0000000001091055
AUTHOR
Guillermo Mínguez Espallargas
Different structural destinations: comparing reactions of [CuBr2(3-Brpy)2] crystals with HBr and HCl gas
Reaction of green crystalline solid trans-[CuBr2(3-Brpy)2] 1 (3-Brpy = 3-bromopyridine) with HBr (aq) vapour yields brown crystalline salt (3-BrpyH)2[CuBr4] 2 with quantitative conversion. Notably 2 adopts a different crystal structure to the three mutually isostructural compounds (3-XpyH)2[CuCl4] (X = Cl, Br) and (3-BrpyH)2[CuBr2Cl2] which result from reaction with HCl. Crystalline product 2 has been characterised by X-ray powder diffraction and its conversion back to 1 at 370–400 K has been followed in situ by synchrotron X-ray powder diffraction. Crystalline 1 and 2 are further notable for the presence of intermolecular C–Br⋯Br–Cu halogen bonds and (only in the case of 2) N–H⋯Br–Cu hydro…
Perovskite solar cells employing organic charge-transport layers
Thin-film photovoltaics play an important role in the quest for clean renewable energy. Recently, methylammonium lead halide perovskites were identified as promising absorbers for solar cells(1). In the three years since, the performance of perovskite-based solar cells has improved rapidly to reach efficiencies as high as 15%(1-10). To date, all high-efficiency perovskite solar cells reported make use of a (mesoscopic) metal oxide, such as Al2O3, TiO2, or ZrO2, which requires a high-temperature sintering process. Here, we show that methylammonium lead iodide perovskite layers, when sandwiched between two thin organic charge-transporting layers, also lead to solar cells with high power-conve…
A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities
The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In add…
Blue-luminescent organic lead bromide perovskites: highly dispersible and photostable materials
The preparation of a blue-luminescent and photostable organic–inorganic hybrid perovskite with an X-ray powder diffraction spectrum consistent with a two-dimensional inorganic framework is reported. This perovskite can be produced with a high reaction yield and valuable optical properties, such as luminescence quantum yield over 20%, radiative rate constant of up to 80 × 106 s−1, and high photostability under UV light. This material remains stable as a solid, is toluene-dispersible, and can be reverted reversibly into its precursors by using dimethylformamide (DMF). Moreover, the DMF dispersion can be injected into toluene to produce a nanomaterial or be used to prepare films by spin-coatin…
Functionalization using biocompatible carboxylated cyclodextrins of iron-based nanoMIL-100
9 pags., 7 figs., 1 tab.
Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework
"Breathing" metal-organic frameworks (MOFs) that involve changes in their structural and physical properties upon an external stimulus are an interesting class of crystalline materials due to their range of potential applications including chemical sensors. The addition of redox activity opens up a new pathway for multifunctional "breathing" frameworks. Herein, we report the continuous breathing behavior of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, showing a reversible swelling (up to ca. 40% of the volume cell) upon solvent adsorption. Importantly, the planarity of the TTF linkers is influenced by the breathing behavior of the MOF, directly impacting on its electrochemical proper…
Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−
The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs) has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs), and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.
Use of alkylarsonium directing agents for the synthesis and study of zeolites
[EN] Expanding the previously known family of -onium (ammonium, phosphonium, and sulfonium) organic structure-directing agents (OSDAs) for the synthesis of zeolite MFI, a new member, the arsonium cation, is used for the first time. The new group of tetraalkylarsonium cations has allowed the synthesis of the zeolite ZSM-5 with several different chemical compositions, opening a route for the synthesis of zeolites with a new series of OSDA. Moreover, the use of As replacing N in the OSDA allows the introduction of probe atoms that facilitate the study of these molecules by powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (MAS NMR), and X-ray absorption spectroscopy (XAS)…
Two Consecutive Magneto-Structural Gas-Solid Transformations in Non-Porous Molecular Materials
Modification of the magnetic properties in a solid-state material upon external stimulus has attracted much attention in the recent years for their potential applications as switches and sensors. Within the field of coordination polymers, gas sorption studies typically focus on porous solids, with the gas molecules accommodating in the channels. Here we present a 1D non-porous coordination polymer capable of incorporating HCl gas molecules, which not only causes a reordering of its atoms in the solid state but also provokes dramatic changes in the magnetic behavior. Subsequently, a further solid-gas transformation can occur with the extrusion of HCl gas molecules causing a second structural…
Coordination polymer flexibility leads to polymorphism and enables a crystalline solid-vapour reaction: a multi-technique mechanistic study.
Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 …
Cation influence in adsorptive propane/propylene separation in ZIF-8 (SOD) topology
Separation of propylene/propane is one of the most challenging and energy consuming processes in the chemical industry. Propylene demand is increasing and a 99.5% purity is required for industrial purposes. Adsorption based solutions are the most promising alternatives to improve the economical/energetic efficiency of the process. Zeolitic Imidazolate Frameworks (ZIFs) combine the desired characteristics from both MOFs and zeolites: tunability and flexibility from metal organic frameworks, and exceptional thermal and chemical stability from zeolites. In order to enlighten the role of the cation in the sodalite ZIF-8 framework for propane/propylene separation, dynamic breakthrough measuremen…
Meltable, Glass-Forming, Iron Zeolitic Imidazolate Frameworks
Cobalt Metal-Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media
A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double cores that are strongly connected by intermolecular bonds has been developed. Its 3D structure is held together by π-π stacking interactions between the labile pyridine ligands of the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water molecules, producing a delamination of the material, where the individual double nanosheets preserve their structure. The original 3D layered structure can be restored by a solvothermal process with pyridine, so that the material shows a "memory effect"during the delamination-pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafi…
ChemInform Abstract: Dynamic Magnetic MOFs
In this review we combine the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal–Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus. The various approaches so far developed to prepare these kinds of chemically or physically responsive MOFs with tunable magnetic properties are presented.
Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF.
