0000000001307514

AUTHOR

Gonzalo Abellán

showing 93 related works from this author

Carbon Nanotubes: In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes (Adv. Mater. Inter…

2014

In situBambooCarbon filmMaterials scienceMechanics of MaterialsCarbon nanofiberlawMechanical EngineeringNanotechnologyCarbon nanotubeThin filmlaw.inventionAdvanced Materials Interfaces
researchProduct

Chemistry of two-dimensional pnictogens: emerging post-graphene materials for advanced applications

2023

The layered allotropes of group 15 (P, As, Sb and Bi), also called two-dimensional (2D) pnictogens, have emerged as one of the most promising families of post-graphene 2D-materials. This is mainly due to the great variety of properties they exhibit, including layer-dependent bandgap, high charge-carrier mobility and current on/off ratios, strong spin-orbit coupling, wide allotropic diversity and pronounced chemical reactivity. These are key ingredients for exciting applications in (opto)electronics, heterogeneous catalysis, nanomedicine or energy storage and conversion, to name a few. However, there are still many challenges to overcome in order to fully understand their properties and brin…

Materials ChemistryMetals and AlloysCeramics and CompositesGeneral ChemistryMaterialsCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemical Communications
researchProduct

Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field Effect Transistors

2020

Amongst the different existing methods to passivate black phosphorus (BP) from environmental degradation, the noncovalent functionalization with perylene diimides (PDI) has been postulated as one of the most promising routes because it allows preserving its electronic properties. This work describes the noncovalent functionalization and outstanding environmental protection of BP with tailor made PDI having peri-amide aromatic side chains, which include phenyl and naphthyl groups, exhibiting a significantly increased molecule-BP interaction. These results are rationalized by density functional theory (DFT) calculations showing that the adsorption energies are mainly governed by van der Waals…

Materials sciencePassivation010405 organic chemistryMechanical EngineeringNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesBlack phosphorus0104 chemical scienceschemistry.chemical_compoundchemistryMechanics of Materialsddc:540Surface modificationField-effect transistor0210 nano-technologyMaterialsPerylene
researchProduct

Electrical conductivity and strong luminescence in copper Iodide double chains with isonicotinato derivatives

2015

Direct reactions between CuI and isonicotinic acid (HIN) or the corresponding esters, ethyl isonicotinate (EtIN) or methyl isonicotinate (MeIN), give rise to the formation of the coordination polymers [CuI(L)] with L=EtIN (1), MeIN (2) and HIN (3). Polymers 1-3 show similar structures based on a CuI double chain in which ethyl-, methyl isonicotinate or isonicotinic acid are coordinated as terminal ligands. Albeit, their supramolecular architecture differs considerably, affecting the distances and angles of the central CuI double chains and thereby their physical properties. Hence, the photoluminescence shows remarkable differences; 1 and 2 show a strong yellow emission, whereas 3 displays a…

Models MolecularThermogravimetric analysisPhotoluminescenceLuminescencePolymersInorganic chemistrySupramolecular chemistrychemistry.chemical_elementConductivityIsonicotinic acidLigandsNiacinCatalysisCopper iodidechemistry.chemical_compoundCoordination ComplexesElectrical conductivityCarboxylateMolecular StructureStructure elucidationOrganic ChemistryElectric ConductivityGeneral ChemistryIodidesCopperCoordination polymersCrystallographychemistryLuminescenceCopper
researchProduct

Photochemical behavior in azobenzene having acidic groups. Preparation of magnetic photoresponsive gels

2011

[EN] The photochemistry of three azobenzenes representing contrasting photochemical behaviors is described in the present work. Thus, Methyl Orange (MO, 4-[[(4-dimethylamino)phenyl]-azo]benzenesulfonic acid sodium salt, hereinafter (1) and 4-hydroxyazobenzene-4'-sulfonic acid (2) undergo in water fast photochemical proton shift, with decays in the microsecond timescale. In contrast to the previous cases, azobenzene-4,4'-dicarboxylic acid (3) undergoes photoisomerization in water. This photochemical behavior allows the preparation of aqueous gels with Aerosil as gelating agent (5% weight) exhibiting high cyclability and photoreversible isomerization of the trans to cis (300 nm irradiation) a…

PhotoisomerizationMagnetismGeneral Chemical EngineeringGeneral Physics and Astronomy02 engineering and technology010402 general chemistryPhotochemistry01 natural scienceschemistry.chemical_compoundQUIMICA ORGANICABenzenesulfonic acidPhotoisomerizationMethyl orangeMagnetite nanoparticlesAqueous solutionAzobenzeneMultifunctional materialsLaser flash photolysisGeneral Chemistry021001 nanoscience & nanotechnologyPhotoresponsive gel0104 chemical sciencesAzobenzenechemistry0210 nano-technologyIsomerizationIron oxide nanoparticlesJournal of Photochemistry and Photobiology A: Chemistry
researchProduct

Ruddlesden-Popper Hybrid Lead Bromide Perovskite Nanosheets of Phase Pure n=2: Stabilized Colloids Stored in the Solid State.

2021

Ruddlesden-Popper lead halide perovskite (RP-LHP) nano-nanostructures can be regarded as self-assembled quantum wells or superlattices of 3D perovskites with an intrinsic quantum well thickness of a single or a few (n=2-4) lead halide layers; the quantum wells are separated by organic layers. They can be scaled down to a single quantum well dimension. Here, the preparation of highly (photo)chemical and colloidal stable hybrid LHP nanosheets (NSs) of ca. 7.4 μm lateral size and 2.5 nm quantum well height (thereby presenting a deep blue emission at ca. 440 nm), is reported for the first time. The NSs are close-lying and they even interconnect when deposited on a substrate. Their synthesis is …

Col·loidesNanoestructuresPhotoluminescenceMaterials scienceSuperlatticeHalideGeneral Medicine02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesColloidChemical engineeringPhase (matter)Nanodot0210 nano-technologyQuantum wellPerovskite (structure)Angewandte Chemie (International ed. in English)
researchProduct

Interplay between Chemical Composition and Cation Ordering in the Magnetism of Ni/Fe Layered Double Hydroxides

2013

We report the synthesis of a family of ferrimagnetic NiFe layered double hydroxides (LDHs) with a variable Ni(2+)/Fe(3+) in-plane composition of [Ni(1-x)Fe(x)(OH)2](CO3)(x/2)·yH2O (x = 0.20, 0.25, and 0.33) by following a modified homogeneous precipitation. These layered magnets display high crystallinity, homogeneous hexagonal morphologies, and micrometric size that enable their quantitative exfoliation into single layers by sonomechanical treatment of the solids in polar solvents. This was confirmed by dynamic light scattering, UV-vis spectroscopy, high-resolution transmission electron miscroscopy, and atomic force microscopy methodologies to study the resulting steady suspensions. Our ma…

ChemistryMagnetismLayered double hydroxidesMineralogy02 engineering and technologyCoercivityengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallinityCrystallography13. Climate actionFerrimagnetismMössbauer spectroscopyengineeringPhysical and Theoretical Chemistry0210 nano-technologySpectroscopySpontaneous magnetizationInorganic Chemistry
researchProduct

In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes

2014

The synthesis of ultrathin films (UTFs) of NiFe-LDHs has been achieved by means of an in situ hydrothermal approach, leading to a flat disposition of the LDH crystallites on the substrate, in clear contrast to the most common perpendicular orientation reported to date. Experimental factors like time of synthesis or the nature of the substrate, seem to play a crucial role during the growing process. The 2D morphology of the NiFe-LDH crystallites was kept after a calcination procedure, leading to a topotactic transformation into mixed-metal oxide platelets. Hereby, in order to study the catalytic behavior of our samples, a chemical vapor deposition process is explored upon the as-synthesized …

