0000000001062581

AUTHOR

Kai Arstila

How and why does willow biochar increase a clay soil water retention capacity?

Addition of biochar into a soil changes its water retention properties by modifying soil textural and structural properties. In addition, internal micrometer-scale porosity that is able to directly store readily plant available water affects soil water retention properties. This study shows how precise knowledge of the internal micrometer-scale pore size distribution of biochar can deepen the understanding of the biochar-water interactions in soils. The micrometer-scale porosity of willow biochar was quantitatively and qualitatively characterized using X-ray tomography, 3D image analysis and Helium ion microscopy. The effect of biochar application on clay soil water retention was studied by…

research product

Ion-sputtering deposition of Ca–P–O films for microscopic imaging of osteoblast cells

Abstract An ion-beam sputtering technique was used to produce Ca–P–O films on borosilicate glass at room temperature from hydroxyapatite targets using nitrogen, argon and krypton beams at different acceleration voltages. The sputtering target was pressed from high purity hydroxyapatite powder or mixture of high purity hydroxyapatite powder and red phosphorus in order to optimise the film composition. The film composition, determined using time-of-flight elastic recoil detection analysis (TOF–ERDA), was found to be strongly dependent on the ion energy used for deposition. By extra doping of the target with P the correct Ca/P atomic ratio in the deposited films was reached. The films deposite…

research product

Effects of pyrolysis temperature on the hydrologically relevant porosity of willow biochar

Biochar pore space consists of porosity of multiple length scales. In direct water holding applications like water storage for plant water uptake, the main interest is in micrometre-range porosity since these pores are able to store water that is easily available for plants. Gas adsorption measurements which are commonly used to characterize the physical pore structure of biochars are not able to quantify this pore-size range. While pyrogenetic porosity (i.e. pores formed during pyrolysis process) tends to increase with elevated process temperature, it is uncertain whether this change affects the pore space capable to store plant available water. In this study, we characterized biochar poro…

research product

Time-of-flight telescope for heavy-ion RBS

Abstract This paper describes a time-of-flight (TOF) spectrometer for Heavy-Ion Rutherford Backscattering Spectrometry (HI-RBS) recently installed at IMEC for thin film analysis. The TOF telescope allows the use of ion beams heavier than He, with advantages in terms of depth and mass resolution and sensitivity compared to conventional RBS based on planar Si detectors. The start timing-signal is produced by the secondary electrons emitted from a thin C foil when traversed by a backscattered ion; the electrons are deflected in an electrostatic mirror towards a Micro-channel plate (MCP) assembly which provides a fast timing response. The stop signal is obtained directly from a second MCP assem…

research product

Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Films

Amorphous carbon (a-C) films with varying oxygen content were deposited by closed-field unbalanced magnetron sputtering with the aim to understand the effect of oxygen on the structural and physical properties of the films and subsequently correlate these changes with electrochemical properties. The a-C films were characterized by transmission electron microscopy, helium-ion microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and time-of-flight elastic recoil detection analysis. The electrochemical properties were studied by electrochemical impedance spectroscopy and cyclic voltammetry with several redox systems (Ru(NH3)62+/3+, Fe(CN)64−/3−, dopamine an…

research product

Al2O3 ALD films grown using TMA + rare isotope 2H216O and 1H218O precursors

Abstract In this work hydrogen and oxygen migration and exchange reactions in the atomic layer deposited (ALD) Al2O3 thin films were studied together with hydrogen incorporation by varying deposition parameters. Al2O3 films deposited at low temperatures can contain more than 20 at.% of hydrogen. Both higher temperature and longer purge length decrease the hydrogen and carbon concentrations significantly. In order to track the hydrogen and oxygen movement in the films, heavy water (2 H 2 16 O) and oxygen-18 enriched water (1 H 2 18 O) were used as precursors in combination with trimethylaluminium (TMA). Different isotopes of the same element were quantified by means of time-of-flight elastic…

research product

A study of solar thermal absorber stack based on CrAlSiNx/CrAlSiNxOy structure by ion beams