Coordination polymers (CPs), including metal–organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimen…
Near Isotropic D4d Spin Qubits as Nodes of a Gd(III)-Based Metal-Organic Framework
Embedding coherent spin motifs in reproducible molecular building blocks is a promising pathway for the realization of quantum technologies. Three-dimensional (3D) MOFs are a versatile platform for the rational design of extended structures employing coordination chemistry. Here, we report the synthesis and characterization of a gadolinium(III)-based MOF, [Gd(bipyNO)4](TfO)3·xMeOH (bipyNO = bipyridine,N,N′-dioxide; TfO = triflate; and MeOH = methanol) (quMOF-1), which presents a unique coordination geometry that leads to a tiny magnetic anisotropy (in terms of D, an equivalent zero-field splitting would be achieved by D = 0.006 cm–1) even compared with regular Gd(III) complexes. Pulsed elec…
Adsorptive Separation of CO2 by a Hydrophobic Carborane-Based Metal-Organic Framework under Humid Conditions
We report that the carborane-based metal-organic framework (MOF) mCB-MOF-1 can achieve high adsorptive selectivity for CO2:N2 mixtures. This hydrophobic MOF presenting open metal sites shows high CO2 adsorption capacity and remarkable selectivity values that are maintained even under extremely humid conditions. The comparison of mCB-MOF-1' with MOF-74(Ni) demonstrates the superior performance of the former under challenging moisture operation conditions.
A highly stable and hierarchical tetrathiafulvalene-based metal organic framework with improved performance as a solid catalyst
[EN] Herein we report the synthesis of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, which shows a non-interpenetrated hierarchical crystal structure with mesoporous one-dimensional channels of ca. 3 nm and orthogonal microporous channels of ca. 1 nm. This highly stable MOF (aqueous solution with pH values ranging from 2 to 11 and different organic solvents), which possesses the well-known [Fe3(¿3-O)(COO)6] secondary building unit, has proven to be an efficient catalyst for the aerobic oxidation of dibenzothiophenes.
Solvent-Free Synthesis of a Pillared Three-Dimensional Coordination Polymer with Magnetic Ordering
A new magnetic coordination polymer, [Fe(bipy)(im)2] (bipy = 4,4-bipyridine and im = imidazole), has been synthesized in a solvent-free reaction. Structural analysis reveals a pillared 3D coordination polymer composed by neutral layers, formed by iron(II) and imidazolate linkers, interconnected by bipy ligands which serve as pillars. Magnetic measurements show that the material magnetically orders at low temperatures (Tc = 14.5 K) as a weak ferromagnet, likely due to a spin canting.
Combination of magnetic susceptibility and electron paramagnetic resonance to monitor the 1D to 2D solid state transformation in flexible metal-organic frameworks of Co(II) and Zn(II) with 1,4-bis(triazol-1-ylmethyl)benzene.
Two families of coordination polymers, {[M(btix)(2)(OH(2))(2)]·2NO(3)·2H(2)O}(n) [M = Co (1), Zn (2), Co-Zn (3); btix = 1,4-bis(triazol-1-ylmethyl)benzene] and {[M(btix)(2)(NO(3))(2)]}(n) [M = Co (4), Zn (5), Co-Zn (6)], have been synthesized and characterized. The two conformations of the ligand, syn and anti, lead to one-dimensional (1D) cationic chains or two-dimensional (2D) neutral grids. Extrusion of the water molecules of the 1D compounds results in an irreversible transformation into the 2D compounds, which involves a change in conformation of the btix ligands and a rearrangement in the metal environment with cleavage and reformation of covalent bonds. This structural transformation…
Isostructural compartmentalized spin-crossover coordination polymers for gas confinement
[EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 (X = ClO4 or BF4), present voids of ca. 250 Å3, which each can accommodate up to two CO2 molecules. The abrupt spin transition can be modified upon CO2 sorption, and different magnetic behaviour is observed depending on the number of molecules sorbed.
Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles
To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material. This makes it possible to prepare homogeneous thin films of these nanoparticles by spin-coating on a quartz substrate. Both the colloidal solution and the thin film emit l…
2D magnetic MOFs with micron-lateral size by liquid exfoliation
The isolation in large amounts of high-quality flakes of 2D MOFs remains a challenge. In this work, we develop a liquid exfoliation procedure to obtain nanosheets for a whole family of Fe-based magnetic MOFs, MUV-1-X. High-quality crystalline layers with lateral sizes of 8 µm and thicknesses of 4 nm, which keep the structural integrity and magnetic properties, are obtained.
MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**
Metal–organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous cat…
One-dimensional organization of free radicals via halogen bonding
Halogen bonds have been applied for the supramolecular organization of organic free radicals in the solid state and their role in the propagation of the magnetic exchange has been studied.
Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal–Organic Frameworks (MOFs)
Through rational chemical design, and thanks to the hybrid nature of metal−organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (MII = Fe, Co, Mn, Zn) in a solventfree synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M. Furthermore, the incorporation o…
Structural re-arrangement in two hexanuclear CuIIcomplexes: from a spin frustrated trigonal prism to a strongly coupled antiferromagnetic soluble ring complex with a porous tubular structure
The addition of water to a chloroform solution of the Cu6 trigonal prism complex [Cu6(μ6F)(μ2OH)(μ3OCH3)2(μ2OCH3)2(3,5-Me2pz)6] (1) (3,5-Me2pz− = 3,5-dimethylpyrazolate) results in the formation of the Cu6 planar hexagonal ring complex [Cu6(μ2OH)6(3,5-Me2pz)6]·CH3CN·CHCl3 (2). A simple mechanism for this structural re-arrangement is proposed, in which 2 can be viewed as a hydrolysis product of 1. This process is clearly noticeable in the magnetic properties, which change from spin frustrated with a weak antiferromagnetic coupling in 1, to strongly antiferromagnetic in 2. Interestingly, the hexagonal ring complex 2 self-assembles in the solid state to form a porous hexagonal tubular structur…
Dynamic magnetic MOFs.
