room temperature in the pentad region by inverse Raman spectroscopy, thus including the ν1 (A1), 2ν2 (A1), 2ν4 (A1), and ν2 + ν4(F1 + F2) Q branches. It is noteworthy that the overtone bands 2ν2 and 2ν4 are observed for the first time in a methane-like molecule by a coherent Raman process. The wide frequency range investigated, covering 45 cm−1 in three parts, contains more than 300 lines with uncertainty less than 10−3 cm−1 in most cases. These Raman data are combined with high-resolution infrared data in a weighted least-squares fit of the vibration-rotation constants of the pentad, thanks to a relevant partially reduced ef…
Dark-soliton-like pulse-train generation from induced modulational polarization instability in a birefringent fiber
Theory and experiments show that the nonlinear development of the modulational polarization instability of an intense light beam in a normally dispersive, low-birefringence optical fiber leads to ultrashort dark-soliton-like trains with repetition rates in the terahertz range in the polarization orthogonal to the pump.
All-Optical Measurement of Background, Amplitude and Timing Jitter for high speed pulse trains or prbs sequences using autocorrelation function
We present a simple method for all-optical measurements of background, amplitude- and timing-jitter of ultra high speed pulse trains or prbs sequences using the jitter dependences of the intercorrelation-peak shape.
Fibre microstructurée à deux zéros de dispersion : étude des fluctuations de microstruture sur des applications à haut-débit et détermination expérimentale du second zéro de dispersion
Nonlinear dynamics of spatio-temporal waves in multimode fibres
International audience
Collisions between similaritons in optical fiber amplifiers
We consider the self-similar amplification of two optical pulses of different wavelengths in order to investigate the effects of a collision between two similaritons. We theoretically demonstrate that similaritons are stable against collisions in a Raman amplifier: similaritons evolve separately in the amplifier without modification of the scaling of their temporal width and chirp and by conserving their velocities, only interact during their overlap and regain their parabolic form after collision. We show both theoretically and experimentally that the collision of two similaritons induces a sinusoidal modulation inside the overlap region, whose frequency decreases during the interaction. T…
Spectral dynamics of modulation instability described using Akhmediev breather theory
International audience; The Akhmediev breather formalism of modulation instability is extended to describe the spectral dynamics of induced multiple sideband generation from a modulated continuous wave field. Exact theoretical results describing the frequency domain evolution are compared with experiments performed using single mode fiber around 1550 nm. The spectral theory is shown to reproduce the depletion dynamics of an injected modulated continuous wave pump and to describe the Fermi-Pasta Ulam recurrence and recovery towards the initial state. Realistic simulations including higher-order dispersion, loss and Raman scattering are used to identify that the primary physical factors that …
Kerr beam self-cleaning in the telecom band
Multimode graded index (GRIN) fibers received a renewed interest in recent years, in particular for the development of new laser sources [1]. In many cases, the use of GRIN fibers is limited by multimodal propagation, leading to a spatially modulated intensity distribution (speckles) at the fiber output. Recent studies have found that quasi-single mode propagation can be recovered in GRIN fibers by the so-called Kerr self-cleaning effect [2]. It consists in the spontaneous recovery of the spatial beam quality, without any frequency shift [2] (as opposed to, e.g., Raman beam self-cleaning [3]). This nonlinear process was only observed so far at laser wavelengths around 1 μm, for peak power l…
Experimental evidence of the real multimode nature of geometric parametric instability
We show experimentally that geometric parametric instability in graded-index multimode fibers is composed by several multimode spectral components. The experimental observation is obtained by using a new 3D technique of high-resolution spatial and spectral analysis.
High speed optical transmission at 2 µm in subwavelength waveguides made of various materials
International audience
High quality low duty cycle 20-GHz and 40-GHz picosecond pulse sources
International audience
All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications
International audience; In this paper, we report all-optical regeneration of the state of polarization of a 40-Gbit/s return-to-zero telecommunication signal as well as its temporal intensity profile and average power thanks to an easy-to-implement, all-fibered device. In particular, we experimentally demonstrate that it is possible to obtain simultaneously polarization stabilization and intensity profile regeneration of a degraded light beam thanks to the combined effects of counterpropagating four-wave mixing, self-phase modulation and normal chromatic dispersion taking place in a single segment of optical fiber. All-optical regeneration is confirmed by means of polarization and bit-error…
Création d'un peigne de fréquences de longueur d'onde centrale accordable à partir d'ondes continues
National audience; Nous démontrons expérimentalement la possibilité d'exploiter l'auto-glissement fréquentiel Raman combiné soit à la compression d'un battement sinusoïdal, soit à l'instabilité de modulation induite. Les deux approches ont permis de générer un peigne de fréquences de largeur spectrale supérieure à 100 nm dont la fréquence centrale s'est décalée vers les hautes longueurs d'ondes.