Renewable energies are foreseen as a major energy resource for next generations. Among several energy sources and technologies available, Concentrated Solar Power (CSP) technology has a great potential, but it needs to be optimised, in particular to reduce the costs, with an increase of the operating temperature and long term stability. This goal can be achieved by tailoring the composition and multilayer structure of films. In this work we present and discuss the results obtained from solar absorber coatings based on nitride/oxynitride structures. A four-layer film structure, W/CrAlSiNx(HA)/CrAlSiNxOy(LA)/SiAlOx, was deposited on stainless steel substrates using magnetron sputtering deposi…

research product

Hydrogen and Deuterium Incorporation in ZnO Films Grown by Atomic Layer Deposition

Zinc oxide (ZnO) thin films were grown by atomic layer deposition using diethylzinc (DEZ) and water. In addition to depositions with normal water, heavy water (2H2O) was used in order to study the reaction mechanisms and the hydrogen incorporation at different deposition temperatures from 30 to 200 °C. The total hydrogen concentration in the films was found to increase as the deposition temperature decreased. When the deposition temperature decreased close to room temperature, the main source of impurity in hydrogen changed from 1H to 2H. A sufficiently long purging time changed the main hydrogen isotope incorporated in the film back to 1H. A multiple short pulse scheme was used to study th…

research product

Minimum detection limits and applications of proton and helium induced X-ray emission using transition-edge sensor array

Abstract We have determined minimum detection limits, MDLs, for elements 14 ⩽ Z ⩽ 86 using a transition-edge sensor array, TES array, and as a comparison using an Amptek X-123SDD silicon drift detector, SDD. This was done using a 3 MeV proton beam and a 5.1 MeV helium beam. MDLs were determined for a thin film sample on top of C substrate, and for a bulk sample containing mostly Al. Due to the higher peak-to-background ratio, lower detection limits were obtainable using the TES array for most of the elements. However, for elements 30 ⩽ Z ⩽ 45 the performance of the TES array was not as good as the SDD performance. This is due to the limitations of the TES used at energies >10 keV. The great…

research product

Cellulose-inorganic hybrids of strongly reduced thermal conductivity

Abstract The employment of atomic layer deposition and spin coating techniques for preparing inorganic-organic hybrid multilayer structures of alternating ZnO-CNC layers was explored in this study. Helium ion microscopy and X-ray reflectivity showed the superlattice formation for the nanolaminate structures and atomic force microscopy established the efficient control of the CNCs surface coverage on the Al-doped ΖnO by manipulating the concentration of the spin coating solution. Thickness characterization of the hybrid structures was performed via both ellipsometry and X-ray reflectivity and the thermal conductivity was examined by time domain thermoreflectance technique. It appears that ev…

research product

Elongation and plasmonic activity of embedded metal nanoparticles following heavy ion irradiation

Shape modification of embedded nanoparticles by swift heavy ion (SHI) irradiation is an effective way to produce nanostructures with controlled size, shape, and orientation. In this study, randomly oriented gold nanorods embedded in SiO2 are shown to re-orient along the ion beam direction. The degree of orientation depends on the irradiation conditions and the nanorod's initial size. SHI irradiation was also applied to modify spherical metallic nanoparticles embedded in Al2O3. The results showed that they elongate due to the irradiation comparably to those embedded in SiO2. Metallic nanostructures embedded in dielectric matrices can exhibit localized surface plasmon (LSP) modes. The elongat…

research product

Depth resolution optimization for low-energy ERDA

Abstract With the implementation of low-energy time-of-flight Elastic Recoil Detection Analysis (ERDA), routine analysis of thin films with high depth resolution becomes possible. The optimization of the measurement conditions is a key issue for an accurate sample characterization and is normally a compromise among depth resolution, mass resolution and sensitivity, for a given sample. In this work, we focus on the depth resolution optimization, presenting an extensive study of two different materials, SiO 2 and TiN, representative of light and medium mass targets. The film thickness varies between 10 and 50 nm. The samples were measured with different beams ( 35 Cl, 63 Cu, 79 Br and 127 I),…

research product

Retention of Pb isotopes in glass surfaces for retrospective assessment of radon exposure