In this review we combine the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal–Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus. The various approaches so far developed to prepare these kinds of chemically or physically responsive MOFs with tunable magnetic properties are presented.
Supramolecular Interactions and Smart Materials: C-X…X′-M Halogen Bonds and Gas Sorption in Molecular Solids
Cobalt Metal-Organic Framework based on two dinuclear secondary building units for electrocatalytic oxygen evolution
[EN] The synthesis of a new microporous metal-organic framework (MOF) based on two secondary building units, with dinuclear cobalt centers, has been developed. The employment of a well-defined cobalt cluster results in an unusual topology of the Co-2-MOF, where one of the cobalt centers has three open coordination positions, which has no precedent in MOF materials based on cobalt. Adsorption isotherms have revealed that Co-2-MOF is in the range of best CO2 adsorbents among the carbon materials, with very high CO2/CH4 selectivity. On the other hand, dispersion of Co-2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co-2-MOF@Nafion) with great resistance to hydrolysis in aqu…
Chemical transformations of a crystalline coordination polymer: a multi-stage solid–vapour reaction manifold
In its crystal structure the one-dimensional coordination polymer [Ag4(O2C(CF2)2CF3)4(TMP)3]n (1) (TMP = 2,3,5,6-tetramethylpyrazine) adopts a zig-zag arrangement in which pairs of silver(I) centres bridged by two fluorocarboxylate ligands are linked alternately via one or two neutral TMP ligands. This material can reversibly absorb/desorb small alcohols (ROH) in single-crystal-to-single-crystal transformations, despite the lack of porosity in the crystals, to yield a related material of formula [Ag4(O2C(CF2)2CF3)4(TMP)3(ROH)2]n (1-ROH). The absorption process includes coordination of the alcohol to silver(I) centres and, in the process, insertion of the alcohol into one-quarter of the Ag–O…
Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal-Organic Frameworks
<div>Tetrathiafulvalene-Lanthanide (TTF-Ln) Metal-Organic Frameworks (MOFs) are an interesting class of multifunctional materials in which porosity can be combined with electronic properties such as electrical conductivity, redox activity, luminescence and magnetism. Herein we report a new family of isostructural TTF-Ln MOFs, denoted as <b>MUV-5(Ln)</b> (Ln = Gd, Tb, Dy, Ho, Er), exhibiting semiconducting properties as a consequence of the short intermolecular S···S contacts established along the chain direction between partially oxidised TTF moieties. In addition, this family shows photoluminescence properties and single-molecule magnetic behaviour, finding near-infrared …
Multifunctional magnetic materials obtained by insertion of a spin-crossover Fe(III) complex into bimetallic oxalate-based ferromagnets.
The syntheses, structures and magnetic properties of the compounds of formula [Fe(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].CH(2)Cl(2) (1; H(2)sal(2)-trien=N,N'-disalicylidenetriethylenetetramine, ox=oxalate), [Fe(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].CH(3)OH (2), [In(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].0.25H(2)O.0.25CH(3)OH.0.25CH(3)CN (3), and [In(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].CH(3)NO(2).0.5H(2)O (4) are reported. The structure of 1 presents a 2D honeycomb anionic layer formed by Mn(II) and Cr(III) ions linked through oxalate ligands and a cationic layer of [Fe(sal(2)-trien)](+) complexes intercalated between the 2D oxalate network. The structures of 2, 3, and 4 pres…
Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu 2 O nanoparticles for CO 2 methanation
<div>Here we show for the first time a MOF that is photocatalytically</div><div>active for the light-assisted CO<sub>2</sub> methanation at mild conditions</div><div>(215 °C) without the inclusion of metallic nanoparticles or any</div><div>sacrificial agent. The presence of Cu<sub>2</sub>O nanoparticles causes a 50 % increase in the photocatalytic activity. These results pave the way to developping efficient and cost-effective materials for CO<sub>2</sub> elimination.</div>
Interpenetrated Luminescent Metal-Organic Frameworks based on 1H-Indazole-5-carboxylic Acid
Herein we report the formation and characterization of two novel Zn-based multifunctional metal-organic frameworks (MOFs) based on 1H-indazole-5-carboxylic acid and bipyridine-like linkers, synthesized by soft solvothermal routes. These materials possess isoreticular 2-fold interpenetrated three-dimensional structures that afford a flexible character and allow porosity modulation of the MOFs as confirmed by CO2 sorption measurements. Apart from this attractive structural feature, the MOFs exhibit fascinating luminescent properties involving both luminescence thermometry and long-lasting phosphorescence.
Multivariate sodalite Zeolitic Imidazolate frameworks: a direct solvent-free synthesis
Different mixed-ligand Zeolitic Imidazolate Frameworks (ZIFs) with sodalite topology, i.e. isoreticular to ZIF-8, unachievable by conventional synthetic routes, have been prepared using a solvent-free methodology. In particular, the versatility of this method is demonstrated with three different metal centres (Zn, Co and Fe) and binary combinations of three different ligands (2-methylimidazole, 2-ethylimidazole and 2-methylbenzimidazole). One combination of ligands, 2-ethylimidazole and 2-methylbenzimidazole, results in the formation of SOD frameworks for the three metal centres despite this topology not being obtained for the individual ligands. Theoretical calculations confirm that this t…
A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO 2 uptake and separation
The combination of the properly designed novel organic linker, 3,6-N-ditriazoyil-2,5-dihydroxy-1,4-benzoquinone (trz2An), with CoII ions results in a 3D ultramicroporous MOF with high CO2 uptake capacity and separation efficiency, with particular attention to CO2/N2 and CO2/CH4 gas mixtures. This material consists of 1D chains of octahedrally coordinated CoII ions linked through the anilato ligands in the equatorial positions and to the triazole substituents from two neighbouring chains in the two axial positions. This leads to a 3D microporous structure with voids with an affinity for CO2 molecules and channels that enable the selective entrance of CO2 but not of molecules with larger kine…
Effects of halogen bonding in ferromagnetic chains based on Co(ii) coordination polymers
Two linear cobalt chloride ferromagnetic chains, trans-[CoCl2(3,5-X2py)2] [X = Cl (1), Br (2)], have been prepared and the influence of the halogen bonding on the interchain magnetic interactions has been investigated.
