0000000001091055

AUTHOR

Guillermo Mínguez Espallargas

showing 181 related works from this author

Different structural destinations: comparing reactions of [CuBr2(3-Brpy)2] crystals with HBr and HCl gas

2011

Reaction of green crystalline solid trans-[CuBr2(3-Brpy)2] 1 (3-Brpy = 3-bromopyridine) with HBr (aq) vapour yields brown crystalline salt (3-BrpyH)2[CuBr4] 2 with quantitative conversion. Notably 2 adopts a different crystal structure to the three mutually isostructural compounds (3-XpyH)2[CuCl4] (X = Cl, Br) and (3-BrpyH)2[CuBr2Cl2] which result from reaction with HCl. Crystalline product 2 has been characterised by X-ray powder diffraction and its conversion back to 1 at 370–400 K has been followed in situ by synchrotron X-ray powder diffraction. Crystalline 1 and 2 are further notable for the presence of intermolecular C–Br⋯Br–Cu halogen bonds and (only in the case of 2) N–H⋯Br–Cu hydro…

chemistry.chemical_classificationHydrogen bondIntermolecular forceInorganic chemistrySalt (chemistry)General ChemistryCrystal structureCondensed Matter PhysicsSynchrotronlaw.inventionCrystallographychemistrylawHalogenGeneral Materials ScienceIsostructuralPowder diffractionCrystEngComm
researchProduct

Perovskite solar cells employing organic charge-transport layers

2013

Thin-film photovoltaics play an important role in the quest for clean renewable energy. Recently, methylammonium lead halide perovskites were identified as promising absorbers for solar cells(1). In the three years since, the performance of perovskite-based solar cells has improved rapidly to reach efficiencies as high as 15%(1-10). To date, all high-efficiency perovskite solar cells reported make use of a (mesoscopic) metal oxide, such as Al2O3, TiO2, or ZrO2, which requires a high-temperature sintering process. Here, we show that methylammonium lead iodide perovskite layers, when sandwiched between two thin organic charge-transporting layers, also lead to solar cells with high power-conve…

chemistry.chemical_classificationMaterials scienceChemical engineeringchemistryIodidetechnology industry and agricultureSublimation (phase transition)Hybrid solar cellQuantum dot solar cell7. Clean energyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsNature Photonics
researchProduct

A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities

2014

The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In add…

LanthanideSingle ionIon exchangeChemistryOrganic ChemistryRational designNanotechnologyGeneral ChemistryCatalysisEffective nuclear chargeCrystallographyMagnetMetal-organic frameworkTrifluoromethanesulfonateChemistry - A European Journal
researchProduct

Blue-luminescent organic lead bromide perovskites: highly dispersible and photostable materials

2015

The preparation of a blue-luminescent and photostable organic–inorganic hybrid perovskite with an X-ray powder diffraction spectrum consistent with a two-dimensional inorganic framework is reported. This perovskite can be produced with a high reaction yield and valuable optical properties, such as luminescence quantum yield over 20%, radiative rate constant of up to 80 × 106 s−1, and high photostability under UV light. This material remains stable as a solid, is toluene-dispersible, and can be reverted reversibly into its precursors by using dimethylformamide (DMF). Moreover, the DMF dispersion can be injected into toluene to produce a nanomaterial or be used to prepare films by spin-coatin…

Materials scienceRenewable Energy Sustainability and the EnvironmentInorganic chemistrySubstrate (chemistry)General ChemistryPhotochemistryNanomaterialschemistry.chemical_compoundReaction rate constantchemistryDimethylformamideGeneral Materials ScienceDispersion (chemistry)LuminescencePowder diffractionPerovskite (structure)Journal of Materials Chemistry A
researchProduct

Functionalization using biocompatible carboxylated cyclodextrins of iron-based nanoMIL-100

2021

9 pags., 7 figs., 1 tab.

Auger electron spectroscopyCyclodextrinsCyclodextrin applicationsNanoparticleMetal-organic frameworksInorganic ChemistryThermogravimetrychemistry.chemical_compoundMonomerchemistryPolymer chemistrypolycyclic compoundsMaterials ChemistrySurface modified nanoparticlesMössbauerSurface modificationCarboxylatePhysical and Theoretical ChemistryPorosityLinkerMaterials
researchProduct

Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework

2018

"Breathing" metal-organic frameworks (MOFs) that involve changes in their structural and physical properties upon an external stimulus are an interesting class of crystalline materials due to their range of potential applications including chemical sensors. The addition of redox activity opens up a new pathway for multifunctional "breathing" frameworks. Herein, we report the continuous breathing behavior of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, showing a reversible swelling (up to ca. 40% of the volume cell) upon solvent adsorption. Importantly, the planarity of the TTF linkers is influenced by the breathing behavior of the MOF, directly impacting on its electrochemical proper…

MECHANISMNIChemistry MultidisciplinarySOLIDSQuímica organometàl·lica010402 general chemistryElectrochemistry01 natural sciencesBiochemistryArticleCatalysisMOFSRedox Activitychemistry.chemical_compoundsymbols.namesakeColloid and Surface ChemistryAdsorptionReacció d'oxidació-reduccióCATIONCONDUCTIVITYQuantum chemicalScience & Technology010405 organic chemistryUNITSGeneral Chemistry0104 chemical sciencesSolventChemistryChemical engineeringchemistryHYBRID FRAMEWORKSPhysical SciencessymbolsMetal-organic frameworkRaman spectroscopy03 Chemical SciencesTetrathiafulvaleneJournal of the American Chemical Society
researchProduct

Single-Crystal-to-Single-Crystal Anion Exchange in a Gadolinium MOF: Incorporation of POMs and [AuCl4]−

2016

The encapsulation of functional molecules inside porous coordination polymers (also known as metal-organic frameworks, MOFs) has become of great interest in recent years at the field of multifunctional materials. In this article, we present a study of the effects of size and charge in the anion exchange process of a Gd based MOF, involving molecular species like polyoxometalates (POMs), and [AuCl4]−. This post-synthetic modification has been characterized by IR, EDAX, and single crystal diffraction, which have provided unequivocal evidence of the location of the anion molecules in the framework.

Polymers and PlasticsGadoliniumInorganic chemistryPorous Coordination Polymerschemistry.chemical_element010402 general chemistry01 natural sciencesArticleSingle Crystal DiffractionIonlcsh:QD241-441lcsh:Organic chemistryFunctional importanceanion exchangeMoleculepolyoxometalatesMaterialsIon exchange010405 organic chemistryGeneral ChemistryMOFs; anion exchange; polyoxometalatesMOFs0104 chemical sciencesCrystallographychemistryCristallsCompostos de coordinacióSingle crystalPolymers
researchProduct

Use of alkylarsonium directing agents for the synthesis and study of zeolites

2019

[EN] Expanding the previously known family of -onium (ammonium, phosphonium, and sulfonium) organic structure-directing agents (OSDAs) for the synthesis of zeolite MFI, a new member, the arsonium cation, is used for the first time. The new group of tetraalkylarsonium cations has allowed the synthesis of the zeolite ZSM-5 with several different chemical compositions, opening a route for the synthesis of zeolites with a new series of OSDA. Moreover, the use of As replacing N in the OSDA allows the introduction of probe atoms that facilitate the study of these molecules by powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (MAS NMR), and X-ray absorption spectroscopy (XAS)…

X-ray absorption spectroscopyChemistrySulfoniumOrganic ChemistryGeneral ChemistryOniumAlkylarsoniumCatalysislaw.inventionArsenicchemistry.chemical_compoundCrystallographyCompostos orgànics SíntesiStructure-directing agentslawCationsQUIMICA ANALITICAZeolitesMoleculePhosphoniumCrystallizationZeoliteMaterialsPowder diffraction
researchProduct

Two Consecutive Magneto-Structural Gas-Solid Transformations in Non-Porous Molecular Materials

2018

Modification of the magnetic properties in a solid-state material upon external stimulus has attracted much attention in the recent years for their potential applications as switches and sensors. Within the field of coordination polymers, gas sorption studies typically focus on porous solids, with the gas molecules accommodating in the channels. Here we present a 1D non-porous coordination polymer capable of incorporating HCl gas molecules, which not only causes a reordering of its atoms in the solid state but also provokes dramatic changes in the magnetic behavior. Subsequently, a further solid-gas transformation can occur with the extrusion of HCl gas molecules causing a second structural…

Diffractionchemistry.chemical_classification010405 organic chemistryCoordination polymerMagnetismOrganic ChemistrySorptionGeneral ChemistryPolymer010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesReaccions químiqueschemistry.chemical_compoundchemistryChemical physicsMoleculeExtrusionPorosityMaterialsChemistry - A European Journal
researchProduct

Coordination polymer flexibility leads to polymorphism and enables a crystalline solid-vapour reaction: a multi-technique mechanistic study.

2015

Despite an absence of conventional porosity, the 1D coordination polymer [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 ] (1; TMP=tetramethylpyrazine) can absorb small alcohols from the vapour phase, which insert into AgO bonds to yield coordination polymers [Ag4 (O2 C(CF2 )2 CF3 )4 (TMP)3 (ROH)2 ] (1-ROH; R=Me, Et, iPr). The reactions are reversible single-crystal-to-single-crystal transformations. Vapour-solid equilibria have been examined by gas-phase IR spectroscopy (K=5.68(9)×10(-5) (MeOH), 9.5(3)×10(-6) (EtOH), 6.14(5)×10(-5) (iPrOH) at 295 K, 1 bar). Thermal analyses (TGA, DSC) have enabled quantitative comparison of two-step reactions 1-ROH→1→2, in which 2 is the 2D coordination polymer [Ag4 (O2 …

In situporosityin situ diffractionCoordination polymerStereochemistrygas-phase spectroscopyInfrared spectroscopyCatalysislaw.inventionpolymorphismchemistry.chemical_compoundOptical microscopelawQDThermal analysisTP155chemistry.chemical_classificationChemistryOrganic ChemistryGeneral ChemistryPolymerCoordination PolymersFull PapersCrystallographyPolymorphism (materials science)microscopysolid-state reactionsPowder diffractionthermal analysisChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Cation influence in adsorptive propane/propylene separation in ZIF-8 (SOD) topology

2019

Separation of propylene/propane is one of the most challenging and energy consuming processes in the chemical industry. Propylene demand is increasing and a 99.5% purity is required for industrial purposes. Adsorption based solutions are the most promising alternatives to improve the economical/energetic efficiency of the process. Zeolitic Imidazolate Frameworks (ZIFs) combine the desired characteristics from both MOFs and zeolites: tunability and flexibility from metal organic frameworks, and exceptional thermal and chemical stability from zeolites. In order to enlighten the role of the cation in the sodalite ZIF-8 framework for propane/propylene separation, dynamic breakthrough measuremen…

Materials scienceSolucions polimèriquesGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringSeparationchemistry.chemical_compoundAdsorptionPropaneEnvironmental ChemistrySelective gas adsorptionMaterialschemistry.chemical_classificationZeolitic Imidazolate Framework (ZIFs)General Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesZIF-67HydrocarbonchemistryChemical engineeringMUV-3Chemical stabilityMetal-organic framework0210 nano-technologySelectivityZIF-8CobaltZeolitic imidazolate frameworkChemical Engineering Journal
researchProduct

Meltable, Glass-Forming, Iron Zeolitic Imidazolate Frameworks

2023

Colloid and Surface ChemistryGeneral ChemistryBiochemistryCatalysisJournal of the American Chemical Society
researchProduct

Cobalt Metal-Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media

2020

A new cobalt metal-organic framework (2D-Co-MOF) based on well-defined layered double cores that are strongly connected by intermolecular bonds has been developed. Its 3D structure is held together by π-π stacking interactions between the labile pyridine ligands of the nanosheets. In aqueous solution, the axial pyridine ligands are exchanged by water molecules, producing a delamination of the material, where the individual double nanosheets preserve their structure. The original 3D layered structure can be restored by a solvothermal process with pyridine, so that the material shows a "memory effect"during the delamination-pillarization process. Electrochemical activation of a 2D-Co-MOF@Nafi…

Aqueous solutionOxygen evolutionStackingIonic bondingchemistry.chemical_elementGeneral ChemistryCobaltQuímicaOverpotential010402 general chemistryElectrochemistry01 natural sciencesBiochemistryCatalysis0104 chemical scienceschemistry.chemical_compoundColloid and Surface ChemistryQUIMICA ORGANICAchemistryChemical engineeringPyridineQUIMICA ANALITICACobalt
researchProduct

ChemInform Abstract: Dynamic Magnetic MOFs

2013

In this review we combine the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal–Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus. The various approaches so far developed to prepare these kinds of chemically or physically responsive MOFs with tunable magnetic properties are presented.

chemistry.chemical_classificationStimulus (psychology)chemistryMagnetismPhysics::OpticsNanotechnologyGeneral MedicineCoordination complexChemInform
researchProduct

Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF.