Abstract In recent years there has been increasing interest in radio-epidemiological techniques to retrospectively measure the radon dose exposure by determining the activity of 210Pb, the longest-lived 222Rn progeny, in glass surface layers. In this study the diffusion of 39 keV 209Pb+ ions implanted into glass using the IGISOL facility has been studied under conditions that mimic the recoil implantation of 210Pb from 222Rn. The resulting depth distributions of 209Pb were then measured after heat treatment in vacuum at different temperatures by a sputter erosion technique. The diffusion coefficient could be described by an Arrhenius equation D = D0exp(−H/kT) where D 0 = 0.30 - 0.24 + 1.14 …

research product

Nanoporous kaolin – cellulose nanofibril composites for printed electronics

Cellulose nano- and microfibrils (CNF/CMF) grades vary significantly based on the raw materials and process treatments used. In this study four different CNF/CMF grades were combined with kaolin clay pigment particles to form nanoporous composites. The attained composite properties like porosity, surface smoothness, mechanical properties and density properties depended strongly on the raw materials used. In general, higher kaolin content (~80 wt%) led to controllable shrinkage during drying, which resulted in improved dimensional stability of composites, compared to a lower kaolin content (~50 wt%). On the other hand, the use of a plasticizer and a high amount of CNF/CMF was essential to pr…

research product

Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition

ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). T…

research product

Nanoporous kaolin

Cellulose nano- and microfibrils (CNF/CMF) grades vary significantly based on the raw materials and process treatments used. In this study four different CNF/CMF grades were combined with kaolin clay pigment particles to form nanoporous composites. The attained composite properties like porosity, surface smoothness, mechanical properties and density properties depended strongly on the raw materials used. In general, higher kaolin content (~80 wt%) led to controllable shrinkage during drying, which resulted in improved dimensional stability of composites, compared to a lower kaolin content (~50 wt%). On the other hand, the use of a plasticizer and a high amount of CNF/CMF was essential to pr…

research product

Effect of Boron Doping on the Wear Behavior of the Growth and Nucleation Surfaces of Micro- and Nanocrystalline Diamond Films

B-doped diamond has become the ultimate material for applications in the field of microelectromechanical systems (MEMS), which require both highly wear resistant and electrically conductive diamond films and microstructures. Despite the extensive research of the tribological properties of undoped diamond, to date there is very limited knowledge of the wear properties of highly B-doped diamond. Therefore, in this work a comprehensive investigation of the wear behavior of highly B-doped diamond is presented. Reciprocating sliding tests are performed on micro- and nanocrystalline diamond (MCD, NCD) films with varying B-doping levels and thicknesses. We demonstrate a linear dependency of the we…

research product

Room-Temperature Micropillar Growth of Lithium-Titanate-Carbon Composite Structures by Self-Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteries

Here, an unidentified type of micropillar growth is described at room temperature during conventional direct-current magnetron sputtering (DC-MS) deposition from a Li4Ti5O12+graphite sputter target under negative substrate bias and high operating pressure. These fabricated carbon-Li2O-TiO2 microstructures consisting of various Li4Ti5O12/Li2TiO3/LixTiO2 crystalline phases are demonstrated as an anode material in Li-ion microbatteries. The described micropillar fabrication method is a low-cost, substrate independent, single-step, room-temperature vacuum process utilizing a mature industrial complementary metal-oxide-semiconductor (CMOS)-compatible technology. Furthermore, tentative considerat…

research product

Nanorod orientation control by swift heavy ion irradiation

Highly energetic ions have been previously used to modify the shape of metal nanoparticles embedded in an insulating matrix. In this work, we demonstrate that under suitable conditions, energetic ions can be used not only for shape modification but also for manipulation of nanorod orientation. This observation is made by imaging the same nanorod before and after swift heavy ion irradiation using a transmission electron microscope. Atomistic simulations reveal a complex mechanism of nanorod re-orientation by an incremental change in its shape from a rod to a spheroid and further back into a rod aligned with the beam. Highly energetic ions have been previously used to modify the shape of meta…

research product

Identifying yeasts using surface enhanced Raman spectroscopy

Made available in DSpace on 2019-10-06T15:40:09Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-07-05 Tekes Academy of Finland Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) The molecular fingerprints of yeasts Saccharomyces cerevisiae, Dekkera bruxellensis, and Wickerhamomyces anomalus (former name Pichia anomala) have been examined using surface-enhanced Raman spectroscopy (SERS) and helium ion microscopy (HIM). The SERS spectra obtained from cell cultures (lysate and non-treated cells) distinguish between these very closely related fungal species. Highly SERS active silver nano-particles suitable for detecting complex biomolecules were fabricated using a simple synt…

research product

Generalized Noise Study of Solid-State Nanopores at Low Frequencies.