Materials scienceMechanical EngineeringOxidechemistry.chemical_elementNanotechnologyChemical vapor depositionCarbon nanotubelaw.inventionchemistry.chemical_compoundCarbon filmchemistryMechanics of MaterialslawCalcinationCrystalliteThin filmCarbonAdvanced Materials Interfaces
researchProduct

Few layer 2D pnictogens catalyze the alkylation of soft nucleophiles with esters

2019

Group 15 elements in zero oxidation state (P, As, Sb and Bi), also called pnictogens, are rarely used in catalysis due to the difficulties associated in preparing well–structured and stable materials. Here, we report on the synthesis of highly exfoliated, few layer 2D phosphorene and antimonene in zero oxidation state, suspended in an ionic liquid, with the native atoms ready to interact with external reagents while avoiding aerobic or aqueous decomposition pathways, and on their use as efficient catalysts for the alkylation of nucleophiles with esters. The few layer pnictogen material circumvents the extremely harsh reaction conditions associated to previous superacid–catalyzed alkylations…

0301 basic medicineCatàlisi heterogèniaScienceFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technologyAlkylationIonic liquidGeneral Biochemistry Genetics and Molecular BiologyArticleCatalysis03 medical and health scienceschemistry.chemical_compoundNucleophileOxidation stateAntimonenePhysics - Chemical PhysicsQUIMICA ANALITICAlcsh:ScienceMaterialsChemical Physics (physics.chem-ph)MultidisciplinaryAqueous solutionChemistryPnictogensPhosphoreneQGeneral Chemistry021001 nanoscience & nanotechnologyCombinatorial chemistryPhosphorene030104 developmental biologyReagentddc:540Ionic liquidlcsh:QCatalyst0210 nano-technologyNature Communications
researchProduct

ChemInform Abstract: Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective

2015

ConspectusDesign of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of orga…

Molecular levelChemistryIntercalation (chemistry)Layered double hydroxidesengineeringInorganic materialsNanotechnologyGeneral Medicineengineering.materialHybrid materialMesoporous materialChemical designChemInform
researchProduct

Exfoliation of Alpha-Germanium: A Covalent Diamond-Like Structure

2021

2D materials have opened a new field in materials science with outstanding scientific and technological impact. A largely explored route for the preparation of 2D materials is the exfoliation of layered crystals with weak forces between their layers. However, its application to covalent crystals remains elusive. Herein, a further step is taken by introducing the exfoliation of germanium, a narrow-bandgap semiconductor presenting a 3D diamond-like structure with strong covalent bonds. Pure α-germanium is exfoliated following a simple one-step procedure assisted by wet ball-milling, allowing gram-scale fabrication of high-quality layers with large lateral dimensions and nanometer thicknesses.…

Materials scienceFabricationGram-scale preparationchemistry.chemical_elementGermaniumNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesAlpha-germanium nanolayersTechnological impactGeneral Materials ScienceBandgap modulationMaterialsbusiness.industryMechanical EngineeringDiamondQuímica021001 nanoscience & nanotechnology2D materialsExfoliation joint0104 chemical sciencesSemiconductorLiquid-phase exfoliationchemistryMechanics of MaterialsCovalent bondengineeringNanometre0210 nano-technologybusiness
researchProduct

Energy Storage: Giant Enhancement in the Supercapacitance of NiFe–Graphene Nanocomposites Induced by a Magnetic Field (Adv. Mater. 28/2019)

2019

SupercapacitorNanocompositeMaterials scienceGraphene nanocompositesMechanics of MaterialsMechanical EngineeringGeneral Materials ScienceNanotechnologyEnergy storageMagnetic fieldAdvanced Materials
researchProduct

Crystallographic and geometrical dependence of water oxidation activity in Co-based layered hydroxides

2022

Cobalt-based layered hydroxides (LHs) stand out as one of the best families of electroactive materials for the alkaline oxygen evolution reaction (OER). However, fundamental aspects such as the influence of the crystalline structure and its connection with the geometry of the catalytic sites remains poorly understood. Thus, to address this we have conducted a thorough experimental and in silico study on the most essential Co-LHs (i.e.: ɑ-LH, β-LH and LDH) which allows us to understand the role of the layered structure and coordination environment of Co atoms on the OER performance. The ɑ-LH, containing both octahedral and tetrahedral sites, behaves as the best OER catalyst in comparison to …

Química
researchProduct

Boosting the supercapacitive behavior of CoAl-layered double hydroxides via tuning the metal composition and interlayer space

2020

Layered double hydroxides (LDHs) are promising supercapacitor materials due to their wide chemical versatility, earth abundant metals and high specific capacitances. Many parameters influencing the supercapacitive performance have been studied such as the chemical composition, the synthetic approaches, and the interlayer anion. However, no systematic studies about the effect of the basal space have been carried out. Here, two-dimensional (2D) CoAl-LDHs were synthesized through anion exchange reactions using surfactant molecules in order to increase the interlayer space (ranging from 7.5 to 32.0 Å). These compounds exhibit similar size and dimensions but different basal space to explore excl…

Materials scienceBoosting (machine learning)Energy Engineering and Power Technology02 engineering and technologyengineering.material010402 general chemistrySpace (mathematics)01 natural sciencesEnergy storageMetalElectrochemistryCoalElectrical and Electronic EngineeringMaterialsSupercapacitorIon exchangebusiness.industryLayered double hydroxides021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringvisual_artengineeringvisual_art.visual_art_mediumEnergia0210 nano-technologybusiness
researchProduct

Quantifying the Covalent Functionalization of Black Phosphorus

2020

Abstract A straightforward quantification method to consistently determine the overall functionalization degree of covalently modified two‐dimensional (2D) black phosphorus (BP) by Raman spectroscopy has been carried out. Indeed, the successful reductive methylation of the BP lattice using sodium intercalation compounds and exhibiting different functionalization degrees has been demonstrated by 31P‐magic angle spinning (MAS) NMR spectroscopy. Furthermore, the correlation of 31P‐MAS NMR spectroscopy and statistical Raman spectroscopy (SRS) revealed the first method to determine the functionalization degree of BP solely by evaluating the intensities of distinct peaks in the Raman spectra of t…

Intercalation (chemistry)reduction010402 general chemistry01 natural sciencesCatalysisBlack phosphoruslaw.inventionCovalent functionalizationsymbols.namesakelawMaterialsResearch Articles010405 organic chemistryGrapheneChemistryGeneral ChemistryNuclear magnetic resonance spectroscopy3. Good health0104 chemical sciencesEspectroscòpia Ramancovalent functionalizationCovalent bondBlack PhosphorusRaman spectroscopyddc:540symbolsSurface modificationPhysical chemistryRaman spectroscopyResearch Article31P-MAS NMR spectroscopy
researchProduct

CVD synthesis of carbon spheres using NiFe-LDHs as catalytic precursors: structural, electrochemical and magnetoresistive properties

2016

The gram-scale synthesis of carbon spheres with a diameter of ca. 740 nm has been achieved by means of a chemical vapour deposition method using NiFe-layered double hydroxides as a solid catalytic precursor. The presence of the catalyst (FeNi3) allows controlling the final size distribution, resulting in a monodisperse sample. Their structural properties exhibited a high degree of graphitization according to their ID/IG ratio. In addition, their morphological features were unveiled by FIB-SEM and HRTEM, showing that they are formed by solid inner cores, and presenting labile chain-like structures due to accretion procedures. The solution and posterior sonication of the samples in toluene ga…