2021

Coordination polymers (CPs), including metal–organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimen…

Materials sciencePolymersCrystallization; Metal–organic frameworks; microfluidic technologies; pathway complexity; Reaction-diffusion conditionsMicrofluidicsMicrofluidicsCrystal growth010402 general chemistrypathway complexity01 natural sciencesCatalysislaw.inventionMolecular dynamicslawCristal·litzacióCrystallizationMaterialsMixing (physics)Metal–organic frameworks010405 organic chemistryGeneral MedicineGeneral ChemistryMicrofluídica0104 chemical sciencesPolímersmicrofluidic technologiesChemical physicsParticleMetal-organic frameworkCristallsPorous mediumCrystallizationcrystallization; metal–organic frameworks; microfluidic technologies; pathway complexity; reaction-diffusion conditionsReaction-diffusion conditionsAngewandte Chemie (International ed. in English)
researchProduct

Near Isotropic D4d Spin Qubits as Nodes of a Gd(III)-Based Metal-Organic Framework

2021

Embedding coherent spin motifs in reproducible molecular building blocks is a promising pathway for the realization of quantum technologies. Three-dimensional (3D) MOFs are a versatile platform for the rational design of extended structures employing coordination chemistry. Here, we report the synthesis and characterization of a gadolinium(III)-based MOF, [Gd(bipyNO)4](TfO)3·xMeOH (bipyNO = bipyridine,N,N′-dioxide; TfO = triflate; and MeOH = methanol) (quMOF-1), which presents a unique coordination geometry that leads to a tiny magnetic anisotropy (in terms of D, an equivalent zero-field splitting would be achieved by D = 0.006 cm–1) even compared with regular Gd(III) complexes. Pulsed elec…

chemistry.chemical_classificationRabi cycle010405 organic chemistryChemistryPulsed EPRQuímica010402 general chemistry01 natural sciencesMolecular physicsArticle0104 chemical sciences3. Good healthCoordination complexInorganic ChemistryMagnetic anisotropyBipyridinechemistry.chemical_compoundQubitPhysical and Theoretical ChemistrySpin (physics)Coordination geometry
researchProduct

Adsorptive Separation of CO2 by a Hydrophobic Carborane-Based Metal-Organic Framework under Humid Conditions

2023

We report that the carborane-based metal-organic framework (MOF) mCB-MOF-1 can achieve high adsorptive selectivity for CO2:N2 mixtures. This hydrophobic MOF presenting open metal sites shows high CO2 adsorption capacity and remarkable selectivity values that are maintained even under extremely humid conditions. The comparison of mCB-MOF-1' with MOF-74(Ni) demonstrates the superior performance of the former under challenging moisture operation conditions.

Selective gas separationGeneral Materials ScienceHumid conditionsQuímicaMetal−organic frameworksCO2 adsorptionCarboranesHydrophobicBreakthrough
researchProduct

A highly stable and hierarchical tetrathiafulvalene-based metal organic framework with improved performance as a solid catalyst

2018

[EN] Herein we report the synthesis of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, which shows a non-interpenetrated hierarchical crystal structure with mesoporous one-dimensional channels of ca. 3 nm and orthogonal microporous channels of ca. 1 nm. This highly stable MOF (aqueous solution with pH values ranging from 2 to 11 and different organic solvents), which possesses the well-known [Fe3(¿3-O)(COO)6] secondary building unit, has proven to be an efficient catalyst for the aerobic oxidation of dibenzothiophenes.

Solucions polimèriquesMaterials scienceQuímica organometàl·licaCrystal structure010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundQUIMICA ORGANICAMOFAqueous solution010405 organic chemistryGeneral ChemistryMicroporous material0104 chemical sciencesImproved performanceChemistryHighly stableChemical engineeringchemistryTetrathiafulvaleneMetal-organic frameworkCatalystMesoporous materialTetrathiafulvalene
researchProduct

Solvent-Free Synthesis of a Pillared Three-Dimensional Coordination Polymer with Magnetic Ordering

2015

A new magnetic coordination polymer, [Fe(bipy)(im)2] (bipy = 4,4-bipyridine and im = imidazole), has been synthesized in a solvent-free reaction. Structural analysis reveals a pillared 3D coordination polymer composed by neutral layers, formed by iron(II) and imidazolate linkers, interconnected by bipy ligands which serve as pillars. Magnetic measurements show that the material magnetically orders at low temperatures (Tc = 14.5 K) as a weak ferromagnet, likely due to a spin canting.

chemistry.chemical_classificationSolvent freePolymersCoordination polymerInorganic chemistryPolymerCrystallography X-RayInorganic ChemistryThermogravimetryMagneticschemistry.chemical_compoundCrystallographychemistryFerromagnetismThermogravimetryImidazolateSolventsImidazolePhysical and Theoretical ChemistrySpin cantingInorganic Chemistry
researchProduct

Combination of magnetic susceptibility and electron paramagnetic resonance to monitor the 1D to 2D solid state transformation in flexible metal-organ…

2012

Two families of coordination polymers, {[M(btix)(2)(OH(2))(2)]·2NO(3)·2H(2)O}(n) [M = Co (1), Zn (2), Co-Zn (3); btix = 1,4-bis(triazol-1-ylmethyl)benzene] and {[M(btix)(2)(NO(3))(2)]}(n) [M = Co (4), Zn (5), Co-Zn (6)], have been synthesized and characterized. The two conformations of the ligand, syn and anti, lead to one-dimensional (1D) cationic chains or two-dimensional (2D) neutral grids. Extrusion of the water molecules of the 1D compounds results in an irreversible transformation into the 2D compounds, which involves a change in conformation of the btix ligands and a rearrangement in the metal environment with cleavage and reformation of covalent bonds. This structural transformation…

010405 organic chemistryLigandInorganic chemistry010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical scienceslaw.inventionInorganic ChemistryMetalchemistry.chemical_compoundCrystallographychemistryCovalent bondlawvisual_artvisual_art.visual_art_mediumMoleculeMetal-organic frameworkPhysical and Theoretical ChemistryElectron paramagnetic resonanceBenzeneInorganic chemistry
researchProduct

Isostructural compartmentalized spin-crossover coordination polymers for gas confinement

2016

[EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 (X = ClO4 or BF4), present voids of ca. 250 Å3, which each can accommodate up to two CO2 molecules. The abrupt spin transition can be modified upon CO2 sorption, and different magnetic behaviour is observed depending on the number of molecules sorbed.

chemistry.chemical_classificationMaterials scienceInorganic chemistryCrystalline materialsSpin transitionSorption02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences3. Good health0104 chemical sciencesInorganic ChemistryPhysisorptionchemistryChemical physicsSpin crossoverMoleculeIsostructural0210 nano-technology
researchProduct

Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles

2014

To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material. This makes it possible to prepare homogeneous thin films of these nanoparticles by spin-coating on a quartz substrate. Both the colloidal solution and the thin film emit l…

Ammonium bromideInorganic chemistryNanoparticleHalideINGENIERÍAS Y TECNOLOGÍAS7. Clean energyBiochemistryCatalysischemistry.chemical_compoundColloidColloid and Surface ChemistryNanoparticle//purl.org/becyt/ford/2.10 [https]Thin filmFilmPerovskite (structure)NanotecnologíaColloidal DispersionGeneral ChemistryHybrid PerovskiteNano-materialeschemistryChemical engineering//purl.org/becyt/ford/2 [https]Mesoporous materialVisible spectrum
researchProduct

2D magnetic MOFs with micron-lateral size by liquid exfoliation

2020

The isolation in large amounts of high-quality flakes of 2D MOFs remains a challenge. In this work, we develop a liquid exfoliation procedure to obtain nanosheets for a whole family of Fe-based magnetic MOFs, MUV-1-X. High-quality crystalline layers with lateral sizes of 8 µm and thicknesses of 4 nm, which keep the structural integrity and magnetic properties, are obtained.

Materials scienceMetals and AlloysStructural integrityNanotechnology02 engineering and technologyGeneral ChemistryQuímica010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesExfoliation jointCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMaterials ChemistryCeramics and Composites0210 nano-technologyMaterialsChemical Communications
researchProduct

MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis**

2020

Metal–organic framework (MOF)-driven synthesis is considered as a promising alternative for the development of new catalytic materials with well-designed active sites. This synthetic approach is used here to gradually transform a new bimetallic MOF, with Pd and Fe as the metal components, by the in situ generation of aniline under mild conditions. This methodology results in a compositionally homogeneous nanocomposite formed by Fe-doped Pd nanoparticles that, in turn, are supported on iron oxide-doped carbon. The nanocomposite has been fully characterized by several techniques such as IR and Raman spectroscopy, TEM, XPS, and XAS. The performance of this nanocomposite as an heterogeneous cat…

Materials scienceIron09.- Desarrollar infraestructuras resilientes promover la industrialización inclusiva y sostenible y fomentar la innovaciónNanoparticle010402 general chemistryHeterogeneous catalysis01 natural sciences7. Clean energyCatalysisCatalysisNitrobenzenechemistry.chemical_compoundLight sourceAnilineCatàlisiQUIMICA ANALITICAmedia_common.cataloged_instanceUser FacilityEuropean unionBimetallic stripmedia_commonX-ray absorption spectroscopyNanocomposite010405 organic chemistryOrganic ChemistryGeneral ChemistryMetal-organic frameworks0104 chemical sciences12.- Garantizar las pautas de consumo y de producción sostenibleschemistryChemical engineeringFe dopedPd nanoparticlesNanoparticlesMaterials nanoestructuratsNational laboratoryHumanitiesPalladium
researchProduct

One-dimensional organization of free radicals via halogen bonding

2012

Halogen bonds have been applied for the supramolecular organization of organic free radicals in the solid state and their role in the propagation of the magnetic exchange has been studied.

Halogen bondChemistryRadicalInorganic chemistryHalogenPolymer chemistrySolid-stateSupramolecular chemistryGeneral Materials ScienceGeneral ChemistryCondensed Matter PhysicsMagnetic exchangeCrystEngComm
researchProduct

Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal–Organic Frameworks (MOFs)

2021

Through rational chemical design, and thanks to the hybrid nature of metal−organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic nodes and the ligands in a family of layered MOFs that allows the tuning of their magnetic properties. Specifically, the reaction of benzimidazole-type ligands with different metal centers (MII = Fe, Co, Mn, Zn) in a solventfree synthesis produces a family of crystalline materials, denoted as MUV-1(M), which order antiferromagnetically with critical temperatures that depend on M. Furthermore, the incorporation o…

FabricationThin layersChemistryQuímica organometàl·lica02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCatalysisArticle0104 chemical sciencesCrystallinitysymbols.namesakeColloid and Surface ChemistryChemical physicsMagnetsymbolsMoleculeMetal-organic frameworkvan der Waals force0210 nano-technologyMaterialsTopology (chemistry)Journal of the American Chemical Society
researchProduct

Structural re-arrangement in two hexanuclear CuIIcomplexes: from a spin frustrated trigonal prism to a strongly coupled antiferromagnetic soluble rin…

2014

The addition of water to a chloroform solution of the Cu6 trigonal prism complex [Cu6(μ6F)(μ2OH)(μ3OCH3)2(μ2OCH3)2(3,5-Me2pz)6] (1) (3,5-Me2pz− = 3,5-dimethylpyrazolate) results in the formation of the Cu6 planar hexagonal ring complex [Cu6(μ2OH)6(3,5-Me2pz)6]·CH3CN·CHCl3 (2). A simple mechanism for this structural re-arrangement is proposed, in which 2 can be viewed as a hydrolysis product of 1. This process is clearly noticeable in the magnetic properties, which change from spin frustrated with a weak antiferromagnetic coupling in 1, to strongly antiferromagnetic in 2. Interestingly, the hexagonal ring complex 2 self-assembles in the solid state to form a porous hexagonal tubular structur…

SolventCrystallographyCrystallinitychemistry.chemical_compoundPlanarChloroformchemistryAntiferromagnetismMoleculeGeneral ChemistryRing (chemistry)Spin (physics)Chem. Sci.
researchProduct

Dynamic magnetic MOFs.