Nanopore technology has been extensively investigated for analysis of biomolecules, and a success story in this field concerns DNA sequencing using a nanopore chip featuring an array of hundreds of biological nanopores (BioNs). Solid-state nanopores (SSNs) have been explored to attain longer lifetime and higher integration density than what BioNs can offer, but SSNs are generally considered to generate higher noise whose origin remains to be confirmed. Here, we systematically study low-frequency (including thermal and flicker) noise characteristics of SSNs measuring 7 to 200 nm in diameter drilled through a 20-nm-thick SiNx membrane by focused ion milling. Both bulk and surface ionic curren…

research product

Characterization of ALD grown Ti x Al y N and Ti x Al y C thin films

Abstract Atomic layer deposition (ALD) was used to grow Ti x Al y N and Ti x Al y C thin films using trimethylaluminum (TMA), titanium tetrachloride and ammonia as precursors. Deposition temperature was varied between 325 °C and 500 °C. Films were also annealed in vacuum and N 2 -atmosphere at 600–1000 °C. Wide range of characterization methods was used including time-of-flight elastic recoil detection analysis (ToF-ERDA), X-ray diffractometry (XRD), X-ray reflectometry (XRR), Raman spectroscopy, ellipsometry, helium ion microscopy (HIM), atomic force microscopy (AFM) and 4-point probe measurement for resistivity. Deposited films were roughly 100 nm thick and contained mainly desired elemen…

research product

Antiferromagnetism and p‐type conductivity of nonstoichiometric nickel oxide thin films

Plasma‐enhanced atomic layer deposition was used to grow non‐stoichiometric nickel oxide thin films with low impurity content, high crystalline quality, and p‐type conductivity. Despite the non‐stoichiometry, the films retained the antiferromagnetic property of NiO.

research product

Energy loss and straggling of MeV Si ions in gases

We present measurements of energy loss and straggling of Si ions in gases. An energy range from 0.5 to 12 MeV/u was covered using the 6 MV EN tandem accelerator at ETH Zurich, Switzerland, and the K130 cyclotron accelerator facility at the University of Jyväskylä, Finland. Our energy-loss data compare well with calculation based on the SRIM and PASS code. The new straggling measurements support a pronounced peak in He gas at around 4 MeV/u predicted by recent theoretical calculations. The straggling curve structure in the other gases (N2, Ne, Ar, Kr) is relatively flat in the covered energy range. Although there is a general agreement between the straggling data and the theoretical calculat…

research product

Thin film growth into the ion track structures in polyimide by atomic layer deposition

Abstract High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was det…

research product

Mechanical and optical properties of as-grown and thermally annealed titanium dioxide from titanium tetrachloride and water by atomic layer deposition

Funding Information: This work was carried out within the MECHALD project funded by Business Finland (Tekes) and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (ref. 251220) and Nuclear and Accelerator Based Physics (refs. 213503 and 251353) of the Academy of Finland. Funding Information: This work was carried out within the MECHALD project funded by Business Finland (Tekes) and is linked to the Finnish Centers of Excellence in Atomic Layer Deposition (ref. 251220 ) and Nuclear and Accelerator Based Physics (refs. 213503 and 251353 ) of the Academy of Finland. Publisher Copyright: © 2021 The use of thin-films made by atomic layer deposition (ALD) is increasing in …

research product

Al2O3 ALD films grown using TMA + rare isotope 2H216O and 1H218O precursors

In this work hydrogen and oxygen migration and exchange reactions in the atomic layer deposited (ALD) Al2O3 thin films were studied together with hydrogen incorporation by varying deposition parameters. Al2O3 films deposited at low temperatures can contain more than 20 at. % of hydrogen. Both higher temperature and longer purge length decrease the hydrogen and carbon concentrations significantly. In order to track the hydrogen and oxygen movement in the films, heavy water (2H216O) and oxygen-18 enriched water (1H218O) were used as precursors in combination with trimethylaluminium (TMA). Different isotopes of the same element were quantified by means of time-of-flight elastic recoil detectio…

research product

What Determines the Electrochemical Properties of Nitrogenated Amorphous Carbon Thin Films?