Materials scienceMagnetoresistanceDispersitychemistry.chemical_elementNanotechnology-02 engineering and technologyChemical vapor deposition010402 general chemistryElectrochemistry01 natural sciencesRedoxCatalysisMaterials ChemistryHigh-resolution transmission electron microscopyMaterialsGeneral ChemistryNaturwissenschaftliche Fakultät021001 nanoscience & nanotechnology0104 chemical sciencesElectroquímicaChemical engineeringchemistryddc:5400210 nano-technologyCarbonJournal of Materials Chemistry C
researchProduct

Phonon properties and photo-thermal oxidation of micromechanically exfoliated antimonene nanosheets

2020

Abstract Two-dimensional (2D) sheets of antimonene have attracted increasing attention due to their unique physical and chemical properties prompting potential for diverse applications. We present a facile method to prepare high-quality antimonene nanosheets (ANSs) by micromechanical exfoliation on SiO2/Si substrate. The temperature- and laser power-dependent Raman studies of exfoliated ANSs are reported and analyzed. It was found that both the out-of-plane A1g and the in-plane Eg modes red-shift linearly with increase in temperature, pointing towards anharmonic vibrations of the lattice. The thermal response of the ANSs on a SiO2/Si surface is also described using numerical simulation of t…

Thermal oxidationMaterials sciencePhononMechanical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesEspectroscòpia Ramansymbols.namesakeChemical engineeringMechanics of MaterialsHeat transfersymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyMaterials2D Materials
researchProduct

Influence of crystallographic structure and metal vacancies on the oxygen evolution reaction performance of Ni-based layered hydroxides

2023

Nickel-based layered hydroxides (LHs) are a family of efficient electrocatalysts for the alkaline oxygen evolution reaction (OER). Nevertheless, fundamental aspects such as the influence of the crystalline structure and the role of lattice distortion of the catalytic sites remain poorly understood and typically muddled. Herein, we carried out a comprehensive investigation on ɑ-LH, β-LH and LDH phases, analysing the role exerted by Ni-vacancies by means of structural, spectroscopical, in-silico and electrochemical studies. Indeed, density functional theory (DFT) calculations, in agreement with X-ray absorption spectroscopy (XAS), confirm that the presence of Ni-vacancies produces acute disto…

Química
researchProduct

Cover Feature: Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides (Chem. Eur. J. 29/2020)

2020

ChemistryOrganic ChemistryLayered double hydroxidesOxygen evolutionGeneral Chemistryengineering.materialElectrocatalystSilaneCatalysischemistry.chemical_compoundChemical engineeringFeature (computer vision)Covalent bondengineeringSurface modificationCover (algebra)Chemistry – A European Journal
researchProduct

Covalent and non-covalent chemistry of 2D black phosphorus

2021

The post-graphene era is undoubtedly marked by two-dimensional (2D) sheet polymers, such as black phosphorus (BP). This emerging material has a fascinating structure and outstanding electronic properties and has been postulated for a plethora of applications. The need to circumvent the pronounced oxophilicity of P atoms has dominated the research on this material in recent years, with the objective of finding the most effective method to improve its environmental stability. When it comes to chemical functionalization, the few approaches reported so far involve some drawbacks such as low degree of addition and low production ability. This review presents the concepts and strategies of our st…

ChemistryGeneral Chemical EngineeringNon covalentNanotechnology02 engineering and technologyGeneral ChemistryQuímica010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBlack phosphorus0104 chemical sciencesCharacterization (materials science)ChemistryCovalent bondChemical functionalizationOxophilicityBasal plane0210 nano-technologyMaterialsElectronic propertiesddc:547
researchProduct

A photoresponsive graphene oxide-C60 conjugate.

2014

An all-carbon donor-acceptor hybrid combining graphene oxide (GO) and C60 has been prepared. Laser flash photolysis measurements revealed the occurrence of photoinduced electron transfer from the GO electron donor to the C60 electron acceptor in the conjugate

OxideGraphene oxide (GO)Financial systemPhotoresponsivePhotochemistryCatalysislaw.inventionchemistry.chemical_compoundQUIMICA ORGANICAlawQUIMICA ANALITICAMaterials ChemistryGraphene oxideGrapheneMetals and AlloysQuímicaGeneral ChemistryPhotoinduced electron transferSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCobalt 60chemistryCeramics and CompositesChristian ministryBusinessChemical communications (Cambridge, England)
researchProduct

Layered double hydroxide nanocomposites based on carbon nanoforms

2020

Abstract Carbon nanoform (CNF)/layered double hydroxide (LDH) nanocomposites have been widely studied in recent years thanks to the combination of properties of both LDH and carbon nanomaterials. They exhibit improved or unexpected properties as a consequence of their hierarchical structures. There are three main reported approaches to prepare the nanocomposites: reassembly of nanocarbons and LDHs, direct formation of LDHs on nanocarbon materials, and the direct synthesis of nanocarbons on the LDH phase. The resulting CNF/LDH nanocomposites exhibit improved conductivity, mechanical properties, and redox reactivity; moreover, the hybridization confers hierarchical porosities and better dispe…

SupercapacitorMaterials scienceNanocompositechemistry.chemical_elementNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryWater splittingHydroxideReactivity (chemistry)0210 nano-technologyDispersion (chemistry)Carbon
researchProduct

Two-dimensional magnetic behaviour in hybrid NiFe-layered double hydroxides by molecular engineering

2023

Layered double hydroxides (LDHs) are a class of two-dimensional (2D) anionic materials that exhibit remarkable chemical versatility, making them ideal building blocks in the design of complex multifunctional materials. In this line, a NiFe-LDH is probably one of the most important LDHs due to its interesting electrochemical and magnetic properties. However, no direct magnetic measurements of exfoliated NiFe-LDH nanosheets have been reported so far. Herein, we synthesize a hybrid NiFe-LDH family through anion exchange reactions using surfactant molecules in order to increase the interlayer space (ranging from 8 to 31.6 Å), minimizing the interlayer dipolar interactions. By intercalation with…

Inorganic ChemistryQuímicaDalton Transactions
researchProduct

Deciphering the Role of Dipolar Interactions in Magnetic Layered Double Hydroxides

2018

Layered double hydroxides (LDHs) exhibit unparalleled anion exchange properties and the ability to be exfoliated into 2D nanosheets, which can be used as a building block to fabricate a wide variety of hybrid functional nanostructured materials. Still, if one wants to use LDHs as a magnetic building blocks in the design of complex architectures, the role played by the dipolar magnetic interactions in these layered materials needs to be understood. In this work, we synthesized and characterized a five-membered CoAl-LDH series with basal spacing ranging from 7.5 to 34 Å. A detailed experimental characterization allows us to conclude that the main factor governing the dipolar interactions betw…

ChemistryNanostructured materialsUNESCO::QUÍMICALayered double hydroxides02 engineering and technologyengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesCharacterization (materials science)Hybrid functionalInorganic ChemistryDipoleChemical physicsengineeringPhysical and Theoretical Chemistry0210 nano-technologySpin-½
researchProduct

Back Cover: Electrical Conductivity and Strong Luminescence in Copper Iodide Double Chains with Isonicotinato Derivatives (Chem. Eur. J. 48/2015)

2015

Electrical resistivity and conductivityChemistryOrganic ChemistryInorganic chemistryCover (algebra)General ChemistryLuminescenceCatalysisCopper iodideChemistry - A European Journal
researchProduct