Inside Cover: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. Int. Ed. 29/2021)
A fluorinated 2D magnetic coordination polymer
Herein we show the versatility of coordination chemistry to design and expand a family of 2D materials by incorporating F groups at the surface of the layers. Through the use of a prefuntionalized organic linker with F groups, it is possible to achieve a layered magnetic material based on Fe(ii) centers that are chemically stable in open air, contrary to the known 2D inorganic magnetic materials. The high quality of the single crystals and their robustness allow to fabricate 2D molecular materials by micromechanical exfoliation, preserving the crystalline nature of these layers together with the desired functionalization.
Insertion of a [Fe II (pyimH) 3 ] 2+ [pyimH = 2‐(1 H ‐Imidazol‐2‐yl)pyridine] Spin‐Crossover Complex Inside a Ferromagnetic Lattice Based on a Chiral 3D Bimetallic Oxalate Network
The insertion of the [FeII(pyimH)3]2+ [pyimH = 2-(1H-imidazol-2-yl)pyridine] spin-crossover complex into a ferromagnetic bimetallic oxalate network affords the hybrid compound [FeII(pyimH)3][MnIICrIII(ox)3]2·X (ox = C2O42–). This spin-crossover complex templates the growth of crystals formed by a chiral 3D oxalate network. The magnetic properties of this hybrid magnet show the coexistence of long-range ferromagnetic ordering at 4.5 K and a spin crossover of the intercalated [FeII(pyimH)3]2+ complex above 250 K. The compound presents a light-induced excited spin-state trapping (LIESST) effect below 60 K although with limited photoconversion (less than 8 %).
Redox and guest tunable spin-crossover properties in a polymeric polyoxometalate
A bifunctionalized polyoxometalate (POM), [V6O19(C16H15N6O)2]2−, which contains a redox active hexavanadate moiety covalently linked to two tridentate 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligands, has been prepared and characterized. Reaction of this hybrid molecule with Fe(II) or Zn(II) ions produces crystalline neutral 1D networks of formula Fe[V6O19(C16H15N6O)2]·solv (2) and Zn[V6O19(C16H15N6O)2]·solv (3) (solv = solvent molecules). Magnetic properties of 2 show an abrupt spin-crossover (SCO) with the temperature, which can be induced by light irradiation at 10 K (Light-Induced Excited Spin-State Trapping, LIESST effect). Interestingly, this porous and flexible structure enables reversi…
Selective CO 2 Sorption Using Compartmentalized Coordination Polymers with Discrete Voids**
Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 A3 . Single gas adsorption isotherms of N2 , CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity an…
Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption.
Responsive materials for which physical or chemical properties can be tuned by applying an external stimulus are attracting considerable interest in view of their potential applications as chemical switches or molecular sensors. A potential source of such materials is metal-organic frameworks. These porous coordination polymers permit the physisorption of guest molecules that can provoke subtle changes in their porous structure, thus affecting their physical properties. Here we show that the chemisorption of gaseous HCl molecules by a non-porous one-dimensional coordination polymer instigates drastic modifications in the magnetic properties of the material. These changes result from profoun…
Key Role of the Cation in the Crystallization of Chiral Tris(Anilato)Metalate Magnetic Anions
A complete study of the role played by the usually considered “innocent” cation in the synthesis of chiral tris(anilato)metalate magnetic complexes is presented. This study is based on the rational synthesis of the family of compounds formulated as A3[MIII(C6O4X2)3] with A+ = [PPh3Et]+, [PPh3Pr]+, [PBu4]+, [NHep4]+, and [PPh4]+; MIII = CrIII, FeIII, and GaIII; and [C6O4X2]2– (X = Cl, Br, and NO2; [C6O4X2]2– = dianion of the 3,6-disubstituted derivatives of 2,5-dihydroxy-1,4-benzoquinone, H4C6O4). We show and explain the unexpected key role played by the cations in isolating chiral or achiral crystals of these [MIII(C6O4X2)3]3– anions with D3 point group symmetry. Thus, among the 18 new comp…
2D and 3D Anilato-Based Heterometallic M(I)M(III) Lattices: The Missing Link
The similar bis-bidentate coordination mode of oxalato and anilato-based ligands is exploited here to create the first examples of 2D and 3D heterometallic lattices based on anilato ligands combining M(I) and a M(III) ions, phases already observed with oxalato but unknown with anilato-type ligands. These lattices are prepared with alkaline metal ions and magnetic chiral tris(anilato)metalate molecular building blocks: [M(III)(C6O4X2)3](3-) (M(III) = Fe and Cr; X = Cl and Br; (C6O4X2)(2-) = dianion of the 3,6-disubstituted derivatives of 2,5-dihydroxy-1,4-benzoquinone, H4C6O4). The new compounds include two very similar 2D lattices formulated as (PBu3Me)2[NaCr(C6O4Br2)3] (1) and (PPh3Et)2[KF…
Innentitelbild: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. 29/2021)
Flexible high efficiency perovskite solar cells
Flexible perovskite based solar cells with power conversion efficiencies of 7% have been prepared on PET based conductive substrates. Extended bending of the devices does not deteriorate their performance demonstrating their suitability for roll to roll processing.
Hybrid magnetic superconductors formed by TaS2 layers and spin crossover complexes.