Funding Information: We acknowledge the provision of facilities by RawMatters Finland Infrastructure (RAMI, no. 292884), Aalto University Bioeconomy, and OtaNano - Nanomicroscopy Center (Aalto-NMC). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. We acknowledge CSC – IT Center for Science, Finland, for computational resources. S.S. acknowledges funding from the Walter Ahlström Foundation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skł…

research product

Effect of Hot Dip Galvanized Steel Surface Chemistry and Morphology on Titanium Hexafluoride Pretreatment

Titanium hexafluoride pretreatments are known to improve paint adhesion and function as a barrier between the coating and the hot dip galvanized (HDG) steel surface. Interactions at the zinc/pretreatment interface are of utmost importance for the formation of pretreatment layers and the corrosion resistance of color coated hot dip galvanized steels. Removal rate of inert aluminum oxide from HDG steel samples by chemical dissolution was studied. XPS measurements showed that the surface Al2O3 layer thickness decreased rapidly already at mild alkaline cleaning, while complete removal of Al required severe etching. Low reactivity of an Al2O3-rich surface was confirmed by impaired formation of a…

research product

Potku – New analysis software for heavy ion elastic recoil detection analysis

Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of- flight–energy (ToF–E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF–E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined rang…

research product

A new beamline for energy-dispersive high-resolution PIXE analysis using polycapillary optics

Abstract A new beamline for high energy resolution PIXE measurements is presented. This new setup includes options for both in-air and vacuum measurements. For the high energy resolution transition-edge sensor array, a polycapillary lens is used for detecting low-energy X-rays down to 0.5 keV and to increase the effective solid angle. X-ray transmission of the polycapillary lens was characterized using two calibration standards. The gain obtained by adding a polycapillary lens was 1.6–2.3 at energies between 2.1 keV and 4.5 keV. From 1.04 to 1.74 keV the gain is increased to 2.1–3.0, and at energies 4.9–8.0 keV the gain is between 1.6 and 0.65. The measured gain agreed well with theoretical…

research product

Thin Film Characterisation Using MeV Ion Beams

This chapter focuses on the characterisation of very thin films having thicknesses from a few nanometres to tens of nanometres. The driving force for the ion beam analysis community has mostly been the rapid development of microelectronics — all the elements in new thin SiO2 replacing dielectrics, diffusion barriers, and silicide contacts need to be analysed with a depth resolution even better than a nanometre. This together with new film deposition techniques like atomic layer deposition (ALD) [1] have given a push to the ion beam analysis community to develop new and better techniques using energetic (>0.5 MeV) ion beams.

research product

The α and γ plasma modes in plasma-enhanced atomic layer deposition with O2-N2 capacitive discharges

Two distinguishable plasma modes in the O2–N2 radio frequency capacitively coupled plasma (CCP) used in remote plasma-enhanced atomic layer deposition (PEALD) were observed. Optical emission spectroscopy and spectra interpretation with rate coefficient analysis of the relevant processes were used to connect the detected modes to the α and γ modes of the CCP discharge. To investigate the effect of the plasma modes on the PEALD film growth, ZnO and TiO2 films were deposited using both modes and compared to the films deposited using direct plasma. The growth rate, thickness uniformity, elemental composition, and crystallinity of the films were found to correlate with the deposition mode. In re…

research product

Considerations about multiple and plural scattering in heavy-ion low-energy ERDA

Abstract Low-energy heavy-ion Elastic Recoil Detection Analysis (ERDA) is becoming a mature technique for high-resolution characterization of thin films, i.e. below 50 nm thickness. In combination with a small tandem accelerator (∼2 MV terminal voltage) and beam energies below 20 MeV, it is suitable for routine analysis of key materials in semiconductor technology. At low-energies, however, small angle multiple scattering and large angle plural scattering of ions play a significant role, starting from the first nanometers. Multiple and plural scattering dominate the depth resolution deterioration with increasing depth and, when glancing angles are used, introduce long tails in the elemental…

research product

Low-energy heavy-ion TOF-ERDA setup for quantitative depth profiling of thin films

Abstract Low-energy heavy-ion time-of-flight elastic recoil detection analysis (TOF-ERDA) is becoming a mature technique for accurate characterization of thin films. In combination with a small tandem accelerator (∼2 MV terminal voltage) and beam energies below 20 MeV, it is suitable for routine analysis of key materials in semiconductor technology. In this paper we discuss advantages and drawbacks of low-energy ERDA, compared to high-energy ERDA, in terms of depth and mass resolution, detection efficiency for light elements, sample irradiation damage and quantification accuracy. The results presented are obtained with the time-of-flight telescope recently developed at IMEC. The time-of-fli…

research product

Analysis of thin high-k and silicide films by means of heavy ion time-of-flight forward-scattering spectrometry