Intercalation of cobalt(II)-tetraphenylporphine tetrasulfonate complex in magnetic NiFe-layered double hydroxide

2013

Abstract Hybrid magnetic multilayers have been synthesized by means of intercalation of [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato]cobalt(II) (CoTPPS) complex in the interlayer space of a Ni II Fe III layered double hydroxide (LDH), through anion-exchange reaction. A sebacate ( − OOC–(CH 2 ) 8 –COO − ) intercalated NiFe-LDH have been used as precursor, facilitating the anion exchange reaction, thus permitting the inclusion of a paramagnetic macrocycle inside the ferrimagnetic NiFe-LDH layers. The material has been characterized by XRD, FT-IR, SEM, SQUID and ESR. The T c for the hybrid NiFe–CoTPPS, ca. 11–12 K, is very close to that shown by the precursor, despite that the intercala…

Ion exchangeInorganic chemistryIntercalation (chemistry)chemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionInorganic ChemistrySQUIDCrystallographychemistry.chemical_compoundParamagnetismchemistrylawFerrimagnetismMaterials ChemistryHydroxidePhysical and Theoretical Chemistry0210 nano-technologyCobaltPolyhedron
researchProduct

Gitteröffnung durch reduktive kovalente Volumen‐Funktionalisierung von schwarzem Phosphor

2019

Eine chemisch-reduktive Volumen-Funktionalisierung von dünnlagigem schwarzem Phosphor (BP) gelang unter Verwendung von BP-Interkalationsverbindungen. Durch eine effektive reduktive Aktivierung wurde die kovalente Funktionalisierung des geladenen BP mit Alkylhalogeniden erzielt, wobei eine Öffnung des BP-Gitters und ein höherer Funktionalisierungsgrad als bei neutralen Reaktionsrouten resultieren.

Materials science010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets

2020

Abstract Antimonene, a monolayer of β-antimony, is increasingly attracting considerable attention, more than that of other monoelemental two-dimensional materials, due to its intriguing physical and chemical properties. Under ambient conditions, antimonene exhibits a high thermodynamic stability and good structural integrity. Some theoretical calculations predicted that antimonene would have a high oxidation tendency. However, it remains poorly investigated from the experimental point of view. In this work, we study the oxidation behavior of antimonene nanosheets (ANS) prepared by ultrasonication-assisted liquid-phase exfoliation. Using a set of forefront analytical techniques, a clear effe…

AntimonyMaterials scienceBand gapAnnealing (metallurgy)SonicationLiquid phasechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesAntimonyX-ray photoelectron spectroscopyChemical AnalysisNanosheetsMonolayerGeneral Materials ScienceUltraviolet Photoelectron SpectroscopyMaterialsMechanical EngineeringFísicaGeneral ChemistryQuímica021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesChemical engineeringchemistryMechanics of Materialsddc:540Chemical stability0210 nano-technologySurface Chemistry
researchProduct

Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II) Coordination Polymer and NiAl-Layered Double Hydroxides

2015

The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH) nanosheets and a 1D-coordination polymer (1D-CP) has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized demonstrating that the 1D-CP moieties are intercalated as well as adsorbed on the surface of the LDH, giving rise to a layered assembly with the coexistence of the functionalities of their initial constituents. This hybrid represents the first example of the assembly of 1D/2D nanomaterials combining LDH with CP and opens the door for a plethora…

Materials sciencePolymers and PlasticsCoordination polymerLayered double hydroxidesOrganic chemistryNanotechnology02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesArticleNanomaterialslcsh:QD241-441chemistry.chemical_compoundQD241-441lcsh:Organic chemistryMagnetic propertieshybrid materialslayered compoundshybrid materials; layered double hydroxides; coordination polymers; magnetic properties; layered compoundsLayered double hydroxidesGeneral ChemistryQuímica021001 nanoscience & nanotechnologylayered double hydroxidesExfoliation joint0104 chemical sciences3. Good healthCoordination polymerscoordination polymersLayered compoundschemistryHybrid systemengineeringHydroxideSelf-assemblyHybrid materialsmagnetic properties0210 nano-technologyHybrid materialPolymers
researchProduct

Continuous‐Flow Synthesis of High‐Quality Few‐Layer Antimonene Hexagons

2021

2D materials show outstanding properties that can bring many applications in different technological fields. However, their uses are still limited by production methods. In this context, antimonene is recently suggested as a new 2D material to fabricate different (opto)electronic devices, among other potential applications. This work focuses on optimizing the synthetic parameters to produce high-quality antimonene hexagons and their implementation in a large-scale manufacturing procedure. By means of a continuous-flow synthesis, few-layer antimonene hexagons with ultra-large lateral dimensions (up to several microns) and a few nanometers thick are isolated. The suitable chemical post-treatm…

Materials sciencebusiness.industryContinuous flow02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsQuality (physics)ElectrochemistryOptoelectronics0210 nano-technologybusinessLayer (electronics)Colloidal synthesisAdvanced Functional Materials
researchProduct

Liquid phase exfoliation of carbonate-intercalated layered double hydroxides.

2019

Direct exfoliation of a carbonate layered double hydroxide (LDH) has been achieved by using a novel horn-probe sonic tip, avoiding the development of time-consuming anion-exchange reactions. The most suitable solvents were chosen based on the Hildebrand solubility parameters and the thickness of the exfoliated nanosheets confirmed unambiguously the successful delamination.

Materials scienceLiquid phaseengineering.material010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials Chemistry010405 organic chemistryDelaminationMetals and AlloysLayered double hydroxidesGeneral ChemistryQuímicaExfoliation joint0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsHildebrand solubility parameterchemistryChemical engineeringCeramics and CompositesengineeringHydroxideCarbonateChemical communications (Cambridge, England)
researchProduct

Room temperature synthesis of two-dimensional multilayer magnets based on α-CoII layered hydroxides

2022

Research on two-dimensional (2D) materials is one of the most active fields in materials science and nanotechnology. Among the members of the 2D family, layered hydroxides (LHs) represent an exceptional case of study due to their unparalleled chemical versatility which allows the modulation of their physicochemical properties at will. Nowadays, LHs based on earth-abundant metals are key materials in the areas of energy storage and conversion, hybrid materials or magnetism. ɑ-Co hydroxides (Simonkolleite-like structures) are promising phases with tuneable electronic and magnetic properties by ligand modification. However, even in the simple case of ɑ-CoII hydroxychlorides, the preparation of…

Work (thermodynamics)Materials scienceMagnetismMaterials Science (miscellaneous)Nanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMechanics of MaterialsHomogeneousMagnetChemical Engineering (miscellaneous)Hexagonal crystals0210 nano-technologyHybrid materialDynamic susceptibilityNano Materials Science
researchProduct

Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective

2015

Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorga…

ChemistryIntercalation (chemistry)Layered double hydroxidesNanotechnology02 engineering and technologyGeneral MedicineGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMolecular levelengineeringInorganic materials0210 nano-technologyHybrid materialMesoporous materialChemical designAccounts of Chemical Research
researchProduct

Insights into the formation of metal carbon nanocomposites for energy storage using hybrid NiFe layered double hydroxides as precursors

2020

[EN] NiFe-carbon magnetic nanocomposites prepared using hybrid sebacate intercalated layered double hydroxides (LDHs) as precursors are shown to be of interest as supercapacitors. Here, the low-temperature formation mechanism of these materials has been deciphered by means of a combined study using complementaryin situ(temperature-dependent) techniques. Specifically, studies involving X-ray powder diffraction, thermogravimetry coupled to mass spectrometry (TG-MS), statistical Raman spectroscopy (SRS), aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS) have been carried out. The experimental results confirm the early formation o…