The restacking of charged TaS2 nanosheets with molecular counterparts has so far allowed for the combination of superconductivity with a manifold of other molecule-intrinsic properties. Yet, a hybrid compound that blends superconductivity with spin crossover switching has still not been reported. Here we continue to exploit the solid-state/molecule-based hybrid approach for the synthesis of a layered TaS2-based material that hosts Fe(2+) complexes with a spin switching behavior. The chemical design and synthetic aspects of the exfoliation/restacking approach are discussed, highlighting how the material can be conveniently obtained in the form of highly oriented easy-to-handle flakes. Finall…
A systematic study of the optical properties of mononuclear hybrid organo-inorganic lanthanoid complexes
A series of hybrid organo-inorganic mononuclear lanthanoid complexes, [n-NBu4]3[LnH(PW11O39)(phen)2]·H2O, denoted as LM4-1-Ln (Ln = DyIII, TbIII, EuIII, NdIII, ErIII, HoIII and GdIII), were synthesized via hydrothermal synthesis and were structurally characterized by X-ray diffraction. The optical properties of all complexes have been investigated in the solid state. The temperature-dependent emission spectra of LM4-1-Dy, LM4-1-Tb and LM4-1-Eu complexes show intense lanthanoid emissions in the visible region, while LM4-1-Nd shows near-infrared (NIR) luminescence. The EuIII complex shows typical strong red emissions from the 5D0 → 7F0,1,2,3,4 transitions, with the CIE colour coordinates (0.6…
Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes
A new family of chloroquinolinate lanthanoid complexes of the formula A+[Ln(5,7Cl2q)4]−, with Ln = Y3+, Tb3+ and Dy3+ and A+ = Na+, NEt4+ and K0.5(NEt4)0.5+, is studied, both in bulk and as thin films. Several members of the family are found to present single-molecule magnetic behavior in bulk. Interestingly, the sodium salts can be sublimed under high vacuum conditions retaining their molecular structures and magnetic properties. These thermally stable compounds have been deposited on different substrates (Al2O3, Au and NiFe). The magnetic properties of these molecular films show the appearance of cusps in the zero-field cooled curves when they are deposited on permalloy (NiFe). This indic…
Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO2/N2 gas separation
Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.
Semiconductor Porous Hydrogen-Bonded Organic Frameworks Based on Tetrathiafulvalene Derivatives.
Herein, we report on the use of tetrathiavulvalene-tetrabenzoic acid, H4TTFTB, to engender semiconductivity in porous hydrogen-bonded organic frameworks (HOFs). By tuning the synthetic conditions, three different polymorphs have been obtained, denoted MUV-20a, MUV-20b, and MUV-21, all of them presenting open structures (22, 15, and 27%, respectively) and suitable TTF stacking for efficient orbital overlap. Whereas MUV-21 collapses during the activation process, MUV-20a and MUV-20b offer high stability evacuation, with a CO2 sorption capacity of 1.91 and 1.71 mmol g-1, respectively, at 10 °C and 6 bar. Interestingly, both MUV-20a and MUV-20b present a zwitterionic character with a positively…
Influence of interpenetration on the flexibility of MUV-2
<p>The crystal structure of an interpenetrated tetrathiafulvalene(TTF)- based metal-organic framework (MOF) is reported. This MOF, denoted MUV-2-i, is the interpenetrated analogue of the hierarchical and flexible MUV-2. Interestingly, the large flexibility exhibited by MUV-2 upon polar solvent adsorption is considerably reduced in the interpenetrated form which can be explained by short S···S interactions between adjacent TTF-based ligands ensuring more rigidity to the framework. In addition, porosity of MUV-2-i significantly decreased in comparison to MUV-2 as shown by the reduced free volume in the crystal structure.</p>
Implementation of slow magnetic relaxation in a SIM-MOF through a structural rearrangement
<p>Here we report the structural flexibility of a Dy-based Single-Ion Magnet MOF in which its magnetic properties can be modified through a ligand substitution process involving an increase of the charge density of the coordination environment.</p>
Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework
The design of metal–organic frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to obtain additional electrical functionalities within the framework while maintaining porosity. Understanding the charge-transfer (CT) process between the framework and the guest molecules is a crucial step towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C60) in a mesoporous tetrathiafulvalene (TTF)-based MOF. The CT process between the electron-acceptor C60 guest and the electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theor…
A family of layered chiral porous magnets exhibiting tunable ordering temperatures.
A simple change of the substituents in the bridging ligand allows tuning of the ordering temperatures, Tc, in the new family of layered chiral magnets A[M(II)M(III)(X2An)3]·G (A = [(H3O)(phz)3](+) (phz = phenazine) or NBu4(+); X2An(2-) = C6O4X2(2-) = 2,5-dihydroxy-1,4-benzoquinone derivative dianion, with M(III) = Cr, Fe; M(II) = Mn, Fe, Co, etc.; X = Cl, Br, I, H; G = water or acetone). Depending on the nature of X, an increase in Tc from ca. 5.5 to 6.3, 8.2, and 11.0 K (for X = Cl, Br, I, and H, respectively) is observed in the MnCr derivative. Furthermore, the presence of the chiral cation [(H3O)(phz)3](+), formed by the association of a hydronium ion with three phenazine molecules, lead…
Heterometallic palladium-iron metal-organic framework as a highly active catalyst for cross-coupling reactions.
Palladium-based metal-organic frameworks (Pd-MOFs) are an emerging class of heterogeneous catalysts extremely challenging to achieve due to the facile leaching of palladium and its tendency to be reduced. Herein, Pd(II) was successfully incorporated in the framework of a MOF denoted as MUV-22 using a solvent assisted reaction. This stable MOF, with square-octahedron (soc) topology as MIL-127, and a porosity of 710 m2 g−1, is highly active, selective, and recyclable for the Suzuki-Miyaura allylation of aryl and alkyl boronates as exemplified with the coupling between cinnamyl bromide and Me-Bpin, a typically reluctant reagent in cross-coupling reactions.
Inside Cover: Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF
How do you unveil pathway complexity in a crystallization process? In their Research Article on page 15920, Alessandro Sorrenti, Marco D′Abramo, Guillermo Mínguez Espallargas, Josep Puigmartí-Luis, and co-workers show that harnessing a reaction-diffusion (RD) process within a continuous flow microfluidic device, and on a millisecond timescale, is key to enable two unprecedented nucleation-growth pathways during a MOF synthesis.