2012

In this review we combine the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal–Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus. The various approaches so far developed to prepare these kinds of chemically or physically responsive MOFs with tunable magnetic properties are presented.

chemistry.chemical_classificationMaterials sciencechemistry010405 organic chemistryMagnetismPhysics::OpticsNanotechnologyGeneral Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesCoordination complexChemical Society reviews
researchProduct

Supramolecular Interactions and Smart Materials: C-X…X′-M Halogen Bonds and Gas Sorption in Molecular Solids

2010

Molecular solidHalogen bondChemistryPolymer chemistryIntermolecular forceHalogenInorganic chemistrySupramolecular chemistrySorptionSmart material
researchProduct

Cobalt Metal-Organic Framework based on two dinuclear secondary building units for electrocatalytic oxygen evolution

2019

[EN] The synthesis of a new microporous metal-organic framework (MOF) based on two secondary building units, with dinuclear cobalt centers, has been developed. The employment of a well-defined cobalt cluster results in an unusual topology of the Co-2-MOF, where one of the cobalt centers has three open coordination positions, which has no precedent in MOF materials based on cobalt. Adsorption isotherms have revealed that Co-2-MOF is in the range of best CO2 adsorbents among the carbon materials, with very high CO2/CH4 selectivity. On the other hand, dispersion of Co-2-MOF in an alcoholic solution of Nafion gives rise to a composite (Co-2-MOF@Nafion) with great resistance to hydrolysis in aqu…

Materials scienceCobalt clusterLibrary scienceOxygen evolution reaction and gas storage02 engineering and technologyCobalt010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCobalt MOF0104 chemical sciencesQUIMICA ORGANICAQUIMICA ANALITICACobalt metalGeneral Materials Science0210 nano-technologyElectrocatalysisMaterials
researchProduct

Chemical transformations of a crystalline coordination polymer: a multi-stage solid–vapour reaction manifold

2013

In its crystal structure the one-dimensional coordination polymer [Ag4(O2C(CF2)2CF3)4(TMP)3]n (1) (TMP = 2,3,5,6-tetramethylpyrazine) adopts a zig-zag arrangement in which pairs of silver(I) centres bridged by two fluorocarboxylate ligands are linked alternately via one or two neutral TMP ligands. This material can reversibly absorb/desorb small alcohols (ROH) in single-crystal-to-single-crystal transformations, despite the lack of porosity in the crystals, to yield a related material of formula [Ag4(O2C(CF2)2CF3)4(TMP)3(ROH)2]n (1-ROH). The absorption process includes coordination of the alcohol to silver(I) centres and, in the process, insertion of the alcohol into one-quarter of the Ag–O…

chemistry.chemical_compoundCrystallographychemistryLigandCoordination polymerHydrogen bondDesorptionInorganic chemistryMoleculeGeneral ChemistryCrystal structureCarboxylateDissociation (chemistry)Chem. Sci.
researchProduct

Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal-Organic Frameworks

2019

<div>Tetrathiafulvalene-Lanthanide (TTF-Ln) Metal-Organic Frameworks (MOFs) are an interesting class of multifunctional materials in which porosity can be combined with electronic properties such as electrical conductivity, redox activity, luminescence and magnetism. Herein we report a new family of isostructural TTF-Ln MOFs, denoted as <b>MUV-5(Ln)</b> (Ln = Gd, Tb, Dy, Ho, Er), exhibiting semiconducting properties as a consequence of the short intermolecular S···S contacts established along the chain direction between partially oxidised TTF moieties. In addition, this family shows photoluminescence properties and single-molecule magnetic behaviour, finding near-infrared …

LanthanideMaterials sciencePhotoluminescence010405 organic chemistryMagnetismOrganic ChemistryGeneral ChemistryElectronic structureConductivitat elèctrica010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCrystallographychemistry.chemical_compoundchemistryMetal-organic frameworkSingle-molecule magnetIsostructuralMaterialsTetrathiafulvalene
researchProduct

Multifunctional magnetic materials obtained by insertion of a spin-crossover Fe(III) complex into bimetallic oxalate-based ferromagnets.

2010

The syntheses, structures and magnetic properties of the compounds of formula [Fe(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].CH(2)Cl(2) (1; H(2)sal(2)-trien=N,N'-disalicylidenetriethylenetetramine, ox=oxalate), [Fe(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].CH(3)OH (2), [In(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].0.25H(2)O.0.25CH(3)OH.0.25CH(3)CN (3), and [In(III)(sal(2)-trien)][Mn(II)Cr(III)(ox)(3)].CH(3)NO(2).0.5H(2)O (4) are reported. The structure of 1 presents a 2D honeycomb anionic layer formed by Mn(II) and Cr(III) ions linked through oxalate ligands and a cationic layer of [Fe(sal(2)-trien)](+) complexes intercalated between the 2D oxalate network. The structures of 2, 3, and 4 pres…

chemistry.chemical_classificationOrganic ChemistryInorganic chemistryGeneral ChemistryCatalysisOxalateCoordination complexchemistry.chemical_compoundCrystallographyFerromagnetismchemistrySpin crossoverMössbauer spectroscopyBimetallic stripChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu 2 O nanoparticles for CO 2 methanation

2019

<div>Here we show for the first time a MOF that is photocatalytically</div><div>active for the light-assisted CO<sub>2</sub> methanation at mild conditions</div><div>(215 °C) without the inclusion of metallic nanoparticles or any</div><div>sacrificial agent. The presence of Cu<sub>2</sub>O nanoparticles causes a 50 % increase in the photocatalytic activity. These results pave the way to developping efficient and cost-effective materials for CO<sub>2</sub> elimination.</div>

Materials science010405 organic chemistryMetals and AlloysNanoparticleGeneral ChemistryQuímica010402 general chemistry01 natural sciencesCatalysisSabatier reaction0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical engineeringMethanationMaterials ChemistryCeramics and CompositesPhotocatalysisMetal-organic frameworkMetal nanoparticlesMaterialsChemical Communications
researchProduct

Interpenetrated Luminescent Metal-Organic Frameworks based on 1H-Indazole-5-carboxylic Acid

2020

Herein we report the formation and characterization of two novel Zn-based multifunctional metal-organic frameworks (MOFs) based on 1H-indazole-5-carboxylic acid and bipyridine-like linkers, synthesized by soft solvothermal routes. These materials possess isoreticular 2-fold interpenetrated three-dimensional structures that afford a flexible character and allow porosity modulation of the MOFs as confirmed by CO2 sorption measurements. Apart from this attractive structural feature, the MOFs exhibit fascinating luminescent properties involving both luminescence thermometry and long-lasting phosphorescence.

chemistry.chemical_classificationIndazole010405 organic chemistryCarboxylic acidGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciencesCombinatorial chemistry0104 chemical sciences3. Good healthchemistry.chemical_compoundchemistryGeneral Materials ScienceMetal-organic frameworkCristallsLuminescenceMaterials
researchProduct

Multivariate sodalite Zeolitic Imidazolate frameworks: a direct solvent-free synthesis

2021

Different mixed-ligand Zeolitic Imidazolate Frameworks (ZIFs) with sodalite topology, i.e. isoreticular to ZIF-8, unachievable by conventional synthetic routes, have been prepared using a solvent-free methodology. In particular, the versatility of this method is demonstrated with three different metal centres (Zn, Co and Fe) and binary combinations of three different ligands (2-methylimidazole, 2-ethylimidazole and 2-methylbenzimidazole). One combination of ligands, 2-ethylimidazole and 2-methylbenzimidazole, results in the formation of SOD frameworks for the three metal centres despite this topology not being obtained for the individual ligands. Theoretical calculations confirm that this t…

Solvent freeMaterials scienceLigandGeneral ChemistryMixed ligandMetalCrystallographychemistry.chemical_compoundCompostos orgànics Síntesichemistryvisual_artSodalitevisual_art.visual_art_mediumMaterialsTopology (chemistry)Zeolitic imidazolate framework
researchProduct

A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO 2 uptake and separation

2021

The combination of the properly designed novel organic linker, 3,6-N-ditriazoyil-2,5-dihydroxy-1,4-benzoquinone (trz2An), with CoII ions results in a 3D ultramicroporous MOF with high CO2 uptake capacity and separation efficiency, with particular attention to CO2/N2 and CO2/CH4 gas mixtures. This material consists of 1D chains of octahedrally coordinated CoII ions linked through the anilato ligands in the equatorial positions and to the triazole substituents from two neighbouring chains in the two axial positions. This leads to a 3D microporous structure with voids with an affinity for CO2 molecules and channels that enable the selective entrance of CO2 but not of molecules with larger kine…

010405 organic chemistryRenewable Energy Sustainability and the EnvironmentUNESCO::QUÍMICAHigh selectivityTriazoleGeneral ChemistryMicroporous materialQuímica010402 general chemistry01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesIonchemistry.chemical_compoundAdsorptionchemistryChemical engineeringCarbon dioxideMoleculeGeneral Materials ScienceLinkerMaterialsKinetic diameterJournal of Materials Chemistry A
researchProduct

Effects of halogen bonding in ferromagnetic chains based on Co(ii) coordination polymers

2010

Two linear cobalt chloride ferromagnetic chains, trans-[CoCl2(3,5-X2py)2] [X = Cl (1), Br (2)], have been prepared and the influence of the halogen bonding on the interchain magnetic interactions has been investigated.

chemistry.chemical_classificationHalogen bondFerromagnetismChemistryPolymer chemistryInorganic chemistryGeneral Materials ScienceGeneral ChemistryPolymerCobalt chlorideCondensed Matter PhysicsCrystEngComm
researchProduct

Inside Cover: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. Int. Ed. 29/2021)

2021

Materials science010405 organic chemistryINTGeneral Chemistry01 natural sciencesCatalysis0104 chemical scienceslaw.inventionChemical engineeringlawReaction–diffusion systemMetal-organic frameworkCover (algebra)CrystallizationAngewandte Chemie International Edition
researchProduct

A fluorinated 2D magnetic coordination polymer

2021

Herein we show the versatility of coordination chemistry to design and expand a family of 2D materials by incorporating F groups at the surface of the layers. Through the use of a prefuntionalized organic linker with F groups, it is possible to achieve a layered magnetic material based on Fe(ii) centers that are chemically stable in open air, contrary to the known 2D inorganic magnetic materials. The high quality of the single crystals and their robustness allow to fabricate 2D molecular materials by micromechanical exfoliation, preserving the crystalline nature of these layers together with the desired functionalization.

chemistry.chemical_classificationMaterials scienceCoordination polymerNanotechnologyExfoliation jointCoordination complexInorganic Chemistrychemistry.chemical_compoundchemistryMagnetSurface modificationCompostos de coordinacióMolecular materialsLinkerMaterialsOpen air
researchProduct

Insertion of a [Fe II (pyimH) 3 ] 2+ [pyimH = 2‐(1 H ‐Imidazol‐2‐yl)pyridine] Spin‐Crossover Complex Inside a Ferromagnetic Lattice Based on a Chiral…

2015

The insertion of the [FeII(pyimH)3]2+ [pyimH = 2-(1H-imidazol-2-yl)pyridine] spin-crossover complex into a ferromagnetic bimetallic oxalate network affords the hybrid compound [FeII(pyimH)3][MnIICrIII(ox)3]2·X (ox = C2O42–). This spin-crossover complex templates the growth of crystals formed by a chiral 3D oxalate network. The magnetic properties of this hybrid magnet show the coexistence of long-range ferromagnetic ordering at 4.5 K and a spin crossover of the intercalated [FeII(pyimH)3]2+ complex above 250 K. The compound presents a light-induced excited spin-state trapping (LIESST) effect below 60 K although with limited photoconversion (less than 8 %).