Materials sciencechemistry.chemical_elementNanoparticle02 engineering and technologyengineering.material010402 general chemistry01 natural sciencessymbols.namesakeScanning transmission electron microscopyNanocompositeLayered double hydroxidesGeneral ChemistryQuímicaEnergia Desenvolupament021001 nanoscience & nanotechnology0104 chemical sciencesThermogravimetryChemistrychemistryChemical engineeringengineeringsymbols0210 nano-technologyRaman spectroscopyCarbonPowder diffraction
researchProduct

Cover Feature: Controlling the Formation of Sodium/Black Phosphorus IntercalationCompounds Towards High Sodium Content (8/2021)

2021

ChemistryFeature (computer vision)SodiumX-ray crystallographyContent (measure theory)ElectrochemistryHigh sodiumAnalytical chemistryEnergy Engineering and Power Technologychemistry.chemical_elementCover (algebra)Electrical and Electronic EngineeringBlack phosphorusBatteries & Supercaps
researchProduct

Metal-functionalized covalent organic frameworks as precursors of supercapacitive porous N-doped graphene

2017

Covalent Organic Frameworks (COFs) based on polyimine with several metal ions (FeIII, CoII and NiII) adsorbed into their cavities have shown the ability to generate N-doped porous graphene from their pyrolysis under controlled conditions. These highly corrugated and porous graphene sheets exhibit high values of specific capacitance, which make them useful as electrode materials for supercapacitors.

SupercapacitorMaterials scienceRenewable Energy Sustainability and the EnvironmentMetal ions in aqueous solutionInorganic chemistry02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCapacitance0104 chemical sciencesMetalAdsorptionChemical engineeringCovalent bondvisual_artvisual_art.visual_art_mediumGeneral Materials Sciencecovalent organic frameworks0210 nano-technologyPorosityPyrolysis
researchProduct

Stimuli-responsive hybrid materials: breathing in magnetic layered double hydroxides induced by a thermoresponsive molecule

2014

[EN] A hybrid magnetic multilayer material of micrometric size, with highly crystalline hexagonal crystals consisting of CoAl-LDH ferromagnetic layers intercalated with thermoresponsive 4-(4-anilinophenylazo)benzenesulfonate (AO5) molecules diluted (ratio 9 : 1) with a flexible sodium dodecylsulphate (SDS) surfactant has been obtained. The resulting material exhibits thermochromism attributable to the isomerization between the azo (prevalent at room temperature) and the hydrazone (favoured at higher temperatures) tautomers, leading to a thermomechanical response. In fact, these crystals exhibited thermally induced motion triggering remarkable changes in the crystal morphology and volume. In…

Magnetic couplingsMagnetismLayered double hydroxidesFerromagnetic layersINTERCALATION COMPOUNDengineering.materialThermotropismNI-ALQuantitative Biology::Subcellular ProcessesCondensed Matter::Materials ScienceMETAL-ORGANIC FRAMEWORKSchemistry.chemical_compoundCrystallinityQUIMICA ORGANICANuclear magnetic resonanceCrystal morphologiesPHOTOISOMERIZATIONQUIMICA ANALITICANANOPARTICLESPhysics::Chemical PhysicsAZOBENZENEPhysics::Atmospheric and Oceanic PhysicsThermochromismPRUSSIAN BLUEChemistryMagnetismLayered double hydroxidesFísicaQuímicaGeneral ChemistryMoleculesequipment and suppliesChemistryMagnetic multilayersCrystallographyAzobenzeneFerromagnetismHYDROTALCITEengineeringTHERMAL-EXPANSIONHybrid materialhuman activitiesCOORDINATION POLYMERSChemical Science
researchProduct

Monolayer black phosphorus by sequential wetchemical surface oxidation

2018

We report a straightforward chemical methodology for controlling the thickness of black phosphorus flakes down to the monolayer limit by layer-by-layer oxidation and thinning, using water as solubilizing agent.

Materials sciencePassivationGeneral Chemical EngineeringFOS: Physical sciencesApplied Physics (physics.app-ph)02 engineering and technology010402 general chemistry01 natural scienceschemistry.chemical_compoundDiimideMonolayerChemical Engineering (all)MaterialsChemistry (all)food and beveragesPhysics - Applied PhysicsQuímicaGeneral ChemistryChromophore021001 nanoscience & nanotechnology0104 chemical sciencesChemistrychemistryChemical engineeringIonic liquidddc:540Surface modificationChemistry (all); Chemical Engineering (all)0210 nano-technologyLayer (electronics)Perylene
researchProduct

Hybrid Magnetic Multilayers by Intercalation of Cu(II) Phthalocyanine in LDH Hosts

2012

The intrinsic flexibility of layered double hydroxides (LDHs) has been here exploited to design hybrid multilayered materials by intercalation of the copper phthalocyaninetetrasulfonate (CuPcTs) complex in the interlamellar space offered by these layered hosts through a simple anion-exchange procedure. Taking advantage of their chemical versatility, two different LDHs, the diamagnetic ZnAl and the ferromagnetic NiAl, have been synthesized and characterized to explore the differences in the magnetic properties of the hybrids introduced by the intercalation of the paramagnetic complex.

NialMaterials scienceIntercalation (chemistry)Inorganic chemistrychemistry.chemical_element02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesParamagnetismchemistry.chemical_compoundPhysical and Theoretical Chemistrycomputer.programming_languageLayered double hydroxides021001 nanoscience & nanotechnologyCopper0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyGeneral EnergychemistryFerromagnetismPhthalocyanineengineeringDiamagnetism0210 nano-technologycomputerThe Journal of Physical Chemistry C
researchProduct

The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries

2012

Abstract Mixing of aqueous suspensions of delaminated NiMn layered double hydroxide (LDH) and graphene oxide leads to the instantaneous precipitation of a hybrid material that after calcination under inert atmosphere at 450 °C leads to Ni6MnO8 nanoparticles deposited on larger reconstituted graphene sheets. This material exhibits electrical conductivity similar to graphite, superparamagnetism and can be used as an anode for Li-ion batteries. A maximum capacity value of 1030 mA h g−1 was found during the first discharge, and capacity values higher than 400 mA h g−1 were still achieved after 10 cycles. The methodology used here should allow the preparation of a large variety of hybrid graphen…

Materials scienceGrapheneInorganic chemistryOxidechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistrylawMixed oxideGeneral Materials ScienceCalcinationLithiumGraphite0210 nano-technologyHybrid materialGraphene oxide paperCarbon
researchProduct

Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites.

2012

[EN] Thermal treatment of the hybrid material formed by the spontaneous precipitation of graphene oxide and Ni,Mn layered double hydroxide leads to the segregation of nickel metal nanoparticles (Ni NPs) and the decomposition of graphene to CO2. Increasing the temperature increases the Ni NP size and results in the complete disappearance of graphene.