Sublimable Single Ion Magnets Based on Lanthanoid Quinolinate Complexes: The Role of Intermolecular Interactions on Their Thermal Stability
We report the design, preparation, and characterization of two families of thermally robust coordination complexes based on lanthanoid quinolinate compounds: [Ln(5,7-Br2q)4]− and [Ln(5,7-ClIq)4]−, where q = 8-hydroquinolinate anion and Ln = DyIII, TbIII, ErIII, and HoIII. The sodium salt of [Dy(5,7-Br2q)4]− decomposes upon sublimation, whereas the sodium salt of [Dy(5,7- ClIq)4]−, which displays subtly different crystalline interactions, is sublimable under gentle conditions. The resulting film presents low roughness with high coverage, and the molecular integrity of the coordination complex is verified through AFM, MALDI-TOF, FT-IR, and microanalysis. Crucially, the single-molecule magnet …
Slow Relaxation of the Magnetization on Frustrated Triangular FeIII Units with S= 1/2 Ground State: The Effect of the Highly Ordered Crystal Lattice and the Counteranions
In order to understand how the different arrangements of highly ordered triangular FeIII S = 1/2 systems with various types of diamagnetic and paramagnetic anions affect their static and dynamic magnetic properties, we have obtained by solvothermal synthesis four new μ3-oxido trinuclear FeIII compounds, [Fe3O(Ac)6(AcNH2)3][BF4]·(CH3CONH2)0.5(H2O)0.5 (1-BF4), [Fe3O(Ac)6(AcNH2)3][GaCl4] (1-GaCl4), [Fe3O(Ac)6(AcNH2)3][FeCl4] (1-FeCl4) and [Fe3O(Ac)6(AcNH2)3][FeBr4] (1-FeBr4), where, Ac- = CH3COO- and AcNH2 = CH3CONH2. The organization of the triangular units is very varied, from segregated stacks to eclipsed equilateral triangular [Fe3O]+ units along the c-axis with intercalated [MX4]- units. …
Hydrogen bonding versus π-stacking in ferromagnetic interactions. Studies on a copper triazolopyridine complex
Magnetic susceptibility measurements show weak ferromagnetic exchange between the copper(II) ions of a novel triazolopyridine derivative [Cu(TPT)(H2O)2(BF4)](BF4)·2H2O (TPT = 3-{6-([1,2,3]triazolo[1,5-a]pyrid-3-yl)-2-pyridyl}-[1,2,3]triazolo[1,5-a]pyridine). Mononuclear [Cu(TPT)(H2O)2(BF4)]+ entities are connected through O–H⋯F, C–H⋯F and π⋯π interactions to give a 3D framework. Ferromagnetic properties are discussed on the basis of the interactions network.
Layered gadolinium hydroxides for low-temperature magnetic cooling
Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.
Solvent-free synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8
Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8 with the formula Fe(2-methylimidazolate) , here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology can be extended to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67, and the unprecedented iron(II) ZIFs Fe(2-ethylimidazolate) and Fe(2-methylbenzimidazolate) . The different performance of MUV-3 toward NO sorption, in comparison to ZIF-8, results …
New dinuclear copper complexes incorporating bis(imidazolyl) based ligands and bidentate–monodentate oxalate bridges. Crystal structure and magnetic properties of [Cu2(BIM)2(C2O4)2]·4H2O and [Cu2(BIK)2(C2O4)2] (BIM=bis(2-imidazolyl)methane), BIK=bis(2-imidazolyl)ketone). Exploring magneto-structural correlations
Abstract This paper reports the synthesis, X-ray crystal structure and magnetic characterization of two novel copper(II) dinuclear compounds including bis(imidazolyl) ligands and oxalate anions, [Cu2(BIM)2(C2O4)2]·4H2O (1) (BIM = bis(2-imidazolyl)methane) and [Cu2(BIK)2(C2O4)2] (2) (BIK = bis(2-imidazolyl)ketone). The oxalate anion acts as bidentate–monodentate in both cases, although it exhibits different coordination bridging modes: whereas in compound 1 a μ1,1,2-oxalato is observed, a μ1,2,3-oxalato is found in compound 2. In both cases, the 3D framework is held together by a combination of H-bonding and aromatic-aromatic interactions provided by the convenient structural features of BIM…
Inside Cover: A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities (Chem. Eur. J. 34/2014)
A novel coordination polymer with an unusual [3×2] oblique copper(II) grid: [Cu2(HBIMAM)2(C4O4)3(H2O)2]n·2nH2O [BIMAM=bis(imidazol-2-yl)methylaminomethane]. X-ray structure and magnetic characterization
Abstract This paper reports the synthesis, X-ray structure and magnetic characterization of [Cu2(HBIMAM)2(C4O4)3(H2O)2]n·2nH2O [BIMAM = bis(imidazol-2-yl)methylamino methane]. This compound is made of infinite chains – running along the [1 1 0] direction – with copper ions bridged by μ1,3-squarato ligands. Furthermore, these chains are further cross-linked through additional squarate anions (with the same μ1,3-bis(monodentate) bridging mode) to generate two-dimensional sheets parallel to the ab plane. There are inter-chains links every two copper atoms in a chain, forming an unusual (3 × 2) oblique copper(II) grid. Magnetic susceptibility measurements in the range 2–300 K show weak antiferr…
Hybrid organic-inorganic mononuclear lanthanoid single ion magnets
The first family of hybrid mononuclear organic-inorganic lanthanoid complexes is reported, based on [PW11O39]7− and 1,10-phenanthroline ligands. This hybrid approach causes a dramatic improvement of the relaxation time (×1000) with a decrease of the optimal field while maintaining the Ueff of the inorganic analogues.
Magnetic functionalities in MOFs: from the framework to the pore
In this review, we show the different approaches so far developed to prepare Metal-Organic Frameworks (MOFs) presenting electronic functionalities, with particular attention to magnetic properties. We will cover the chemical design of the framework necessary for the incorporation of different magnetic phenomena, as well as the encapsulation of functional species in the pores leading to hybrid multifunctional MOFs combining an extended lattice with a molecular lattice.