All-fibered high-quality low duty-cycle picosecond high repetition rate pulse sources
In this work, we demonstrate all-fibered 20-GHz and 40-GHz picosecond pulse sources with duty cycles as low as 1/14. The pulse train is achieved via the high-quality compression of an initial sinusoidal beating through four segments of optical fibers. We investigate the limits of the scalability to higher repetition rates.
Kerr Beam Self-Cleaning in Multimode Fibers
We overview recent experimental results of beam self-cleaning observed in various types of multimode fibers. We analyze the output spatial beam shapes and their connection with the refractive index profile of the fibers.
Spectral Slicing of a Supercontinuum Source for WDM/DS-OCDMA Application
WDM and optical CDMA are leading contenders to easily upgrade access network performances in terms of multiple access technique. Both methods can be used at once, using a single multiwavelength optical source. We show, numerically and experimentally, that spectral slicing of a 10-GHz pulse train broadened to a supercontinuum yields pulses suitable for use in a direct sequence optical CDMA system. Simulations with optical CDMA encoders and decoders based on superstructured fiber Bragg gratings indicate good performance can be expected.
Comparison of conventional and dense dispersion managed systems for 160 Gb/s transmissions
International audience; In this paper, we carry out, by numerical simulations and experiments on recirculating loop.. a comparative analysis of the performances of two types of dispersion management techniques for 160 Gb/s transmission systems, which correspond to short-period dispersion maps (dense dispersion management) and long-period dispersion maps (conventional dispersion management), respectively. We show that the dense dispersion management system suffers performance degradation by the effects of polarization mode dispersion (PMD) and fiber splicing losses, in a more dramatic manner than in the system with long-period map. We experimentally find that, at constant PMD, dense dispersi…
Kerr self-cleaning of pulsed beam in an ytterbium doped multimode fiber
International audience; We experimentally demonstrate that Kerr spatial self-cleaning of a pulsed beam can be obtained in an amplifying multimode optical fiber. An input peak power of 500 W only was sufficient to produce a quasi-single-mode emission from the double-clad ytterbium doped multimode fiber (YMMF) with non-parabolic refractive index profile. We compare the self-cleaning behavior observed in the same fiber with loss and with gain. Laser gain introduces new opportunities to achieve spatial self-cleaning of light in multimode fibers at a relatively low power threshold.
Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability
International audience; We present a simple method for the measurement of Kerr, second- and third-order dispersion coefficients in optical fibers using power and dispersion dependences of modulation instability near the zero-dispersion wavelength. We also complete the analysis by the accurate determination of the zero-dispersion wavelength of the fiber using the phase-matched four wave mixing process which occurs near this specific wavelength.
Polarization Domain Wall Solitons with Counterpropagating Laser Beams
The coupling between two intense laser beams in a nonlinear dielectric leads to a host of physical effects. In particular, the interaction between the polarization states of two counterpropagating ligth beams may generate polarization domain wall (PDW7) solitons [1]. We present what we believe is the first experimental observation of PDW7 soliton formation in a nonlinear dielectric medium.
Diverses manifestations de l'effet Raman lors de la propagation d'impulsions femtosecondes dans une fibre microstructurée
National audience; Dans le cadre de la génération de supercontinuum, nous mettons en évidence les dynamiques spectrales majeures de solitons liées à l'effet Raman dans une fibre microstructurée, à l'aide d'un montage expérimental simple. L'étude menée ici concerne l'évolution d'impulsions femtosecondes en régime de dispersion anormale d'une fibre microstructurée présentant deux longueurs d'onde de dispersion nulle. A l'aide de simulations numériques, nous confirmons nos différentes observations expérimentales ayant relevé les manifestations suivantes liées à l'effet Raman : l'auto-décalage en fréquence des solitons, la compensation de cet auto-décalage, mais également la formation et l'auto…
On recent progress in all-fibered pulsed optical sources from 20 GHz to 2 THz based on multiple four wave mixing approach
International audience; In this paper, we report recent progress on the design of all-fibered ultra-high repetition-rate pulse sources for telecommunication applications around 1550 nm. Based on the nonlinear compression of an initial beat-signal in optical fibers through a multiple four-wave mixing process, we theoretically and experimentally demonstrate that this simple technique allows an efficient and accurate design of versatile pulse sources having repetition rates and pulse durations ranging from 20 GHz up to 2 THz and from 10 ps up to 110 fs, respectively.