Materials sciencePrecipitation (chemistry)GrapheneInorganic chemistryMetals and AlloysOxidechemistry.chemical_elementGeneral ChemistryThermal treatmentCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionNickelchemistry.chemical_compoundQUIMICA ORGANICAchemistrylawQUIMICA ANALITICAMaterials ChemistryCeramics and CompositesHydroxideHybrid materialGraphene oxide paperChemical communications (Cambridge, England)
researchProduct

Giant Enhancement in the Supercapacitance of NiFe–Graphene Nanocomposites Induced by a Magnetic Field

2019

The rapid rise in energy demand in the past years has prompted a search for low-cost alternatives for energy storage, supercapacitors being one of the most important devices. It is shown that a dramatic enhancement (≈1100%, from 155 to 1850 F g-1 ) of the specific capacitance of a hybrid stimuli-responsive FeNi3 -graphene electrode material can be achieved when the charge/discharge cycling is performed in the presence of an applied magnetic field of 4000 G. This result is related to an unprecedented magnetic-field-induced metal segregation of the FeNi3 nanoparticles during the cycling, which results in the appearance of small Ni clusters (<5 nm) and, consequently, in an increase in pseudoca…

Materials scienceNanoparticle02 engineering and technology010402 general chemistry7. Clean energy01 natural sciencesCapacitanceEnergy storageMetalGeneral Materials ScienceMaterialsSupercapacitorNanocompositebusiness.industryMechanical Engineering021001 nanoscience & nanotechnology0104 chemical sciencesMagnetic fieldGraphene nanocompositesMechanics of Materialsvisual_artvisual_art.visual_art_mediumOptoelectronicsEnergia0210 nano-technologybusinessAdvanced Materials
researchProduct

Graphene enhances the magnetoresistance of FeNi3nanoparticles in hierarchical FeNi3–graphene nanocomposites

2016

An increase in the giant magnetoresistance of FeNi3 nanoparticles of 20 times has been observed in FeNi3–graphene nanocomposites synthesized using NiFe-layered double hydroxide hybrids as precursors. The magnetic, transport and magneto-transport properties of these nanocomposites are studied and compared with those of the pure FeNi3 nanoparticles. The hierarchical structure and hybrid composition of these magnetic nanocomposites lead to the observation of two unusual magneto-transport properties, namely (i) an enhancement in the low-field magnetoresistance effects, and (ii) a crossover from negative to positive MR upon cooling down the sample.

Materials scienceNanocompositeMagnetoresistanceGrapheneNanoparticleGiant magnetoresistanceNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistryGraphene nanocompositeslawMaterials ChemistryHydroxide0210 nano-technologyJournal of Materials Chemistry C
researchProduct

Inside Back Cover: Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy (Angew. Chem. Int. Ed. 33/2020)

2020

Materials scienceGraphenelawInterface (Java)Cancer therapyNanotechnologyCover (algebra)General ChemistryCatalysislaw.inventionAngewandte Chemie International Edition
researchProduct

Photo-switching in a hybrid material made of magnetic layered double hydroxides intercalated with azobenzene molecules.

2014

Financial support from the EU (Projects HINTS FP7-263104-2 and SpinMol Advanced Grant ERC-2009-AdG-20090325), the Spanish Ministerio de Economia y Competitividad (Projects with FEDER cofinancing MAT 2009-14528-C02-01, MAT2011-22785, MAT2012-38567-C02-01, CTQ-2011-26507, Consolider-Ingenio in Molecular Nanoscience CSD2007-00010, Consolider-Ingenio 2010-Multicat CSD2009-00050, and Severo Ochoa Program SEV-2012-0267), Generalitat Valenciana (PROMETEO and ISIC-Nano programs), and VLC/Campus Microcluster "Functional Nanomaterials and Nanodevices" is gratefully acknowledged. C. M. G. thanks the Spanish MINECO for a Ramon y Cajal Fellowship (RYC-2012-10894). We also acknowledge P. Atienzar and J. …

Materials scienceINTERPLAYPhotoisomerizationIntercalation (chemistry)engineering.materialPhotochemistryCATIONIC AZOBENZENECOEXISTENCEchemistry.chemical_compoundMagnetizationQUIMICA ORGANICAPHOTOISOMERIZATIONGeneral Materials ScienceTEMPERATUREPRUSSIAN BLUEMechanical EngineeringMAGADIITELayered double hydroxideschemistryAzobenzeneMechanics of MaterialsSIMULATIONengineeringORGANIZACION DE EMPRESASHydroxideCHROMOPHORESHybrid materialAMPHIPHILIC AZOBENZENEIsomerizationAdvanced materials (Deerfield Beach, Fla.)
researchProduct

Solvent-Free Synthesis of ZIFs Compatible with Iron: A Route Towards the Elusive Fe(II) Analogue of ZIF-8

2019

Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8, with formula Fe(2-methylimidazolate)2, here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology is extensive to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67 and other unprecedented iron(II) ZIFs, Fe(2-ethylimidazolate)2 and Fe(2-methylbenzimidazolate)2. The different performance of MUV-3 towards NO sorption, compared to ZIF-8, results from th…

Tafel equationchemistry.chemical_compoundMaterials scienceNanocompositeChemical engineeringchemistryChemisorptionImidazolateOxygen evolutionMoleculeSorptionOverpotential
researchProduct

Innenrücktitelbild: Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy (Angew. Chem. 33/2020)

2020

Materials scienceGraphenelawInterface (Java)Cancer therapyNanotechnologyGeneral MedicineGraphitelaw.inventionAngewandte Chemie
researchProduct

Two-Dimensional Antimony Oxide

2020

Two-dimensional (2D) antimony, so-called antimonene, can form antimonene oxide when exposed to air. We present different types of single- and few-layer antimony oxide structures, based on density functional theory (DFT) calculations. Depending on stoichiometry and bonding type, these novel 2D layers have different structural stability and electronic properties, ranging from topological insulators to semiconductors with direct and indirect band gaps between 2.0 and 4.9 eV. We discuss their vibrational properties and Raman spectra for experimental identification of the predicted structures.

Materials scienceOxideGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences01 natural scienceschemistry.chemical_compoundsymbols.namesakeAntimony0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsMaterialsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryFísicaMaterials Science (cond-mat.mtrl-sci)3. Good healthSemiconductorchemistryChemical physicsTopological insulatorsymbolsDirect and indirect band gapsDensity functional theoryAntimony oxidebusinessRaman spectroscopy
researchProduct

Lattice Opening upon Bulk Reductive Covalent Functionalization of Black Phosphorus

2019

The chemical bulk reductive covalent functionalization of thin-layer black phosphorus (BP) using BP intercalation compounds has been developed. Through effective reductive activation, covalent functionalization of the charged BP by reaction with organic alkyl halides is achieved. Functionalization was extensively demonstrated by means of several spectroscopic techniques and DFT calculations; the products showed higher functionalization degrees than those obtained by neutral routes.