Quantum Error Correction with magnetic molecules
Quantum algorithms often assume independent spin qubits to produce trivial $|\uparrow\rangle=|0\rangle$, $|\downarrow\rangle=|1\rangle$ mappings. This can be unrealistic in many solid-state implementations with sizeable magnetic interactions. Here we show that the lower part of the spectrum of a molecule containing three exchange-coupled metal ions with $S=1/2$ and $I=1/2$ is equivalent to nine electron-nuclear qubits. We derive the relation between spin states and qubit states in reasonable parameter ranges for the rare earth $^{159}$Tb$^{3+}$ and for the transition metal Cu$^{2+}$, and study the possibility to implement Shor's Quantum Error Correction code on such a molecule. We also disc…
Gas confinement in compartmentalized coordination polymers for highly selective sorption
Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compar…
Dynamic magnetic materials based on the cationic coordination polymer [Cu(btix)2]n(2n+) [btix = 1,4-bis(triazol-1-ylmethyl)benzene]: tuning the structural and magnetic properties through anion exchange.
A three-dimensional coordination polymer, [Cu(btix)(2)(BF(4))(2)](n) [btix = 1,4-bis(triazol-1-ylmethyl)benzene], with antiferromagnetic interactions occurring via the organic ligand, has been prepared and characterized. It has been shown to permit the exchange of anionic species in the crystalline network with modification of the magnetic properties. Coordinated BF(4)(-) can be reversibly exchanged by different anions with (NO(3)(-) and Cl(-)) or without (PF(6)(-) and ClO(4)(-)) dynamic response of the organic ligand, which acts as the only linker between the metal centers. Interestingly, an irreversible exchange occurs with N(3)(-) anions to generate a new coordination polymer, [Cu(btix)(…
A Mixed-Ligand Approach for Spin-Crossover Modulation in a Linear FeII Coordination Polymer
In this work, we present a family of Fe(II) coordination polymers of general formula [Fe(btzx)(3-3x)(btix)(3x)](ClO4)2 with interesting spin-crossover properties. These coordination polymers have been synthesized using chemical mixtures of two different but closely related ligands, 1,4-bis(tetrazol-1-ylmethyl)benzene (btzx) and 1,4-bis(triazol-1-ylmethyl)benzene (btix), and the effect of a gradual substitution of the ligand in the spin transition temperature has been investigated. Several chemical mixtures have been structurally characterized by X-ray powder diffraction indicating a clear critical amount in the composition of the mixture after which mixed phases rather than a single phase c…
Spin-Crossover Modification through Selective CO2 Sorption
[EN] We present a spin-crossover Fe-II coordination polymer with no permanent channels that selectively sorbs CO2 over N-2. The one-dimensional chains display internal voids of similar to 9 angstrom diameter, each being capable to accept one molecule of CO2 at 1 bar and 273 K. X-ray diffraction provides direct structural evidence of the location of the gas molecules and reveals the formation of O=C=O(delta(-))center dot center dot center dot pi interactions. This physisorption modifies the spin transition, producing a 9 K increase in T-1/2.
Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes† †Electronic supplementary information (ESI) available. CCDC 1557647–1557649. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03463f
Magnetic analogues of Alq3 give rise to molecular/ferromagnetic interfaces with specific hybridization, opening the door to interesting spintronic effects.
CCDC 1473649: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 1415637: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573
CCDC 1951515: Experimental Crystal Structure Determination
Related Article: Walter Cañón-Mancisidor, Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Carlos Cruz, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas|2019|Chem.Commun.|55|14992|doi:10.1039/C9CC07868A
CCDC 1934948: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1457101: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171
CCDC 1415635: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573
CCDC 1951516: Experimental Crystal Structure Determination
Related Article: Walter Cañón-Mancisidor, Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Carlos Cruz, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas|2019|Chem.Commun.|55|14992|doi:10.1039/C9CC07868A
CCDC 1457100: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171
CCDC 1562347: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 1910863: Experimental Crystal Structure Determination
Related Article: Sara Sáez-Ferre, Christian W. Lopes, Jorge Simancas, Alejandro Vidal-Moya, Teresa Blasco, Giovanni Agostini, Guillermo Mínguez Espallargas, Jose L. Jordá, Fernando Rey, Pascual Oña-Burgos|2019|Chem.-Eur.J.|25|16390|doi:10.1002/chem.201904043
CCDC 953847: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284
CCDC 2095301: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Eugenia Miguel-Casañ, María Esteve-Rochina, Eduardo Andres-Garcia, Iñigo J. Vitórica-Yrezábal, Joaquín Calbo, Guillermo Mínguez Espallargas|2022|Chemical Science|13|842|doi:10.1039/D1SC04779E
CCDC 910547: Experimental Crystal Structure Determination
Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k
CCDC 2131105: Experimental Crystal Structure Determination
Related Article: Eugenia Miguel-Casañ, Mohanad D. Darawsheh, Víctor Fariña-Torres, Iñigo J. Vitórica-Yrezábal, Eduardo Andres-Garcia, Martín Fañanás-Mastral, Guillermo Mínguez Espallargas|2023|Chemical Science|14|179|doi:10.1039/D2SC05192C
CCDC 1916087: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1457102: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171
CCDC 1473650: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 1440481: Experimental Crystal Structure Determination
Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J
CCDC 1951518: Experimental Crystal Structure Determination
Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A
CCDC 987661: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 1579606: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Andrea Santiago-Portillo, Miguel Palomino, Iñigo J. Vitórica-Yrezábal, Bruno J. C. Vieira, João C. Waerenborgh, Susana Valencia, Sergio Navalón, Fernando Rey, Hermenegildo García, Guillermo Mínguez Espallargas|2018|Chemical Science|9|2413|doi:10.1039/C7SC04829G
CCDC 1415636: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573
CCDC 1582351: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Pablo J. Bereciartua, Eugenio Coronado, Guillermo Mínguez Espallargas|2022|Dalton Trans.|51|1861|doi:10.1039/D1DT03734J
CCDC 1962564: Experimental Crystal Structure Determination
Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A
CCDC 1440482: Experimental Crystal Structure Determination
Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J
CCDC 1415638: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573
CCDC 1562346: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 1562348: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 1916085: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1439097: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 987659: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 1457103: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171
CCDC 1439890: Experimental Crystal Structure Determination
Related Article: Emilio Escrivà, José-Vicente Folgado, Guillermo Mínguez Espallargas, Lucia Soto, Amparo Sancho, Lourdes Perelló, Rosa Ortíz|2016|Polyhedron|112|137|doi:10.1016/j.poly.2016.03.041
CCDC 1411200: Experimental Crystal Structure Determination