Inorganic chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesLIESSTOxalate0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryFerromagnetismSpin crossoverExcited statePyridine0210 nano-technologyChirality (chemistry)Bimetallic stripEuropean Journal of Inorganic Chemistry
researchProduct

Redox and guest tunable spin-crossover properties in a polymeric polyoxometalate

2023

A bifunctionalized polyoxometalate (POM), [V6O19(C16H15N6O)2]2−, which contains a redox active hexavanadate moiety covalently linked to two tridentate 2,6-bis(pyrazol-1-yl)pyridine (1-bpp) ligands, has been prepared and characterized. Reaction of this hybrid molecule with Fe(II) or Zn(II) ions produces crystalline neutral 1D networks of formula Fe[V6O19(C16H15N6O)2]·solv (2) and Zn[V6O19(C16H15N6O)2]·solv (3) (solv = solvent molecules). Magnetic properties of 2 show an abrupt spin-crossover (SCO) with the temperature, which can be induced by light irradiation at 10 K (Light-Induced Excited Spin-State Trapping, LIESST effect). Interestingly, this porous and flexible structure enables reversi…

General ChemistryQuímicaIndústria químicaChemical Science
researchProduct

Selective CO 2 Sorption Using Compartmentalized Coordination Polymers with Discrete Voids**

2021

Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 A3 . Single gas adsorption isotherms of N2 , CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity an…

chemistry.chemical_classificationGasos d'efecte hivernacle010405 organic chemistryOrganic ChemistrySorptionGeneral ChemistryPolymer010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesAdsorptionchemistryChemical engineeringMoleculeMetal-organic frameworkDensity functional theoryGas separationPorous mediumMaterialsChemistry – A European Journal
researchProduct

Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption.

2011

Responsive materials for which physical or chemical properties can be tuned by applying an external stimulus are attracting considerable interest in view of their potential applications as chemical switches or molecular sensors. A potential source of such materials is metal-organic frameworks. These porous coordination polymers permit the physisorption of guest molecules that can provoke subtle changes in their porous structure, thus affecting their physical properties. Here we show that the chemisorption of gaseous HCl molecules by a non-porous one-dimensional coordination polymer instigates drastic modifications in the magnetic properties of the material. These changes result from profoun…

MultidisciplinaryMaterials science010405 organic chemistryCoordination polymerPorous Coordination PolymersGeneral Physics and AstronomyGeneral Chemistry010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology0104 chemical scienceschemistry.chemical_compoundchemistryChemisorptionChemical physicsNature communications
researchProduct

Key Role of the Cation in the Crystallization of Chiral Tris(Anilato)Metalate Magnetic Anions

2015

A complete study of the role played by the usually considered “innocent” cation in the synthesis of chiral tris(anilato)metalate magnetic complexes is presented. This study is based on the rational synthesis of the family of compounds formulated as A3[MIII(C6O4X2)3] with A+ = [PPh3Et]+, [PPh3Pr]+, [PBu4]+, [NHep4]+, and [PPh4]+; MIII = CrIII, FeIII, and GaIII; and [C6O4X2]2– (X = Cl, Br, and NO2; [C6O4X2]2– = dianion of the 3,6-disubstituted derivatives of 2,5-dihydroxy-1,4-benzoquinone, H4C6O4). We show and explain the unexpected key role played by the cations in isolating chiral or achiral crystals of these [MIII(C6O4X2)3]3– anions with D3 point group symmetry. Thus, among the 18 new comp…

Tris010405 organic chemistryStereochemistryChemistryGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical scienceslaw.inventionCrystallographychemistry.chemical_compoundlawMolecular symmetryGeneral Materials ScienceCrystallizationCrystal Growth & Design
researchProduct

2D and 3D Anilato-Based Heterometallic M(I)M(III) Lattices: The Missing Link

2015

The similar bis-bidentate coordination mode of oxalato and anilato-based ligands is exploited here to create the first examples of 2D and 3D heterometallic lattices based on anilato ligands combining M(I) and a M(III) ions, phases already observed with oxalato but unknown with anilato-type ligands. These lattices are prepared with alkaline metal ions and magnetic chiral tris(anilato)metalate molecular building blocks: [M(III)(C6O4X2)3](3-) (M(III) = Fe and Cr; X = Cl and Br; (C6O4X2)(2-) = dianion of the 3,6-disubstituted derivatives of 2,5-dihydroxy-1,4-benzoquinone, H4C6O4). The new compounds include two very similar 2D lattices formulated as (PBu3Me)2[NaCr(C6O4Br2)3] (1) and (PPh3Et)2[KF…

Inorganic Chemistrychemistry.chemical_compoundCrystallographyParamagnetismMonomerchemistryHexagonal crystal systemLattice (order)MineralogyPhysical and Theoretical ChemistryZero field splittingAlkali metalIonInorganic Chemistry
researchProduct

Innentitelbild: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. 29/2021)

2021

Chemical engineeringlawChemistryReaction–diffusion systemMetal-organic frameworkGeneral MedicineCrystallizationlaw.inventionAngewandte Chemie
researchProduct

Flexible high efficiency perovskite solar cells

2014

Flexible perovskite based solar cells with power conversion efficiencies of 7% have been prepared on PET based conductive substrates. Extended bending of the devices does not deteriorate their performance demonstrating their suitability for roll to roll processing.

Materials scienceFarbstoff- und PerowskitsolarzellenSolarthermieNanotechnologyBending7. Clean energyRoll-to-roll processingFarbstoffEnvironmental ChemistryElectrical conductorMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Renewable Energy Sustainability and the Environmentbusiness.industryelectrodePollutionsolar cellNuclear Energy and EngineeringTCOOptoelectronicsOrganische und Neuartige SolarzellensputteringbusinessSolarthermie und Optik
researchProduct

Hybrid magnetic superconductors formed by TaS2 layers and spin crossover complexes.

2013

The restacking of charged TaS2 nanosheets with molecular counterparts has so far allowed for the combination of superconductivity with a manifold of other molecule-intrinsic properties. Yet, a hybrid compound that blends superconductivity with spin crossover switching has still not been reported. Here we continue to exploit the solid-state/molecule-based hybrid approach for the synthesis of a layered TaS2-based material that hosts Fe(2+) complexes with a spin switching behavior. The chemical design and synthetic aspects of the exfoliation/restacking approach are discussed, highlighting how the material can be conveniently obtained in the form of highly oriented easy-to-handle flakes. Finall…

Inorganic ChemistrySuperconductivityCondensed matter physicsSpin crossoverChemistryMoleculePhysical and Theoretical ChemistryHybrid approachExfoliation jointChemical designCharacterization (materials science)Spin-½Inorganic chemistry
researchProduct

A systematic study of the optical properties of mononuclear hybrid organo-inorganic lanthanoid complexes

2020

A series of hybrid organo-inorganic mononuclear lanthanoid complexes, [n-NBu4]3[LnH(PW11O39)(phen)2]·H2O, denoted as LM4-1-Ln (Ln = DyIII, TbIII, EuIII, NdIII, ErIII, HoIII and GdIII), were synthesized via hydrothermal synthesis and were structurally characterized by X-ray diffraction. The optical properties of all complexes have been investigated in the solid state. The temperature-dependent emission spectra of LM4-1-Dy, LM4-1-Tb and LM4-1-Eu complexes show intense lanthanoid emissions in the visible region, while LM4-1-Nd shows near-infrared (NIR) luminescence. The EuIII complex shows typical strong red emissions from the 5D0 → 7F0,1,2,3,4 transitions, with the CIE colour coordinates (0.6…

Inorganic ChemistryDiffractionLanthanidePhotoluminescenceMaterials scienceTemperature sensitivityHydrothermal synthesisPhysical chemistryQuantum yieldEmission spectrumQuímicaLuminescence
researchProduct

Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes

2018

A new family of chloroquinolinate lanthanoid complexes of the formula A+[Ln(5,7Cl2q)4]−, with Ln = Y3+, Tb3+ and Dy3+ and A+ = Na+, NEt4+ and K0.5(NEt4)0.5+, is studied, both in bulk and as thin films. Several members of the family are found to present single-molecule magnetic behavior in bulk. Interestingly, the sodium salts can be sublimed under high vacuum conditions retaining their molecular structures and magnetic properties. These thermally stable compounds have been deposited on different substrates (Al2O3, Au and NiFe). The magnetic properties of these molecular films show the appearance of cusps in the zero-field cooled curves when they are deposited on permalloy (NiFe). This indic…

PermalloyLanthanideMaterials scienceAbsorption spectroscopyUNESCO::QUÍMICAUltra-high vacuum02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesCrystallographyNuclear magnetic resonanceFerromagnetismTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYMolecular filmMoleculeThin film0210 nano-technologyChemical Science
researchProduct

Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO2/N2 gas separation

2023

Two ultramicroporous 2D and 3D iron-based Metal-Organic Frameworks (MOFs) have been obtained by solvothermal synthesis using different ratios and concentrations of precursors. Their reduced pore space decorated with pendant pyridine from tangling isonicotinic ligands enables the combination of size-exclusion kinetic gas separation, due to their small pores, with thermodynamic separation, resulting from the interaction of the linker with CO2 molecules. This combined separation results in efficient materials for dynamic breakthrough gas separation with virtually infinite CO2/N2 selectivity in a wide operando range and with complete renewability at room temperature and ambient pressure.

Renewable Energy Sustainability and the EnvironmentGeneral Materials ScienceGeneral ChemistryQuímica
researchProduct

Semiconductor Porous Hydrogen-Bonded Organic Frameworks Based on Tetrathiafulvalene Derivatives.

2022

Herein, we report on the use of tetrathiavulvalene-tetrabenzoic acid, H4TTFTB, to engender semiconductivity in porous hydrogen-bonded organic frameworks (HOFs). By tuning the synthetic conditions, three different polymorphs have been obtained, denoted MUV-20a, MUV-20b, and MUV-21, all of them presenting open structures (22, 15, and 27%, respectively) and suitable TTF stacking for efficient orbital overlap. Whereas MUV-21 collapses during the activation process, MUV-20a and MUV-20b offer high stability evacuation, with a CO2 sorption capacity of 1.91 and 1.71 mmol g-1, respectively, at 10 °C and 6 bar. Interestingly, both MUV-20a and MUV-20b present a zwitterionic character with a positively…

Colloid and Surface ChemistryGeneral ChemistryCristallsConductivitat elèctricaBiochemistryCatalysisJournal of the American Chemical Society
researchProduct

Influence of interpenetration on the flexibility of MUV-2

2019

<p>The crystal structure of an interpenetrated tetrathiafulvalene(TTF)- based metal-organic framework (MOF) is reported. This MOF, denoted MUV-2-i, is the interpenetrated analogue of the hierarchical and flexible MUV-2. Interestingly, the large flexibility exhibited by MUV-2 upon polar solvent adsorption is considerably reduced in the interpenetrated form which can be explained by short S···S interactions between adjacent TTF-based ligands ensuring more rigidity to the framework. In addition, porosity of MUV-2-i significantly decreased in comparison to MUV-2 as shown by the reduced free volume in the crystal structure.</p>

Materials science02 engineering and technologyGeneral ChemistryCrystal structure010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesSolventchemistry.chemical_compoundCrystallographyAdsorptionRigidity (electromagnetism)chemistryPolarGeneral Materials ScienceCristalls0210 nano-technologyPorosityMaterialsTetrathiafulvalene
researchProduct

Implementation of slow magnetic relaxation in a SIM-MOF through a structural rearrangement

2018

<p>Here we report the structural flexibility of a Dy-based Single-Ion Magnet MOF in which its magnetic properties can be modified through a ligand substitution process involving an increase of the charge density of the coordination environment.</p>

Materials scienceFlexibility (anatomy)Magnetism010405 organic chemistryLigandQuímica organometàl·licaCharge density010402 general chemistryProcess substitution01 natural sciences3. Good health0104 chemical sciencesInorganic Chemistrymedicine.anatomical_structureChemical physicsMagnetmedicineSingle-molecule magnetMagnetic relaxationDalton Transactions
researchProduct

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

2019

The design of metal–organic frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to obtain additional electrical functionalities within the framework while maintaining porosity. Understanding the charge-transfer (CT) process between the framework and the guest molecules is a crucial step towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C60) in a mesoporous tetrathiafulvalene (TTF)-based MOF. The CT process between the electron-acceptor C60 guest and the electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theor…

Materials scienceFullerenemetal–organic frameworks (MOFs)General Physics and Astronomy010402 general chemistrylcsh:Chemical technology01 natural scienceslcsh:TechnologyFull Research Paperchemistry.chemical_compoundMoleculeNanotechnologyGeneral Materials Sciencelcsh:TP1-1185Electrical and Electronic Engineeringdonor–acceptorPorositylcsh:ScienceMaterials010405 organic chemistrylcsh:TNanotecnologiafullerenecharge transferSorptionlcsh:QC1-9990104 chemical sciencestetrathiafulvalene (TTF)NanoscienceChemical engineeringchemistryDensity functional theoryMetal-organic frameworklcsh:QMesoporous materialTetrathiafulvalenelcsh:PhysicsBeilstein Journal of Nanotechnology
researchProduct

A family of layered chiral porous magnets exhibiting tunable ordering temperatures.