Materials scienceIntercalation (chemistry)reductive routeFOS: Physical sciencesHalideApplied Physics (physics.app-ph)010402 general chemistryblack phosphorus01 natural sciences7. Clean energyCatalysisBlack phosphorusCovalent functionalizationsymbols.namesakeLattice (order)MaterialsAlkylchemistry.chemical_classification010405 organic chemistryCommunicationQuímicaPhysics - Applied PhysicsGeneral ChemistryCommunicationsEspectroscòpia Raman0104 chemical sciencesCrystallographycovalent functionalizationchemistryBlack Phosphorusddc:540Raman spectroscopysymbolsSurface modification31P NMR spectroscopyRaman spectroscopy
researchProduct

NOx selective catalytic reduction at high temperatures with mixed oxides derived from layered double hydroxides

2012

[EN] Mixed oxides derived from layered double hydroxides (LDHs) have been investigated as potential catalysts for the NOx removal at high temperatures. The best results were obtained with Co–Al mixed oxides derived from LDHs that are active at 750 ◦C in the presence of oxygen and water. These catalysts could reduce or/and decompose the NOx formed in the dense phase of the FCC regenerator, being deactivated at oxygen concentrations higher than 1.5%. Nevertheless this deactivation is not permanent and they would be regenerated after reduction with hydrogen at 530 ◦C. The influence of the layered double hydroxides (LDHs) preparation method on the catalyst activity was studied, observing that t…

inorganic chemicalsMaterials scienceHydrogenLayered double hydroxidesInorganic chemistrychemistry.chemical_element02 engineering and technologyNOxengineering.material010402 general chemistry01 natural sciences7. Clean energyOxygenCatalysisMixed oxidesINGENIERIA QUIMICACatalysisCrystallinityFCCChemical compositionNOxLayered double hydroxidesSelective catalytic reductionGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistry13. Climate actionengineering0210 nano-technology
researchProduct

Influence of the Interlayer Space on the Water Oxidation Performance in a Family of Surfactant-Intercalated NiFe-Layered Double Hydroxides

2019

Layered double hydroxides (LDHs) are low dimensional materials that act as benchmark catalysts for the oxygen evolution reaction (OER). Many LDH properties affecting the OER have been studied to reach the optimal efficiency but no systematic studies concerning the influence of the interlayer space have been developed. In this context, these materials allow a large tunability in their chemical composition enabling the substitution of the interlayer anion and therefore modifying exclusively the basal space. Here, we synthesize by anion exchange reactions a surfactantintercalated family of NiFe-LDHs with increasing basal spacing ranging from 8.0 to 31.6 Å (one of the largest reported so far fo…

Materials scienceGeneral Chemical EngineeringOxygen evolutionLayered double hydroxides02 engineering and technologyGeneral Chemistryengineering.material010402 general chemistry021001 nanoscience & nanotechnologySpace (mathematics)01 natural sciences0104 chemical sciencesCatalysisPulmonary surfactantChemical engineeringMaterials Chemistryengineering0210 nano-technologyMaterials
researchProduct

The Missing Link in the Magnetism of Hybrid Cobalt Layered Hydroxides: The Odd‐Even Effect of the Organic Spacer

2021

A dramatic change in the magnetic behaviour, which solely depends on the parity of the organic linker molecules, has been found in a family of layered CoII hydroxides covalently functionalized with dicarboxylic molecules. These layered hybrid materials have been synthesized at room temperature using a one-pot procedure through the epoxide route. While hybrids connected by odd alkyl chains exhibit coercive fields (Hc) below ca. 3500 Oe and show spontaneous magnetization at temperatures (TM) below 20 K, hybrids functionalized with even alkyl chains behave as hard magnets with Hc>5500 Oe and display a TM higher than 55 K. This intriguing behaviour was studied by density functional theory with …

Magnetismchemistry.chemical_element010402 general chemistry01 natural sciencesMAGNETISMCatalysis//purl.org/becyt/ford/2.10 [https]MoleculeLAYERED HYDROXIDESMaterialsAlkylchemistry.chemical_classificationHYBRID MATERIALS010405 organic chemistry2D MATERIALSOrganic ChemistryGeneral Chemistryequipment and supplies0104 chemical sciencesCrystallographyDFT SIMULATIONSOctahedronchemistry//purl.org/becyt/ford/2 [https]Density functional theoryHybrid materialCobaltSpontaneous magnetizationhuman activitiesChemistry – A European Journal
researchProduct

Room Temperature Magnetism in Layered Double Hydroxides due to Magnetic Nanoparticles

2013

Some recent reports claiming room temperature spontaneous magnetization in layered double hydroxides (LDHs) have been published; however, the reported materials cause serious concern as to whether this cooperative magnetic behavior comes from extrinsic sources, such as spinel iron oxide nanoparticles. The syntheses of crystalline Fe(3+)-based LDHs with and without impurities have been developed, highlighting the care that must be taken during the synthetic process in order to avoid misidentification of magnetic LDHs.

ChemistryMagnetismSpinelLayered double hydroxidesNanotechnology02 engineering and technologyengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundChemical engineeringImpurityengineeringMagnetic nanoparticlesPhysical and Theoretical Chemistry0210 nano-technologySpontaneous magnetizationIron oxide nanoparticlesInorganic Chemistry
researchProduct

Fundamental Insights into the Covalent Silane Functionalization of NiFe Layered Double Hydroxides

2020

Layered double hydroxides (LDHs) are a class of 2D anionic materials exhibiting wide chemical versatility and promising applications in different fields, ranging from catalysis to energy storage and conversion. However, the covalent chemistry of this kind of 2D materials is still barely explored. Herein, the covalent functionalization with silanes of a magnetic NiFe-LDH is reported. The synthetic route consists of a topochemical approach followed by anion exchange reaction with surfactant molecules prior to covalent functionalization with the (3-aminopropyl)triethoxysilane (APTES) molecules. The functionalized NiFe-APTES was fully characterized by X-ray diffraction, infrared spectroscopy, e…

Thermogravimetric analysisSilanesMaterials compostos010405 organic chemistryOrganic ChemistryLayered double hydroxidesInfrared spectroscopyGeneral Chemistryengineering.material010402 general chemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringCovalent bondTriethoxysilaneengineeringSurface modificationMoleculeMaterials
researchProduct

Cover Feature: Few‐layer Black Phosphorous Catalyzes Radical Additions to Alkenes Faster than Low‐valence Metals (ChemCatChem 8/2020)

2020

Inorganic ChemistryMaterials scienceValence (chemistry)Chemical physicsOrganic ChemistryPhysical and Theoretical ChemistryCatalysisBlack phosphorusChemCatChem
researchProduct

The Role of Covalent Functionalization in the Thermal Stability and Decomposition of Hybrid Layered Hydroxides

2020

The room temperature synthesis of two Co-based hybrid layered hydroxides containing the same organic ligand (suberate [Sub]), one connected through purely electrostatic interactions (CoAl layered double hydroxide [LDH]), and the other covalently functionalized (α-CoII simonkolleite phase) has been carried out. The magnetic properties exhibit an acute difference in the magnetization temperatures (from ≈10 K for the CoAl-LDH to ≈55 K for the α-CoII). Moreover, the role of the covalent functionalization in the thermal stability and the decomposition has been investigated by a forefront characterization tool consisting of thermogravimetric analysis coupled with gas chromatography and mass spect…

Cromatografia de gasosThermogravimetric analysisMaterials scienceMaterials compostos02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMass spectrometry01 natural sciencesDecomposition0104 chemical sciencesCovalent functionalizationChemical engineeringGeneral Materials ScienceThermal stabilityGas chromatography0210 nano-technologyHybrid materialMaterialsphysica status solidi (RRL) – Rapid Research Letters
researchProduct

Carbon Nano-onions: Potassium Intercalation and Reductive Covalent Functionalization

2021

Herein we report the synthesis of covalently functionalized carbon nano-onions (CNOs) via a reductive approach using unprecedented alkali-metal CNO intercalation compounds. For the first time, an in situ Raman study of the controlled intercalation process with potassium has been carried out revealing a Fano resonance in highly doped CNOs. The intercalation was further confirmed by electron energy loss spectroscopy and X-ray diffraction. Moreover, the experimental results have been rationalized with DFT calculations. Covalently functionalized CNO derivatives were synthesized by using phenyl iodide and n-hexyl iodide as electrophiles in model nucleophilic substitution reactions. The functiona…