Related Article: Maurici López-Jordà, Mónica Giménez-Marqués, Cédric Desplanches, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2016|Eur.J.Inorg.Chem.||2187|doi:10.1002/ejic.201500790
CCDC 1044598: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514
CCDC 910548: Experimental Crystal Structure Determination
Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k
CCDC 2217201: Experimental Crystal Structure Determination
Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C
CCDC 927863: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C
CCDC 1032220: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451
CCDC 2213981: Experimental Crystal Structure Determination
Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F
CCDC 1855292: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, José J. Baldoví, Carlos Martí-Gastaldo, Guillermo Mínguez Espallargas|2018|Dalton Trans.|47|14734|doi:10.1039/C8DT03421D
CCDC 987658: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 1562344: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 1916082: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1557648: Experimental Crystal Structure Determination
Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F
CCDC 1557649: Experimental Crystal Structure Determination
Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F
CCDC 1897432: Experimental Crystal Structure Determination
Related Article: María Vicent-Morales, Iñigo J. Vitórica-Yrezábal, Manuel Souto, Guillermo Mínguez Espallargas|2019|CrystEngComm|21|3031|doi:10.1039/C9CE00233B
CCDC 1562345: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 1934950: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1032219: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451
CCDC 1951517: Experimental Crystal Structure Determination
Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A
CCDC 1833302: Experimental Crystal Structure Determination
Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510
CCDC 1562349: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 1855294: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, José J. Baldoví, Carlos Martí-Gastaldo, Guillermo Mínguez Espallargas|2018|Dalton Trans.|47|14734|doi:10.1039/C8DT03421D
CCDC 1044595: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514
CCDC 1032218: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451
CCDC 1439096: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 1962563: Experimental Crystal Structure Determination
Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A
CCDC 1934947: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1562351: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 927864: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C
CCDC 1473651: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 1934945: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 2213982: Experimental Crystal Structure Determination
Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F
CCDC 1473652: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 987660: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 953846: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284
CCDC 2217199: Experimental Crystal Structure Determination
Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C
CCDC 927862: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C
CCDC 1439889: Experimental Crystal Structure Determination
Related Article: Emilio Escrivà, José-Vicente Folgado, Guillermo Mínguez Espallargas, Lucia Soto, Amparo Sancho, Lourdes Perelló, Rosa Ortíz|2016|Polyhedron|112|137|doi:10.1016/j.poly.2016.03.041
CCDC 1934949: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 2213983: Experimental Crystal Structure Determination
Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F
CCDC 1420989: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, and Eugenio Coronado|2015|Inorg.Chem.|54|10490|doi:10.1021/acs.inorgchem.5b02003
CCDC 1562350: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080
CCDC 1044597: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514
CCDC 1934946: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1415639: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573
CCDC 1916084: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1457099: Experimental Crystal Structure Determination
Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171
CCDC 1951519: Experimental Crystal Structure Determination
Related Article: Walter Cañón-Mancisidor, Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Carlos Cruz, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas|2019|Chem.Commun.|55|14992|doi:10.1039/C9CC07868A
CCDC 1916086: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 987656: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 1044596: Experimental Crystal Structure Determination
Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514
CCDC 1994492: Experimental Crystal Structure Determination
Related Article: Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Guillermo Mínguez Espallargas, Fernando Rey, Avelino Corma, Pascual Oña-Burgos|2020|J.Am.Chem.Soc.|142|19198|doi:10.1021/jacs.0c08882
CCDC 1833300: Experimental Crystal Structure Determination
Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510
CCDC 2213984: Experimental Crystal Structure Determination
Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F
CCDC 2217200: Experimental Crystal Structure Determination
Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C
CCDC 927865: Experimental Crystal Structure Determination
Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C
CCDC 987655: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 1473654: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 1415634: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573
CCDC 1898281: Experimental Crystal Structure Determination
Related Article: Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Miguel Palomino, Guillermo Mínguez Espallargas, José L. Jordá, Fernando Rey, Pascual Oña-Burgos|2019|ACS Applied Materials and Interfaces|11|46658|doi:10.1021/acsami.9b13655
CCDC 953848: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284
CCDC 1032217: Experimental Crystal Structure Determination
Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451
CCDC 2237340: Experimental Crystal Structure Determination
Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C
CCDC 953849: Experimental Crystal Structure Determination
Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284
CCDC 987657: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 1916083: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 987654: Experimental Crystal Structure Determination
Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255
CCDC 2237339: Experimental Crystal Structure Determination
Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C
CCDC 893839: Experimental Crystal Structure Determination
Related Article: Emilio Escrivá, Lucía Soto, Juan Server-Carrió, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Nailette Ruiz, Amparo Sancho, Julia García-Lozano, Carmen Ramírez de Arellano|2013|Polyhedron|56|90|doi:10.1016/j.poly.2013.03.016
CCDC 1557647: Experimental Crystal Structure Determination
Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F
CCDC 1473653: Experimental Crystal Structure Determination
Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G
CCDC 2217202: Experimental Crystal Structure Determination
Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C
CCDC 1833301: Experimental Crystal Structure Determination
Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510
CCDC 921439: Experimental Crystal Structure Determination
Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k