2013

A simple change of the substituents in the bridging ligand allows tuning of the ordering temperatures, Tc, in the new family of layered chiral magnets A[M(II)M(III)(X2An)3]·G (A = [(H3O)(phz)3](+) (phz = phenazine) or NBu4(+); X2An(2-) = C6O4X2(2-) = 2,5-dihydroxy-1,4-benzoquinone derivative dianion, with M(III) = Cr, Fe; M(II) = Mn, Fe, Co, etc.; X = Cl, Br, I, H; G = water or acetone). Depending on the nature of X, an increase in Tc from ca. 5.5 to 6.3, 8.2, and 11.0 K (for X = Cl, Br, I, and H, respectively) is observed in the MnCr derivative. Furthermore, the presence of the chiral cation [(H3O)(phz)3](+), formed by the association of a hydronium ion with three phenazine molecules, lead…

010405 organic chemistryHexagonal crystal systemInorganic chemistryPhenazineBridging ligand010402 general chemistry01 natural sciences3. Good health0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryMagnetAcetone[CHIM]Chemical SciencesMoleculePhysical and Theoretical ChemistryPorosityComputingMilieux_MISCELLANEOUSDerivative (chemistry)Inorganic chemistry
researchProduct

Heterometallic palladium-iron metal-organic framework as a highly active catalyst for cross-coupling reactions.

2022

Palladium-based metal-organic frameworks (Pd-MOFs) are an emerging class of heterogeneous catalysts extremely challenging to achieve due to the facile leaching of palladium and its tendency to be reduced. Herein, Pd(II) was successfully incorporated in the framework of a MOF denoted as MUV-22 using a solvent assisted reaction. This stable MOF, with square-octahedron (soc) topology as MIL-127, and a porosity of 710 m2 g−1, is highly active, selective, and recyclable for the Suzuki-Miyaura allylation of aryl and alkyl boronates as exemplified with the coupling between cinnamyl bromide and Me-Bpin, a typically reluctant reagent in cross-coupling reactions.

General ChemistryMetalls de transicióReaccions químiquesChemical science
researchProduct

Sublimable Single Ion Magnets Based on Lanthanoid Quinolinate Complexes: The Role of Intermolecular Interactions on Their Thermal Stability

2018

We report the design, preparation, and characterization of two families of thermally robust coordination complexes based on lanthanoid quinolinate compounds: [Ln(5,7-Br2q)4]− and [Ln(5,7-ClIq)4]−, where q = 8-hydroquinolinate anion and Ln = DyIII, TbIII, ErIII, and HoIII. The sodium salt of [Dy(5,7-Br2q)4]− decomposes upon sublimation, whereas the sodium salt of [Dy(5,7- ClIq)4]−, which displays subtly different crystalline interactions, is sublimable under gentle conditions. The resulting film presents low roughness with high coverage, and the molecular integrity of the coordination complex is verified through AFM, MALDI-TOF, FT-IR, and microanalysis. Crucially, the single-molecule magnet …

chemistry.chemical_classificationLanthanide010405 organic chemistryChemistryIntermolecular force010402 general chemistry01 natural sciencesQuinolinateMicroanalysis0104 chemical sciencesCoordination complexIonInorganic ChemistryCrystallographyElements químicsThermal stabilitySublimation (phase transition)Physical and Theoretical ChemistryMaterialsInorganic Chemistry
researchProduct

Slow Relaxation of the Magnetization on Frustrated Triangular FeIII Units with S= 1/2 Ground State: The Effect of the Highly Ordered Crystal Lattice …

2021

In order to understand how the different arrangements of highly ordered triangular FeIII S = 1/2 systems with various types of diamagnetic and paramagnetic anions affect their static and dynamic magnetic properties, we have obtained by solvothermal synthesis four new μ3-oxido trinuclear FeIII compounds, [Fe3O(Ac)6(AcNH2)3][BF4]·(CH3CONH2)0.5(H2O)0.5 (1-BF4), [Fe3O(Ac)6(AcNH2)3][GaCl4] (1-GaCl4), [Fe3O(Ac)6(AcNH2)3][FeCl4] (1-FeCl4) and [Fe3O(Ac)6(AcNH2)3][FeBr4] (1-FeBr4), where, Ac- = CH3COO- and AcNH2 = CH3CONH2. The organization of the triangular units is very varied, from segregated stacks to eclipsed equilateral triangular [Fe3O]+ units along the c-axis with intercalated [MX4]- units. …

MagnetizationMaterials scienceCondensed matter physicsRelaxation (physics)General Materials ScienceGeneral ChemistryCrystal structureCristallsQuímicaCondensed Matter PhysicsGround state
researchProduct

Hydrogen bonding versus π-stacking in ferromagnetic interactions. Studies on a copper triazolopyridine complex

2013

Magnetic susceptibility measurements show weak ferromagnetic exchange between the copper(II) ions of a novel triazolopyridine derivative [Cu(TPT)(H2O)2(BF4)](BF4)·2H2O (TPT = 3-{6-([1,2,3]triazolo[1,5-a]pyrid-3-yl)-2-pyridyl}-[1,2,3]triazolo[1,5-a]pyridine). Mononuclear [Cu(TPT)(H2O)2(BF4)]+ entities are connected through O–H⋯F, C–H⋯F and π⋯π interactions to give a 3D framework. Ferromagnetic properties are discussed on the basis of the interactions network.

Ferromagnetic material propertiesStereochemistryHydrogen bondStackingchemistry.chemical_elementGeneral ChemistryCondensed Matter PhysicsCopperMagnetic susceptibilityCrystallographychemistry.chemical_compoundchemistryFerromagnetismPyridineGeneral Materials ScienceTriazolopyridineCrystEngComm
researchProduct

Layered gadolinium hydroxides for low-temperature magnetic cooling

2015

Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

Materials scienceGadoliniumMetals and Alloyschemistry.chemical_elementNanotechnologyGeneral ChemistrySubstrate (electronics)Thermal management of electronic devices and systems7. Clean energyCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemistryDipoleChemical engineeringchemistryMaterials ChemistryCeramics and CompositesMagnetic refrigerationDeposition (phase transition)Chemical Communications
researchProduct

Solvent-free synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8

2019

Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8 with the formula Fe(2-methylimidazolate) , here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology can be extended to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67, and the unprecedented iron(II) ZIFs Fe(2-ethylimidazolate) and Fe(2-methylbenzimidazolate) . The different performance of MUV-3 toward NO sorption, in comparison to ZIF-8, results …

Zeolitic imidazolate frameworksStorage02 engineering and technologyOverpotential010402 general chemistryMetal-Organic frameworks01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryImidazolateMaterialsThermal-StabilityTafel equationNanocompositeChemistryOxygen evolutionElectrocatalystsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemisorptionPhysical chemistryMetal-organic frameworkAdsorptionCristalls0210 nano-technologyOxygen evolutionZeolitic imidazolate framework
researchProduct

New dinuclear copper complexes incorporating bis(imidazolyl) based ligands and bidentate–monodentate oxalate bridges. Crystal structure and magnetic …

2016

Abstract This paper reports the synthesis, X-ray crystal structure and magnetic characterization of two novel copper(II) dinuclear compounds including bis(imidazolyl) ligands and oxalate anions, [Cu2(BIM)2(C2O4)2]·4H2O (1) (BIM = bis(2-imidazolyl)methane) and [Cu2(BIK)2(C2O4)2] (2) (BIK = bis(2-imidazolyl)ketone). The oxalate anion acts as bidentate–monodentate in both cases, although it exhibits different coordination bridging modes: whereas in compound 1 a μ1,1,2-oxalato is observed, a μ1,2,3-oxalato is found in compound 2. In both cases, the 3D framework is held together by a combination of H-bonding and aromatic-aromatic interactions provided by the convenient structural features of BIM…

chemistry.chemical_classificationDenticityKetone010405 organic chemistryStereochemistrychemistry.chemical_elementCrystal structure010402 general chemistry01 natural sciencesCopperMagnetic susceptibilityOxalate0104 chemical scienceslaw.inventionInorganic Chemistrychemistry.chemical_compoundCrystallographychemistrylawMaterials ChemistryAntiferromagnetismPhysical and Theoretical ChemistryElectron paramagnetic resonancePolyhedron
researchProduct

Inside Cover: A SIM-MOF: Three-Dimensional Organisation of Single-Ion Magnets with Anion-Exchange Capabilities (Chem. Eur. J. 34/2014)

2014

Single ionIon exchangeChemistryMagnetOrganic ChemistryInorganic chemistryMetal-organic frameworkCover (algebra)General ChemistryCatalysisChemistry - A European Journal
researchProduct

A novel coordination polymer with an unusual [3×2] oblique copper(II) grid: [Cu2(HBIMAM)2(C4O4)3(H2O)2]n·2nH2O [BIMAM=bis(imidazol-2-yl)methylaminome…

2013

Abstract This paper reports the synthesis, X-ray structure and magnetic characterization of [Cu2(HBIMAM)2(C4O4)3(H2O)2]n·2nH2O [BIMAM = bis(imidazol-2-yl)methylamino methane]. This compound is made of infinite chains – running along the [1 1 0] direction – with copper ions bridged by μ1,3-squarato ligands. Furthermore, these chains are further cross-linked through additional squarate anions (with the same μ1,3-bis(monodentate) bridging mode) to generate two-dimensional sheets parallel to the ab plane. There are inter-chains links every two copper atoms in a chain, forming an unusual (3 × 2) oblique copper(II) grid. Magnetic susceptibility measurements in the range 2–300 K show weak antiferr…

DenticityStereochemistryCoordination polymerX-rayOblique casechemistry.chemical_elementMagnetic susceptibilityCopperIonInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryMaterials ChemistryAntiferromagnetismPhysical and Theoretical ChemistryPolyhedron
researchProduct

Hybrid organic-inorganic mononuclear lanthanoid single ion magnets

2019

The first family of hybrid mononuclear organic-inorganic lanthanoid complexes is reported, based on [PW11O39]7− and 1,10-phenanthroline ligands. This hybrid approach causes a dramatic improvement of the relaxation time (×1000) with a decrease of the optimal field while maintaining the Ueff of the inorganic analogues.

LanthanideMaterials scienceSingle ionField (physics)010405 organic chemistryMetals and AlloysGeneral ChemistryQuímica010402 general chemistryHybrid approach01 natural sciencesCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMagnetOrganic inorganicMaterials ChemistryCeramics and CompositesPhysical chemistryMaterials
researchProduct

Magnetic functionalities in MOFs: from the framework to the pore

2017

In this review, we show the different approaches so far developed to prepare Metal-Organic Frameworks (MOFs) presenting electronic functionalities, with particular attention to magnetic properties. We will cover the chemical design of the framework necessary for the incorporation of different magnetic phenomena, as well as the encapsulation of functional species in the pores leading to hybrid multifunctional MOFs combining an extended lattice with a molecular lattice.