Parabolic pulse formation and applications
Parabolic pulses in optical fibers have stimulated an increasing number of applications. We review here the physics underlying the generation of such pulses as well as the results obtained in a wide-range of experimental configurations.
Dispersion engineered tapered photonic crystal fiber for broadband and tuned 2 µm emission using degenerate four-wave mixing
International audience; We numerically demonstrate a broadband parametric gain around 2 µm using a tapered Photonic crystal fiber.
All-optical simultaneous polarization attraction and intensity regeneration of a 40-Gbit/s RZ signal
International audience; We experimentally report the dual all-optical instantaneous regeneration of both the state of polarization and the intensity profile of a 40 Gbit/s Return-to-Zero telecommunication signal by means of a unique segment fiber
Measurments of collisional line widths in the stimulated Raman Q-branch of the ν1 band of silane
Self-broadened widths of 28SiH4 in the ν1Q-branch have been measured at room temperature (295 K) using high-resolution stimulated Raman Spectroscopy. These collisional widths have been obtained by fitting a super-position of Voigt profiles to the experimental spectra in the pressure range 28–154 Torr. No evidence for line mixing within the tetrahedral components of a Q(J) line has been found. The line broadening coefficients for J up to 13 depend weakly on the rotational quantum number. The mean value is 103.7 × 10−3 cm−1 atm−1.
Observation of Optical Undular Bores in Multiple Four-Wave Mixing
International audience; We demonstrate that wave-breaking dramatically affects the dynamics of nonlinear frequency conversion processes that operate in the regime of high efficiency (strong multiple four-wave mixing). In particular, by exploiting an all-optical-fiber platform, we show that input modulations propagating in standard telecom fibers in the regime of weak normal dispersion lead to the formation of undular bores (dispersive shock waves) that mimic the typical behavior of dispersive hydrodynamics exhibited, e.g., by gravity waves and tidal bores. Thanks to the nonpulsed nature of the beat signal employed in our experiment, we are able to clearly observe how the periodic nature of …
New concepts based on nonlinear polarization effects and Raman amplification in optical fibers
We report a theoretical analysis and experimental demonstration of a polarization attraction process at telecommunication wavelengths in isotropic optical fibers. The combined effects of polarization attraction and Raman amplification are also presented.
A POWERFUL TOOL TO STUDY COLLISIONAL PHENOMENA AND FOR COMBUSTION APPLICATIONS : THE HIGH RESOLUTION STIMULATED RAMAN SPECTROSCOPY
Adaptive Kerr-Assisted Transverse Mode Selection in Multimode Fibers
Multimode optical fibers (MMFs) have recently regained interest because of the degrees of freedom associated with their different eigenmodes. In the nonlinear propagation regime in particular, new phenomena have been unveiled in graded-index (GRIN) MMFs such as geometric parametric instabilities and Kerr beam self-cleaning [1, 2]. The speckled pattern observed at the output of the MMF at low powers, is transformed at high powers into a bell-shaped beam close to the fundamental mode. Recent work has also demonstrated that Kerr beam self-cleaning can lead to a low-order spatial mode, different from a bell-shape, by adjusting the laser beam in-coupling conditions [3]. An attractive way to syst…
Generation of optical domain-wall structures from modulational instability in a bimodal fiber.
We study experimentally modulational instability in a normally dispersive bimodal fiber under modal group-velocity-matching conditions. In the strong pump depletion regime, higher order sideband harmonics detected in the output spectra as well as autocorrelation measurements reveal the formation of subpicosecond domain-wall structures. Across these temporal structures the electromagnetic field distribution switches abruptly between the two transverse modes of the fiber. These structures are reminiscent of the so-called domain-wall soliton. Our results constitute therefore an experimental indication of the existence of this fundamental soliton.