The use of forward scattered heavy incident ions in combination with a time-of-flight-energy telescope provides a powerful tool for the analysis of very thin (5–30 nm) films. This is because of greater stopping powers and better detector energy resolution for heavier ions than in conventional He-RBS. Because of the forward scattering angle, the sensitivity is greatly enhanced, thus reducing the ion beam induced desorption during the analysis of very thin films. The drawback of forward scattering angle is the limited mass separation for target elements. We demonstrate the performance of the technique with the analysis of 25 nm thick NiSi films and atomic layer deposited 6 nm thick HfxSiyOz f…

research product

Cellulose nanofibrils prepared by gentle drying methods reveal the limits of helium ion microscopy imaging

TEMPO-oxidized cellulose nanofibrils (TCNFs) have unique properties, which can be utilised in many application fields from printed electronics to packaging. Visual characterisation of TCNFs has been commonly performed using Scanning Electron Microscopy (SEM). However, a novel imaging technique, Helium Ion Microscopy (HIM), offers benefits over SEM, including higher resolution and the possibility of imaging non-conductive samples uncoated. HIM has not been widely utilized so far, and in this study the capability of HIM for imaging of TCNFs was evaluated. Freeze drying and critical point drying (CPD) techniques were applied to preserve the open fibril structure of the gel-like TCNFs. Both dr…

research product

Heavy ion induced Ti X-ray satellite structure for Ti, TiN, and TiO2 thin films

research product

Characterization of ALD grown TixAlyN and TixAlyC thin films

Atomic layer deposition (ALD) was used to grow TixAlyN and TixAlyC thin films using trimethylaluminum (TMA), titanium tetrachloride and ammonia as precursors. Deposition temperature was varied between 325 °C and 500 °C. Films were also annealed in vacuum and N2-atmosphere at 600–1000 °C. Wide range of characterization methods was used including time-of-flight elastic recoil detection analysis (ToF-ERDA), X-ray diffractometry (XRD), X-ray reflectometry (XRR), Raman spectroscopy, ellipsometry, helium ion microscopy (HIM), atomic force microscopy (AFM) and 4-point probe measurement for resistivity. Deposited films were roughly 100 nm thick and contained mainly desired elements. Carbon, chlorin…

research product

Plasmonic nanosensor array for multiplexed DNA-based pathogen detection

In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…

research product

Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection

In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…

research product

Size dependent swift heavy ion induced Au nanoparticle elongation in SiO2 matrix

The elongation of spherical Au nanoparticles embedded in SiO2 under swift heavy ion (SHI) irradiation is an extensively studied phenomenon. The use of a TEM grid as a substrate facilitates the identification of the same nanoparticle before and after the irradiation. Since the underdensification of SiO2 inside the ion track plays a key role, the elongation is sensitive to the matrix material properties. Therefore, we studied the elongation process of SHI irradiated Au spherical nanoparticles of various diameters (5–80 nm) embedded either in atomic layer deposition (ALD) or plasma-enhanced chemical vapor deposition (PECVD) SiO2. The results show that a different elongation ratio is achieved d…

research product

Simulations on time-of-flight ERDA spectrometer performance

The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight–energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight–energy histograms. Corresponding measurement…

research product

A generalized noise study of solid-state nanopores at low frequencies

Nanopore technology has been extensively investigated for analysis of biomolecules, and a success story in this field concerns DNA sequencing using a nanopore chip featuring an array of hundreds of biological nanopores (BioNs). Solid-state nanopores (SSNs) have been explored to attain longer lifetime and higher integration density than what BioNs can offer, but SSNs are generally considered to generate higher noise whose origin remains to be confirmed. Here, we systematically study low-frequency (including thermal and flicker) noise characteristics of SSNs measuring 7 to 200 nm in diameter drilled through a 20-nm-thick SiNx membrane by focused ion milling. Both bulk and surface ionic curren…

research product

Depth profiling of Al2O3 + TiO2 nanolaminates by means of a time-of-flight energy spectrometer

Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al2O3 + TiO2 nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyväskylä. In TOF-E measurements 63Cu, 35Cl, 12C and 4He ions…

research product