Camps magnèticsMaterials scienceQuímica organometàl·licaNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesEncapsulation (networking)Magnetic PhenomenaLattice (order)0210 nano-technologyChemical designChemical Society Reviews
researchProduct

Quantum Error Correction with magnetic molecules

2014

Quantum algorithms often assume independent spin qubits to produce trivial $|\uparrow\rangle=|0\rangle$, $|\downarrow\rangle=|1\rangle$ mappings. This can be unrealistic in many solid-state implementations with sizeable magnetic interactions. Here we show that the lower part of the spectrum of a molecule containing three exchange-coupled metal ions with $S=1/2$ and $I=1/2$ is equivalent to nine electron-nuclear qubits. We derive the relation between spin states and qubit states in reasonable parameter ranges for the rare earth $^{159}$Tb$^{3+}$ and for the transition metal Cu$^{2+}$, and study the possibility to implement Shor's Quantum Error Correction code on such a molecule. We also disc…

PhysicsQuantum PhysicsSpin statesSpectrum (functional analysis)FOS: Physical sciencesGeneral Physics and AstronomyTransition metalQuantum error correctionQuantum mechanicsQubitMoleculeQuantum algorithmQuantum Physics (quant-ph)Spin-½EPL (Europhysics Letters)
researchProduct

Gas confinement in compartmentalized coordination polymers for highly selective sorption

2016

Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compar…

Solucions polimèriquesContext (language use)02 engineering and technologyNeutron scattering010402 general chemistry01 natural sciencescomplex mixturesMolecular dynamicsAdsorptionOrganic chemistryPorositychemistry.chemical_classificationChemistrySorptionQuímicaGeneral ChemistryPolymer021001 nanoscience & nanotechnologyeye diseases3. Good health0104 chemical sciencesChemistry[CHIM.POLY]Chemical Sciences/PolymersChemical engineeringsense organs0210 nano-technologyPorous medium
researchProduct

Dynamic magnetic materials based on the cationic coordination polymer [Cu(btix)2]n(2n+) [btix = 1,4-bis(triazol-1-ylmethyl)benzene]: tuning the struc…

2012

A three-dimensional coordination polymer, [Cu(btix)(2)(BF(4))(2)](n) [btix = 1,4-bis(triazol-1-ylmethyl)benzene], with antiferromagnetic interactions occurring via the organic ligand, has been prepared and characterized. It has been shown to permit the exchange of anionic species in the crystalline network with modification of the magnetic properties. Coordinated BF(4)(-) can be reversibly exchanged by different anions with (NO(3)(-) and Cl(-)) or without (PF(6)(-) and ClO(4)(-)) dynamic response of the organic ligand, which acts as the only linker between the metal centers. Interestingly, an irreversible exchange occurs with N(3)(-) anions to generate a new coordination polymer, [Cu(btix)(…

AnionsModels MolecularIon exchangeMolecular StructureLigandCoordination polymerPolymersInorganic chemistryCationic polymerizationAb initioCrystallography X-RayMagnetic susceptibilitylaw.inventionInorganic Chemistrychemistry.chemical_compoundCrystallographyMagnetic FieldschemistrylawCationsOrganometallic CompoundsAntiferromagnetismPhysical and Theoretical ChemistryElectron paramagnetic resonanceCopperInorganic chemistry
researchProduct

A Mixed-Ligand Approach for Spin-Crossover Modulation in a Linear FeII Coordination Polymer

2014

In this work, we present a family of Fe(II) coordination polymers of general formula [Fe(btzx)(3-3x)(btix)(3x)](ClO4)2 with interesting spin-crossover properties. These coordination polymers have been synthesized using chemical mixtures of two different but closely related ligands, 1,4-bis(tetrazol-1-ylmethyl)benzene (btzx) and 1,4-bis(triazol-1-ylmethyl)benzene (btix), and the effect of a gradual substitution of the ligand in the spin transition temperature has been investigated. Several chemical mixtures have been structurally characterized by X-ray powder diffraction indicating a clear critical amount in the composition of the mixture after which mixed phases rather than a single phase c…

chemistry.chemical_classificationPolymersChemistryCoordination polymerLigandStereochemistrySpin transitionPolymerLigands3. Good healthInorganic ChemistryThermogravimetrychemistry.chemical_compoundCrystallographySpin crossoverThermogravimetryFerrous CompoundsPhysical and Theoretical ChemistryBenzenePowder DiffractionPowder diffractionInorganic Chemistry
researchProduct

Spin-Crossover Modification through Selective CO2 Sorption

2013

[EN] We present a spin-crossover Fe-II coordination polymer with no permanent channels that selectively sorbs CO2 over N-2. The one-dimensional chains display internal voids of similar to 9 angstrom diameter, each being capable to accept one molecule of CO2 at 1 bar and 273 K. X-ray diffraction provides direct structural evidence of the location of the gas molecules and reveals the formation of O=C=O(delta(-))center dot center dot center dot pi interactions. This physisorption modifies the spin transition, producing a 9 K increase in T-1/2.

Diffraction010405 organic chemistryMagnetismChemistryCoordination polymerStereochemistryMagnetismSpin transitionSorptionGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciences3. Good healthchemistry.chemical_compoundCrystallographyColloid and Surface ChemistryPhysisorptionSpin crossoverMoleculeCO2 adsorptionMOFJournal of the American Chemical Society
researchProduct

Inside Cover: Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF

2021

How do you unveil pathway complexity in a crystallization process? In their Research Article on page 15920, Alessandro Sorrenti, Marco D′Abramo, Guillermo Mínguez Espallargas, Josep Puigmartí-Luis, and co-workers show that harnessing a reaction-diffusion (RD) process within a continuous flow microfluidic device, and on a millisecond timescale, is key to enable two unprecedented nucleation-growth pathways during a MOF synthesis.

CristallsMaterials
researchProduct

Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes† †Electronic supplementary information (ESI) availab…

2017

Magnetic analogues of Alq3 give rise to molecular/ferromagnetic interfaces with specific hybridization, opening the door to interesting spintronic effects.

Condensed Matter::Materials ScienceChemistryComputer Science::Emerging TechnologiesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectChemical Science
researchProduct

CCDC 1473649: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate carbon dioxide]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1415637: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573

Space GroupCrystallographytris(triphenyl(propyl)phosphonium) tris(36-dichloro-45-di(oxy)-12-benzoquinonato)-galliumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1951515: Experimental Crystal Structure Determination

2019

Related Article: Walter Cañón-Mancisidor, Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Carlos Cruz, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas|2019|Chem.Commun.|55|14992|doi:10.1039/C9CC07868A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(tetra-n-butylammonium) (mu-phosphato)-(mu-hydroxo)-tricosakis(mu-oxido)-bis(110-phenanthroline)-undecakis(oxido)-undeca-tungsten(vi)-dysprosium(iii) monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1934948: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-gadolinium unknown solvate hydrate]Experimental 3D Coordinates
researchProduct

CCDC 1457101: Experimental Crystal Structure Determination

2016

Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171

catena-(tetracosakis(mu-44'-bipyridinium-NN'-dioxide)-hexa-gadolinium tridecakis(mu-oxo)-hexaoxo-hexa-tungsten tris(tetrachloro-gold) hexachloride unknown solvate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1415635: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatestris(ethyl(triphenyl)phosphonium) tris(36-dibromo-45-bis(oxy)-12-benzoquinonato)-iron(iii)
researchProduct

CCDC 1951516: Experimental Crystal Structure Determination

2019

Related Article: Walter Cañón-Mancisidor, Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Carlos Cruz, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas|2019|Chem.Commun.|55|14992|doi:10.1039/C9CC07868A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(tetra-n-butylammonium) (mu-phosphato)-(mu-hydroxo)-tricosakis(mu-oxido)-bis(110-phenanthroline)-undecakis(oxido)-undeca-tungsten(vi)-erbium(iii) monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1457100: Experimental Crystal Structure Determination

2016

Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetracosakis(mu-44'-bipyridinium-NN'-dioxide)-hexa-gadolinium octadecakis(trifluoromethanesulfonate) unknown solvate hexahydrate)Experimental 3D Coordinates
researchProduct

CCDC 1562347: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

tris(mu-57-dibromoquinolin-8-olato)-(57-dibromoquinolin-8-olato)-(NN-dimethylformamide)-holmium-sodiumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1910863: Experimental Crystal Structure Determination

2019

Related Article: Sara Sáez-Ferre, Christian W. Lopes, Jorge Simancas, Alejandro Vidal-Moya, Teresa Blasco, Giovanni Agostini, Guillermo Mínguez Espallargas, Jose L. Jordá, Fernando Rey, Pascual Oña-Burgos|2019|Chem.-Eur.J.|25|16390|doi:10.1002/chem.201904043

Space GroupCrystallographytetraethylarsanium iodide sesquihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953847: Experimental Crystal Structure Determination

2013

Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[oxonium tris(mu~2~-36-dibromo-45-dioxocyclohexa-26-diene-12-diolato)-chromium-manganese phenazine acetone solvate monohydrate]Experimental 3D Coordinates
researchProduct

CCDC 2095301: Experimental Crystal Structure Determination

2022

Related Article: Javier López-Cabrelles, Eugenia Miguel-Casañ, María Esteve-Rochina, Eduardo Andres-Garcia, Iñigo J. Vitórica-Yrezábal, Joaquín Calbo, Guillermo Mínguez Espallargas|2022|Chemical Science|13|842|doi:10.1039/D1SC04779E

catena-[(2-ethylimidazole)-(2-methylbenzimidazole)-iron(ii) tetrahydrate unknown solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 910547: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu2-11'-(14-phenylenebis(methylene))bis(1H-tetrazole))-iron(ii) diperchlorate]Experimental 3D Coordinates
researchProduct

CCDC 2131105: Experimental Crystal Structure Determination

2022

Related Article: Eugenia Miguel-Casañ, Mohanad D. Darawsheh, Víctor Fariña-Torres, Iñigo J. Vitórica-Yrezábal, Eduardo Andres-Garcia, Martín Fañanás-Mastral, Guillermo Mínguez Espallargas|2023|Chemical Science|14|179|doi:10.1039/D2SC05192C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[hexakis(mu-pyridine-35-dicarboxylato)-bis(mu-oxo)-hexa-aqua-hexachloro-hexa-iron-tri-palladium unknown solvate hexahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1916087: Experimental Crystal Structure Determination

2019

Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-1H-benzotriazolato-5-carboxylato)-bis(mu-hydroxo)-tri-zinc(ii) NN-dimethylformamide unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 1457102: Experimental Crystal Structure Determination

2016

Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetracosakis(mu-44'-bipyridinium-NN'-dioxide)-hexa-gadolinium hexakis(tridecakis(mu-oxo)-hexaoxo-hexa-molybdenum) hexakis(trifluoromethanesulfonate) unknown solvate)Experimental 3D Coordinates
researchProduct

CCDC 1473650: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate ethene]Experimental 3D Coordinates
researchProduct

CCDC 1440481: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-11'-([11'-biphenyl)-44'-diylbis(methylene)]bis(1H-tetrazole))-iron(ii) bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 1951518: Experimental Crystal Structure Determination

2020

Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A

Space GroupCrystallographytris(tetra-n-butylammonium) (mu-hydroxo)-tricosakis(mu-oxo)-(mu-phosphato)-undecaoxo-bis(110-phenanthroline)-holmium-undeca-tungsten monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987661: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetracosakis(mu2-44'-Bipyridine-NN'-dioxide)-hexa-erbium hexakis((mu6-oxo)-dodecakis(mu2-oxo)-hexaoxo-hexa-molybdenum) hexakis(trifluoromethanesulfonate) octahydrate)Experimental 3D Coordinates
researchProduct

CCDC 1579606: Experimental Crystal Structure Determination

2018

Related Article: Manuel Souto, Andrea Santiago-Portillo, Miguel Palomino, Iñigo J. Vitórica-Yrezábal, Bruno J. C. Vieira, João C. Waerenborgh, Susana Valencia, Sergio Navalón, Fernando Rey, Hermenegildo García, Guillermo Mínguez Espallargas|2018|Chemical Science|9|2413|doi:10.1039/C7SC04829G

Space GroupCrystallographycatena-((mu-oxo)-hexakis(mu-acetato)-triaqua-tri-iron tris(mu-44'-{2-[45-bis(4-carboxyphenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-bis(mu-oxo)-tetra-aqua-dihydroxy-hexa-iron unknown solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1415636: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573