Optical rogue waves: Physics and impact
International audience; We review our recent work in the field of optical rogue wave physics and applications. Beginning from a brief survey of the well-known instabilities in optical fiber supercontinuum generation, we trace the links to recent developments in studying the emergence of high contrast localized breather structures in both spontaneous and induced nonlinear instabilities. We also discuss the precise nature of optical rogue wave statistics and examine the dynamics leading to the formation of extreme events in the context of noise-driven supercontinuum generation.
A universal all-fiber Omnipolarizer
We report the experimental observation of self-polarization of light in optical fibers through a counter-propagating four-wave mixing between an incident signal and its backward replica. An efficient self-polarization of a 40-Gbit/s signal is demonstrated.
Génération de similaritons optiques à 1550 nm par amplification Raman dans une fibre NZ-DSF
Nous presentons la premiere observation experimentale de similaritons optiques generes par amplification Raman a 1550 nm dans une fibre a dispersion decalee. Une caracterisation FROG des impulsions indique un profil d'intensite parabolique et un chirp lineaire conformes aux predictions theoriques.
Peregrine soliton in optical fiber-based systems
International audience; We report the first observation in optics of the Peregrine soliton, a novel class of nonlinear localized structure. Two experimental configurations are explored and the impact of non-ideal initial conditions is discussed.
Cascadability and efficiency of a saturable absorber device inserted into a SMF transmission line for future 160-Gbit/s all-optical reshaping applications.
In this prospective work, we analyze the cascadability and reshaping properties of a quantum well microcavity saturable absorber (SA) device cascaded inside a RZ-signal SMF-based transmission line to annihilate the ghost-pulse phenomenon taking place in the "...01010101..." 160-Gbit/s 2-bit pattern.
Lumière sur les vagues scélérates : le soliton de Peregrine enfin observé !
National audience
Experimental generation of parabolic pulses via Raman amplification in optical fiber
Parabolic pulse generation via Raman amplification is experimentally demonstrated in 5.3 km of non-zero dispersion shifted fiber presenting normal group velocity dispersion at the injected signal pulse wavelength of 1550 nm. The fiber is pumped by a commercially-available continuous wave source at 1455 nm, and the intensity and chirp of the amplifier output are characterized using frequency-resolved optical gating. For 2.4 pJ input pulses of 10 ps duration, the output pulse characteristics are studied as a function of amplifier gain over the range 11-24 dB, allowing the evolution of the input pulse to a parabolic pulse to be clearly seen for amplifier gains exceeding 15 dB. Numerical compre…
Modulational instability processes in optical isotropic fibers under dual- frequency circular polarization pumping
Experiments are presented showing that, under dual-frequency, circular polarization pumping, host modulational instability processes can be generated in a single-mode isotropic fiber by careful tuning of the frequency spacing between the pumps.
Rediscovered dynamics of nonlinear fiber optics: from breathers to extreme localisation
International audience
Spatiotemporal beam shaping in nonlinear multimode fibers
Kerr beam self-cleaning in graded-index multimode fibers is accompanied by power-dependent temporal pulse reshaping. We explore the complex nonlinear dynamics with a single long pulse, where the optical power is continuously varied across its profile.
Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths
International audience; In this work, we report the experimental observation of a polarization attraction process which can occur in optical fibers at telecommunication wavelengths. More precisely, we have numerically and experimentally shown that a polarization attractor, based on the injection of two counter-propagating waves around 1.55 mu m into a 2-m long high nonlinear fiber, can transform any input polarization state into a unique well-defined output polarization state.
Stabilisation of modelocking in fibre ring laser through pulse bunching
Bunching of equally spaced pulses is reported to be the most stable mode of operation in a passively modelocked fibre ring laser. The ring includes dispersion management, which results in the absence of strict pulse energy quantisation, giving pulse bunching a better immunity to environmental perturbation.
Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers
International audience; We report experimental observation and characterization of rogue wave-like extreme value statistics arising from pump-signal noise transfer in a fiber Raman amplifier. Specifically, by exploiting Raman amplification with an incoherent pump, the amplified signal is shown to develop a series of temporal intensity spikes whose peak power follows a power-law probability distribution. The results are interpreted using a numerical model of the Raman gain process using coupled nonlinear Schrödinger equations, and the numerical model predicts results in good agreement with experiment.
Nonlinear Dynamics in multimode fibers
International audience
Optical CDMA enhanced by nonlinear optics
Intended for the next generation of optical access networks, OCDMA is of great interest to meet the demand of increasing the number of users per access fiber, especially as spectral phase coding increases its performance in the optical domain. This, however, requires handling broad spectra and short pulses, which are best dealt with using opto-electronic or all-optical devices instead of slower electronics. Among others, we demonstrate spectral-phase-coded OCDMA using a fiber-based saturable absorber as thresholding in the receiver.
Dual-Comb Spectroscopy With Frequency-Agile Lasers
Multiheterodyne frequency comb spectroscopy without mode-locked lasers is reported in the near-infrared C and L telecommunication bands. The system without active stabilization combines high signal-to-noise ratio, rapid tuning and moderate multiplex spectral span.
Higher-order dispersion parameters management in highly nonlinear photonic crystal fibers for far-detuned frequency conversion
International audience; In this communication we present results dealing with the precise management of dispersion coefficients into two highly nonlinear fiber structures (a tapered PCF and an all-solid fiber) for far-detuned frequency conversion towards 2µm.
Direct temporal reconstruction of picosecond pulse by cross-correlation in semiconductor device
Cross-correlation measurements using the two-photon absorption process in a semiconductor is experimentally demonstrated for two pulses of different wavelengths (shifted by ~200 nm) and durations (20 times ratio). These measurements were found to be highly repeatable and fully suitable for the determination of the temporal intensity profile of picosecond (ps) pulses.
Émergence de flaticons dans les fibres optiques
Conférence pouvant être vue sur http://youtu.be/p9OnhcHQ3Mw; National audience; Nous étudions expérimentalement la propagation non-linéaire d'une onde continue menant à l'émergence d'impulsions au sommet plat et sans dérive de fréquence. Ces impulsions, appelées flaticons, subissent une évolution auto-similaire de leur partie centrale et présentent des oscillations temporelles marquées dans leurs flancs.
Parabolic pulse generation with active or passive dispersion decreasing optical fibers
International audience; We experimentally demonstrate the possibility to generate parabolic pulses via a single dispersion decreasing optical fiber with normal dispersion. We numerically and experimentally investigate the influence of the dispersion profile, and we show that a hybrid configuration combining dispersion decrease and gain has several benefits on the parabolic generated pulses.
Soliton generation and rogue-wave like behavior through fourth order modulation instability
International audience; We numerically study the dynamics of ultra-broadband wavelength converters based on fourth-order scalar modulation instability. We report the spontaneous emergence of solitons and trapped radiation waves as well as L-shaped associated statistical signatures.
Light-by-light polarization control for telecommunication applications
In this work, we report for the first time the experimental achievement of an all-fibered polarization attraction, which can occur in optical fibers at telecommunication wavelengths. More precisely, we have experimentally shown that is possible to all-optically control and stabilize the state of polarization of a 10 Gbit/s telecommunication signal through the injection of a counter-propagating control pump wave. Eye diagrams recordings and bit error rate measurements have shown that this new type of all-optical function, almost lossless and instantaneous has a promising potential for telecommunication applications.
Efficient control of the energy exchange due to the Manakov vector-soliton collision
By examining the concept of energy exchange among the orthogonally polarized components of each of two colliding (Manakov-like) vector solitons it is observed that a maximum or an efficient energy-exchange process is possible only for an appropriate choice of the initial physical parameters (namely, frequency separation, polarizations, time delay, and pulse-width separation between the colliding solitons) for which L(W) (walk-off length) >>L(NL) (nonlinear length). However, in this case only, the amount of energy-exchange can be considerably increased or decreased by appropriately changing the phases of colliding solitons without altering the walk-off length and the initial energy distribut…
Si and Si-rich silicon-nitride waveguides for optical transmissions and nonlinear applications around 2 µm
We show that cm-long silicon and silicon-rich silicon nitride waveguides with subwavelength transverse dimensions can efficiently sustain high-speed transmissions at 2 μm. We report the transmission of a 10 Gbit/s signal with negligible power penalty. Parametric conversion in both continuous and pulsed pump regimes is also demonstrated, as well as the spectral broadening of picosecond pulses.
Ondes scélérates et autres manifestations extrêmes dans les fibres optiques
National audience; Nous présentons divers exemples d'évènements rares optiques qui peuvent apparaître lors de la propagation d'impulsions dans des fibres optiques. Ainsi, différents types de structures optiques se démarquant très nettement du comportement statistique moyen ont été mis en évidence dans les processus de génération de supercontinua optiques ainsi que dans les phases d'amplification paramétrique ou Raman.