Space GroupCrystallographytris(triphenyl(propyl)phosphonium) tris(36-dichloro-45-di(oxy)-12-benzoquinonato)-iron(iii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1582351: Experimental Crystal Structure Determination

2022

Related Article: Javier López-Cabrelles, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Pablo J. Bereciartua, Eugenio Coronado, Guillermo Mínguez Espallargas|2022|Dalton Trans.|51|1861|doi:10.1039/D1DT03734J

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[bis(mu-6-fluorobenzimidazolato)-iron(ii)]
researchProduct

CCDC 1962564: Experimental Crystal Structure Determination

2020

Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A

Space GroupCrystallographytris(tetra-n-butylammonium) (mu-hydroxo)-tricosakis(mu-oxo)-(mu-phosphato)-undecaoxo-bis(110-phenanthroline)-europium-undeca-tungsten monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1440482: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

catena-[tris(mu-11'-((11'-biphenyl)-44'-diylbis(methylene))bis(1H-tetrazole))-iron bis(tetrafluoroborate)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1415638: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573

Space GroupCrystallographytris(tetrabutylphosphonium) tris(45-bis(oxy)-36-dinitro-12-benzoquinonato)-chromium(iii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562346: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-57-dibromoquinolin-8-olato)-(57-dibromoquinolin-8-olato)-(NN-dimethylformamide)-sodium-erbiumExperimental 3D Coordinates
researchProduct

CCDC 1562348: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-5-chloro-7-iodoquinolin-8-olato)-(5-chloro-7-iodoquinolin-8-olato)-(NN-dimethylformamide)-dysprosium-sodiumExperimental 3D Coordinates
researchProduct

CCDC 1916085: Experimental Crystal Structure Determination

2019

Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-1H-benzotriazolato-5-carboxylato)-bis(mu-hydroxo)-tri-zinc(ii) NN-dimethylformamide solvate monohydrate]Experimental 3D Coordinates
researchProduct

CCDC 1439097: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 987659: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu-44'-bypyridyl-NN'-dioxide)-hexa-dysprosium hexakis(trifluoromethanesulfonate) hexakis(tridecakis(mu-oxo)-hexaoxo-hexa-molybdenum) icosahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1457103: Experimental Crystal Structure Determination

2016

Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(docosakis(mu-44'-bipyridinium-NN'-dioxide)-diaqua-bis(44'-bipyridinium-NN'-dioxide)-hexa-gadolinium pentadecakis(tetrachloro-gold) trichloride unknown solvate)Experimental 3D Coordinates
researchProduct

CCDC 1439890: Experimental Crystal Structure Determination

2016

Related Article: Emilio Escrivà, José-Vicente Folgado, Guillermo Mínguez Espallargas, Lucia Soto, Amparo Sancho, Lourdes Perelló, Rosa Ortíz|2016|Polyhedron|112|137|doi:10.1016/j.poly.2016.03.041

(bis(1H-imidazol-2-yl)methanone)-(ethanedioato)-copper(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1411200: Experimental Crystal Structure Determination

2015

Related Article: Maurici López-Jordà, Mónica Giménez-Marqués, Cédric Desplanches, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2016|Eur.J.Inorg.Chem.||2187|doi:10.1002/ejic.201500790

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tris(2-(1H-Imidazol-2-yl)pyridine)-iron(ii) bis(tris(mu2-oxalato)-chromium(iii)-manganese(ii)) dihydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1044598: Experimental Crystal Structure Determination

2015

Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514

Space GroupCrystallographycatena-((mu2-Tetramethylpyrazine)-(heptafluorobutanoato-OO')-silver(i))Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 910548: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal Systemcatena-[tris(mu~2~-11'-(14-phenylenebis(methylene))bis(1H-tetrazole))-iron diperchlorate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2217201: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

catena-[bis(mu-oxido)-dodecakis(mu-pyridine-4-carboxylato)-aqua-di-iron(ii)-tetra-iron(iii) NN-dimethylformamide solvate hemihydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 927863: Experimental Crystal Structure Determination

2013

Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu~2~-Hydroxo)-hexakis(mu~2~-35-dimethylpyrazolato)-hexa-copper acetonitrile chloroform solvateExperimental 3D Coordinates
researchProduct

CCDC 1032220: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(Tri-n-butyl(methyl)ammonium) tris(mu2-36-dibromo-25-dioxy-14-benzoquinone)-di-chromium)Experimental 3D Coordinates
researchProduct

CCDC 2213981: Experimental Crystal Structure Determination

2023

Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(heptakis(mu-oxo)-bis(mu-N-[13-dioxy-2-(oxymethyl)propan-2-yl]-26-bis(1H-pyrazol-1-yl)pyridine-4-carboxamide)-hexaoxo-hexa-vanadium-zinc acetonitrile dimethylformamide unknown solvate)Experimental 3D Coordinates
researchProduct

CCDC 1855292: Experimental Crystal Structure Determination

2018

Related Article: Javier Castells-Gil, José J. Baldoví, Carlos Martí-Gastaldo, Guillermo Mínguez Espallargas|2018|Dalton Trans.|47|14734|doi:10.1039/C8DT03421D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-5-[(3-carboxy-5-carboxylatophenyl)diazenyl]benzene-13-dicarboxylato)-diaqua-dysprosium hydrate]Experimental 3D Coordinates
researchProduct

CCDC 987658: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyTri-terbium tris((mu6-oxo)-dodecakis(mu2-oxo)-hexaoxo-hexa-molybdenum) tris(trifluoromethanesulfonate) dodecakis(44'-bipyridinium-11'-diolate) hydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562344: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

Space GroupCrystallographyCrystal Systemtris(mu-57-dibromoquinolin-8-olato)-(57-dibromoquinolin-8-olato)-(NN-dimethylformamide)-dysprosium-sodiumCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1916082: Experimental Crystal Structure Determination

2019

Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A

Space GroupCrystallographycatena-[bis(mu-1H-benzotriazolato-5-carboxylato)-bis(mu-hydroxo)-tri-zinc(ii) tetrahydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1557648: Experimental Crystal Structure Determination

2017

Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetraethylammonium hexakis(mu-57-dichloroquinolin-8-olato)-bis(57-dichloroquinolin-8-olato)-di-dysprosium-potassium acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1557649: Experimental Crystal Structure Determination

2017

Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetraethylammonium tetrakis(57-dichloroquinolin-8-olato)-dysprosiumExperimental 3D Coordinates
researchProduct

CCDC 1897432: Experimental Crystal Structure Determination

2019

Related Article: María Vicent-Morales, Iñigo J. Vitórica-Yrezábal, Manuel Souto, Guillermo Mínguez Espallargas|2019|CrystEngComm|21|3031|doi:10.1039/C9CE00233B

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tris(mu-2367-tetrakis(4-carboxylatophenyl)tetrathiafulvalene)-bis(mu-oxo)-hexapyridine-hexa-iron pyridine solvate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562345: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-57-dibromoquinolin-8-olato)-(57-dibromoquinolin-8-olato)-(NN-dimethylformamide)-sodium-terbiumExperimental 3D Coordinates
researchProduct

CCDC 1934950: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographycatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-holmium unknown solvate hydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1032219: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451

Space GroupCrystallographyCrystal Systemcatena-(Triethyl(methyl)ammonium bis(mu4-36-dichloro-25-dioxy-14-benzoquinone)-(mu3-36-dichloro-25-dioxy-14-benzoquinone)-dimethylformamide-iron-di-sodium)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1951517: Experimental Crystal Structure Determination

2020

Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(tetra-n-butylammonium) (mu-hydroxo)-tricosakis(mu-oxo)-(mu-phosphato)-undecaoxo-bis(110-phenanthroline)-terbium-undeca-tungsten monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1562349: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-5-chloro-7-iodoquinolin-8-olato)-(5-chloro-7-iodoquinolin-8-olato)-(NN-dimethylformamide)-sodium-terbiumExperimental 3D Coordinates
researchProduct

CCDC 1855294: Experimental Crystal Structure Determination

2018

Related Article: Javier Castells-Gil, José J. Baldoví, Carlos Martí-Gastaldo, Guillermo Mínguez Espallargas|2018|Dalton Trans.|47|14734|doi:10.1039/C8DT03421D

Space GroupCrystallographyCrystal Systemcatena-[(mu-5-[(3-carboxy-5-carboxylatophenyl)diazenyl]benzene-13-dicarboxylato)-dysprosium hydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1044595: Experimental Crystal Structure Determination

2015

Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu2-Heptafluorobutanoato)-tris(mu2-tetramethylpyrazine)-tetra-silver)Experimental 3D Coordinates
researchProduct

CCDC 1032218: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(bis(Ethyl(triphenyl)phosphonium) tris(mu2-36-dichloro-25-dioxy-14-benzoquinone)-iron-potassium)
researchProduct

CCDC 1439096: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1962563: Experimental Crystal Structure Determination

2020

Related Article: Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas, Lauro June Queiroz Maia, Gisane Gasparotto, Ricardo Costa De Santana, Walter Cañón-Mancisidor|2020|Inorg.Chem.Front.|7|3049|doi:10.1039/D0QI00232A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(tetra-n-butylammonium) (mu-hydroxo)-tricosakis(mu-oxo)-(mu-phosphato)-undecaoxo-bis(110-phenanthroline)-neodymium-undeca-tungsten monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1934947: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

catena-[(mu-hydrogen 44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-aqua-dysprosium acetic acid unknown solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562351: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

tris(mu-5-chloro-7-iodoquinolin-8-olato)-(5-chloro-7-iodoquinolin-8-olato)-(NN-dimethylformamide)-holmium-sodiumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 927864: Experimental Crystal Structure Determination

2013

Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu~2~-Hydroxo)-hexakis(mu~2~-35-dimethylpyrazolato)-hexa-copperExperimental 3D Coordinates
researchProduct

CCDC 1473651: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate methane]Experimental 3D Coordinates
researchProduct

CCDC 1934945: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographycatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-(NN-dimethylformamide)-aqua-tri-dysprosium unknown solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2213982: Experimental Crystal Structure Determination

2023

Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F

Space GroupCrystallographybis(tetra-n-butylammonium) bis(mu-N-[13-dioxy-2-(oxymethyl)propan-2-yl]-26-bis(1H-pyrazol-1-yl)pyridine-4-carboxamide)-heptakis(mu-oxo)-hexaoxo-hexa-vanadium dimethylacetamide solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473652: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

catena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) carbon dioxide]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987660: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu-44'-bypyridyl-NN'-dioxide)-hexa-holmium hexakis(trifluoromethanesulfonate) hexakis(tridecakis(mu-oxo)-hexaoxo-hexa-molybdenum) icosahydrate]Experimental 3D Coordinates
researchProduct

CCDC 953846: Experimental Crystal Structure Determination

2013

Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(Oxonium tris(mu~2~-25-dichloro-36-dioxy-14-benzoquinone)-aqua-chromium-manganese tris(phenazine))Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2217199: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[(mu-oxido)-hexakis(mu-pyridine-4-carboxylato)-iron(ii)-di-iron(iii) NN-dimethylformamide solvate]
researchProduct

CCDC 927862: Experimental Crystal Structure Determination

2013

Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C

(mu~6~-Fluoro)-bis(mu~3~-methoxo)-hexakis(mu~2~-35-dimethylpyrazolato)-(mu~2~-hydroxo)-bis(mu~2~-methoxo)-hexa-copperSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1439889: Experimental Crystal Structure Determination

2016

Related Article: Emilio Escrivà, José-Vicente Folgado, Guillermo Mínguez Espallargas, Lucia Soto, Amparo Sancho, Lourdes Perelló, Rosa Ortíz|2016|Polyhedron|112|137|doi:10.1016/j.poly.2016.03.041

(ethanedioato)-(2-((1H-imidazol-2-yl)methyl)-1H-imidazole)-copper(ii) dihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1934949: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographycatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-terbium unknown solvate hydrate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2213983: Experimental Crystal Structure Determination

2023

Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F

Space GroupCrystallographyCrystal Systembis(cobaltocenium) bis(mu-hydroxo)-bis(mu-N-[13-oxy-2-(oxymethyl)propan-2-yl]-26-bis(1H-pyrazol-1-yl)pyridine-4-carboxamide)-pentakis(mu-oxo)-hexaoxo-hexa-vanadium acetonitrile solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1420989: Experimental Crystal Structure Determination

2015

Related Article: Javier López-Cabrelles, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, and Eugenio Coronado|2015|Inorg.Chem.|54|10490|doi:10.1021/acs.inorgchem.5b02003

Space GroupCrystallographycatena-((mu2-44'-Bipyridine)-bis(mu2-imidazolato)-iron)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1562350: Experimental Crystal Structure Determination

2018

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-5-chloro-7-iodoquinolin-8-olato)-(5-chloro-7-iodoquinolin-8-olato)-(NN-dimethylformamide)-erbium-sodiumExperimental 3D Coordinates
researchProduct

CCDC 1044597: Experimental Crystal Structure Determination

2015

Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu2-Heptafluorobutanoato)-tris(mu2-tetramethylpyrazine)-tetra-silver)Experimental 3D Coordinates
researchProduct

CCDC 1934946: Experimental Crystal Structure Determination

2019

Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-44'-{2-[45-bis(4-carboxylatophenyl)-2H-13-dithiol-2-ylidene]-2H-13-dithiole-45-diyl}dibenzoato)-(mu-acetato)-aqua-tri-erbium unknown solvate hydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1415639: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573

Space GroupCrystallographyCrystal SystemCrystal Structuretris(tetrabutylphosphonium) tris(36-dinitro-45-dioxocyclohexa-26-diene-12-bis(olato))-iron(iii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1916084: Experimental Crystal Structure Determination

2019

Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-benzotriazolato-6-carboxylato)-(mu-hydroxo)-(mu-oxido)-(mu-formato)-tetra-zinc]Experimental 3D Coordinates
researchProduct

CCDC 1457099: Experimental Crystal Structure Determination

2016

Related Article: Javier López-Cabrelles, Guillermo Mínguez Espallargas and Eugenio Coronado|2016|Polymers|8|171|doi:10.3390/polym8050171

catena-(tetracosakis(mu-44'-bipyridinium-NN'-dioxide)-hexa-gadolinium hexakis(tridecakis(mu-oxo)-hexaoxo-hexa-tungsten) hexakis(trifluoromethanesulfonate) unknown solvate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1951519: Experimental Crystal Structure Determination

2019

Related Article: Walter Cañón-Mancisidor, Matias Zapata-Lizama, Patricio Hermosilla-Ibáñez, Carlos Cruz, Diego Venegas-Yazigi, Guillermo Mínguez Espallargas|2019|Chem.Commun.|55|14992|doi:10.1039/C9CC07868A

tris(tetra-n-butylammonium) (mu-phosphato)-(mu-hydroxo)-tricosakis(mu-oxido)-bis(110-phenanthroline)-undecakis(oxido)-undeca-tungsten(vi)-gadolinium(iii) monohydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1916086: Experimental Crystal Structure Determination

2019

Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A

catena-[bis(mu-1H-benzotriazolato-5-carboxylato)-bis(mu-hydroxo)-tri-zinc(ii) NN-dimethylformamide solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987656: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

catena-[tetracosakis(mu~2~-44'-Bipyridine 11'-dioxide)-hexa-holmium(iii) octadecakis(trifluoromethanesulfonate) unknown solvate hexahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1044596: Experimental Crystal Structure Determination

2015

Related Article: Iñigo J. Vitórica-Yrezábal, Stefano Libri, Jason R. Loader, Guillermo Mínguez Espallargas, Michael Hippler, Ashleigh J. Fletcher, Stephen P. Thompson, John E. Warren, Daniele Musumeci, Michael D. Ward, Lee Brammer|2015|Chem.-Eur.J.|21|8799|doi:10.1002/chem.201500514

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu2-Heptafluorobutanoato)-tris(mu2-tetramethylpyrazine)-tetra-silver)Experimental 3D Coordinates
researchProduct

CCDC 1994492: Experimental Crystal Structure Determination

2020

Related Article: Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Guillermo Mínguez Espallargas, Fernando Rey, Avelino Corma, Pascual Oña-Burgos|2020|J.Am.Chem.Soc.|142|19198|doi:10.1021/jacs.0c08882

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[([mu-22'-bipyridine]-44'-dicarboxylato)-(pyridine)-cobalt(ii) pyridine solvate]Experimental 3D Coordinates
researchProduct

CCDC 2213984: Experimental Crystal Structure Determination

2023

Related Article: Mario Palacios-Corella, Víctor García-López, Joao Carlos Waerenborgh, Bruno J. C. Vieira, Guillermo Mínguez Espallargas, Miguel Clemente-León, Eugenio Coronado|2023|Chemical Science|14|3048|doi:10.1039/D2SC05800F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(cobaltocenium heptakis(mu-oxo)-bis(mu-N-[13-dioxy-2-(oxymethyl)propan-2-yl]-26-bis(1H-pyrazol-1-yl)pyridine-4-carboxamide)-hexaoxo-hexa-vanadium-zinc unknown solvate tetrahydrate)
researchProduct

CCDC 2217200: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[bis(mu-oxido)-dodecakis(mu-pyridine-4-carboxylato)-aqua-di-iron(ii)-tetra-iron(iii) NN-dimethylformamide solvate monohydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 927865: Experimental Crystal Structure Determination

2013

Related Article: Walter Cañon-Mancisidor, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Andres Vega, Evgenia Spodine, Diego Venegas-Yazigi, Eugenio Coronado|2014|Chemical Science|5|324|doi:10.1039/C3SC52628C

Space GroupCrystallographyCrystal Systemhexakis(mu~2~-Hydroxo)-hexakis(mu~2~-35-dimethylpyrazolato)-hexa-copper unknown solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987655: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

catena-[tetracosakis(mu~2~-44'-Bipyridine 11'-dioxide)-hexa-dysprosium(iii) octadecakis(trifluoromethanesulfonate) unknown solvate decahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473654: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) methane]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1415634: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Patricia Gómez-Claramunt, Cristina Vallés-García, Guillermo Mínguez Espallargas, Carlos J. Gómez García|2016|Cryst.Growth Des.|16|518|doi:10.1021/acs.cgd.5b01573

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(ethyl(triphenyl)phosphonium) tris(36-dichloro-45-dioxocyclohexa-26-diene-12-bis(olato))-iron(iii)Experimental 3D Coordinates
researchProduct

CCDC 1898281: Experimental Crystal Structure Determination

2020

Related Article: Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Miguel Palomino, Guillermo Mínguez Espallargas, José L. Jordá, Fernando Rey, Pascual Oña-Burgos|2019|ACS Applied Materials and Interfaces|11|46658|doi:10.1021/acsami.9b13655

Space GroupCrystallographycatena-[bis(mu-benzene-135-tricarboxylato)-tris(NN-dimethylformamide)-pyridine-tri-cobalt NN-dimethylformamide solvate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 953848: Experimental Crystal Structure Determination

2013

Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284

Space GroupCrystallographyCrystal Systemcatena-(Oxonium tris(mu~2~-25-dibromo-36-dioxy-14-benzoquinone)-aqua-di-manganese tris(phenazine) monohydrate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1032217: Experimental Crystal Structure Determination

2015

Related Article: Samia Benmansour, Cristina Vallés-García, Patricia Gómez-Claramunt, Guillermo Mínguez Espallargas, Carlos J. Gómez-García|2015|Inorg.Chem.|54|5410|doi:10.1021/acs.inorgchem.5b00451

Space GroupCrystallographycatena-(bis(Tri-n-butyl(methyl)phosphonium) tris(mu2-36-dibromo-25-dioxy-14-benzoquinone)-chromium-sodium)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2237340: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu-acetato)-(mu-oxo)-triaqua-tri-iron(iii) perchlorate trihydrateExperimental 3D Coordinates
researchProduct

CCDC 953849: Experimental Crystal Structure Determination

2013

Related Article: Matteo Atzori, Samia Benmansour, Guillermo Mínguez Espallargas, Miguel Clemente-León, Alexandre Abhervé, Patricia Gómez-Claramunt, Eugenio Coronado, Flavia Artizzu, Elisa Sessini, Paola Deplano, Angela Serpe, Maria Laura Mercuri, and Carlos J. Gómez García|2013|Inorg.Chem.|52|10031|doi:10.1021/ic4013284

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(Tetra-n-butylammonium tris(mu~2~-25-dichloro-36-dioxy-14-benzoquinone)-di-chromium)Experimental 3D Coordinates
researchProduct

CCDC 987657: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu~2~-44'-Bipyridine 11'-dioxide)-hexa-erbium(iii) octadecakis(trifluoromethanesulfonate) unknown solvate hexahydrate]Experimental 3D Coordinates
researchProduct

CCDC 1916083: Experimental Crystal Structure Determination

2019

Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A

catena-[bis(mu-1H-benzotriazolato-5-carboxylato)-bis(mu-hydroxo)-tri-zinc(ii) NN-dimethylformamide solvate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 987654: Experimental Crystal Structure Determination

2014

Related Article: José J. Baldoví, Eugenio Coronado, Alejandro Gaita-Ariño, Christoph Gamer, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2014|Chem.-Eur.J.|20|10695|doi:10.1002/chem.201402255

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetracosakis(mu2-44'-Bipyridine 11'-dioxide)-hexa-terbium(iii) octadeca(trifluoromethanesulfonate) methanol solvate hydrate]Experimental 3D Coordinates
researchProduct

CCDC 2237339: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

catena-[hexakis(mu-pyridine-4-carboxylato)-(mu-oxo)-iron(ii)-di-iron(iii) carbon disulfide]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 893839: Experimental Crystal Structure Determination

2013

Related Article: Emilio Escrivá, Lucía Soto, Juan Server-Carrió, Carlos J. Gómez-García, Guillermo Mínguez Espallargas, Nailette Ruiz, Amparo Sancho, Julia García-Lozano, Carmen Ramírez de Arellano|2013|Polyhedron|56|90|doi:10.1016/j.poly.2013.03.016

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[tris(mu~2~-Cyclobutane-1234-tetrone)-bis(di-1H-imidazol-2-yl-N-methylmethanaminium)-diaqua-di-copper dihydrate]
researchProduct

CCDC 1557647: Experimental Crystal Structure Determination

2017

Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(mu-57-dichloroquinolin-8-olato)-(57-dichloroquinolin-8-olato)-(NN-dimethylformamide)-dysprosium-sodiumExperimental 3D Coordinates
researchProduct

CCDC 1473653: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) ethene]Experimental 3D Coordinates
researchProduct

CCDC 2217202: Experimental Crystal Structure Determination

2023

Related Article: Isabel Abánades Lázaro, Eleni C. Mazarakioti, Eduardo Andres-Garcia, Bruno J. C. Vieira, João C. Waerenborgh, Iñigo J. Vitórica-Yrezábal, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas|2023|J.Mater.Chem.A|11|5320|doi:10.1039/D2TA08934C

Space GroupCrystallographycatena-[(mu-oxido)-hexakis(mu-pyridine-4-carboxylato)-iron(ii)-di-iron(iii)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 921439: Experimental Crystal Structure Determination

2013

Related Article: Eugenio Coronado, Mónica Giménez-Marqués, Guillermo Mínguez Espallargas, Fernando Rey, and Iñigo J. Vitórica-Yrezábal|2013|J.Am.Chem.Soc.|135|15986|doi:10.1021/ja407135k

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu2-11'-(14-Phenylenebis(methylene))bis(1H-tetrazole))-iron(ii) diperchlorate ethanol solvate hemihydrate]Experimental 3D Coordinates
researchProduct

CCDC 1833302: Experimental Crystal Structure Determination

2018

Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510

Space GroupCrystallographyCrystal SystemCrystal Structurebis(1H-imidazol-3-ium) tetrachloro-copper(II)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833300: Experimental Crystal Structure Determination

2018

Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510

catena-[(mu-chloro)-bis(1H-imidazole)-chloro-copper(ii)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833301: Experimental Crystal Structure Determination

2018

Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-((mu2-Imidazolato-NN')-chloro-bis(imidazole)-chloro-copper(ii))
researchProduct