Thermogravimetric analysisIodideIntercalation (chemistry)02 engineering and technology010402 general chemistryPhotochemistry01 natural sciences7. Clean energyBiochemistryArticleCatalysissymbols.namesakeColloid and Surface ChemistryNucleophilic substitutionchemistry.chemical_classificationElectron energy loss spectroscopytechnology industry and agricultureGeneral Chemistry021001 nanoscience & nanotechnologyEspectroscòpia Raman0104 chemical scienceschemistryCovalent bondsymbolsSurface modificationMaterials nanoestructurats0210 nano-technologyRaman spectroscopyJournal of the American Chemical Society
researchProduct

Magnetic Nanocomposites Formed by FeNi3 Nanoparticles Embedded in Graphene. Application as Supercapacitors

2013

A general family of magnetic nanocomposites formed by FeNi3 ferromagnetic nanoparticles (NPs) embedded in a graphitized carbon matrix is reported. The soft chemical approach used relies on the catalytic effect of the NPs resulting from the thermal decomposition of the layered double hydroxide precursor, which acts as a multilayered nanoreactor enabling the formation of a range of carbon nanoforms (CNFs). This is followed by acid treatment of the as-prepared nanocomposites to isolate the different CNFs formed. These range from carbon nano-onions to graphene depending on the temperature of the thermal decomposition. This synthetic process paves the way for the rational design of metal–carbon …

SupercapacitorNanocompositeMaterials scienceMagnetismGrapheneThermal decompositionNanoparticlechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral ChemistryNanoreactor010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences7. Clean energy0104 chemical scienceslaw.inventionchemistrylawGeneral Materials Science0210 nano-technologyCarbonParticle &amp; Particle Systems Characterization
researchProduct

Organic Field Effect Transistors: Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field…

2020

chemistry.chemical_compoundMaterials sciencePassivationchemistryMechanics of MaterialsMechanical EngineeringSurface modificationField-effect transistorNanotechnologyBlack phosphorusPeryleneAdvanced Materials Interfaces
researchProduct

Interface Molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factor

2019

The Cluster of Excellence funded this work through “Engineering of Advanced Materials” (EAM). The authors acknowledge financial support from the DFG research-training group GRK 1896 at Erlangen University and from the Joint Project Helmholtz-Institute Erlangen Nurnberg (HI-ERN) under Project No. DBF01253, respectively. C.J.B. acknowledges the financial support through the “Aufbruch Bayern” initiative of the state of Bavaria (EnCN and Solar Factory of the Future) and the “Solar Factory of the Future” with the Energy Campus Nurnberg (EnCN). S.L. acknowledges the Real Colegio Complutense in Harvard for a research grant, and to the Spanish Ministerio de Ciencia e Innovacion for a fellowship thr…

Materials scienceEuropean researchLibrary scienceData interpretation02 engineering and technologyAdvanced materials010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences7. Clean energy0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsElectrochemistryExperimental workFill factorChristian ministryDinàmica molecular0210 nano-technologyMaterialsCèl·lules fotoelèctriques
researchProduct

Influence of Fe-clustering on the water oxidation performance of two-dimensional layered double hydroxides

2022

Among the two-dimensional (2D) materials family, layered double hydroxides (LDHs) represent a key member due to their unparalleled chemical versatility. In particular, Fe-based LDHs are distinguished candidates due to their high efficiency as oxygen evolution reaction (OER) electrocatalysts. Herein, we have selected MgFe-based LDH phases as model systems in order to decipher whether Fe-clustering exerts an effect on the OER performance. For that, we have optimized hydrothermal synthesis by using triethanolamine (TEA) as the chelating agent. The magnetic characterisation allows us to identify the Fe-clustering degree by following both magnetic susceptibility as well as magnetization values a…

ElectroquímicaInorganic ChemistryMaterialsDalton Transactions
researchProduct

Improving the onset potential and Tafel slope determination of earth-abundant water oxidation electrocatalysts

2021

To date, a plethora of electrocatalysts for the Oxygen Evolution Reaction (OER) have been proposed. For evaluating their electrocatalytic behavior the determination of the onset potential in each studied electrolyte is a key parameter. Nevertheless, this evaluation becomes particularly problematic for first- transition metal catalysts as well as by the use of electroactive collectors ( e.g. Ni foams) whose redox peaks overlap the onset potential. A usual solution to detect the onset potential requires the availabil- ity of in-situ mass spectrometric determination of the generated oxygen. In this work, we present fast and easier available cyclic voltammetry and coulovoltammetric responses to…

Prussian blueTafel equationMaterials scienceUNESCO::QUÍMICAGeneral Chemical EngineeringInorganic chemistryOxygen evolution02 engineering and technologyElectrolyte010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesRedox:QUÍMICA [UNESCO]0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryElectrochemistryoxidation electrocatalystsHydroxideCyclic voltammetry0210 nano-technology
researchProduct

Influence of morphology in the magnetic properties of layered double hydroxides

2018

We report the controlled synthesis of magnetic CoAl and NiFe layered double hydroxides (LDHs) endowed with well-defined morphology (hexagonal and flower-like shapes) by means of modified homogeneous precipitation. These layered magnets display high crystallinity and micrometric size, thus offering a perfect scenario for the elucidation of the role exerted by distortion of the layers in their magnetic behaviour. The magnetic properties have been investigated by means of DC and AC magnetic susceptibility measurements and isothermal magnetization, demonstrating that the distortion of the nanosheets induces a magnetically more disordered behaviour, with marked spin-glass nature, independently o…

Morphology (linguistics)Materials scienceCondensed matter physicsLayered double hydroxides02 engineering and technologyGeneral Chemistryengineering.materialequipment and supplies010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibility0104 chemical sciencesCrystallinityMagnetDistortionMaterials ChemistryengineeringAntiferromagnetism0210 nano-technologyhuman activitiesSpontaneous magnetizationJournal of Materials Chemistry C
researchProduct

A chemical and electrochemical multivalent memory made from FeNi3-graphene nanocomposites

2014

FeNi3-graphene nanocomposites present in acetonitrile solutions a redox couple with an electrochemical hysteresis of 2.4 V between the oxidation and the reduction maxima. In view of the high energy required for the reverse transitions, they are here proposed as chemical multilevel memories: permanent, after drying, or erasable in electrolytes, respectively. Keywords: FeNi3-graphene nanocomposites, Voltammetry, Coulovoltammetry, Redox couple, Redox hysteresis

Redox hysteresisHigh energyMaterials scienceInorganic chemistryRedox coupleFeNi3-graphene nanocompositesElectrolyteElectrochemistryRedoxlcsh:ChemistryHysteresischemistry.chemical_compoundlcsh:Industrial electrochemistrylcsh:QD1-999Graphene nanocompositeschemistryChemical engineeringCoulovoltammetryElectrochemistryVoltammetryAcetonitrileVoltammetrylcsh:TP250-261Electrochemistry Communications
researchProduct

Hexagonal nanosheets from the exfoliation of Ni2+-Fe3+ LDHs: a route towards layered multifunctional materials

2010

Here we report the synthesis of a crystalline micrometric-sized hexagonal-shaped Ni2+-Fe3+ LDH by following a modified homogeneous precipitation method. The exfoliation of the material in formamide leads to stable suspensions of hexagonal nanometric sheets, which have been extensively characterized. Our data confirm that the intrinsic properties of the bulk material are retained by these segregated nanosheets, thus opening the door for their use in the development of layered multifunctional materials.

inorganic chemicalsFormamidechemistry.chemical_compoundHomogeneous precipitationMaterials sciencegenetic structureschemistryHexagonal crystal systemMaterials ChemistryNanotechnologyGeneral ChemistryExfoliation jointJournal of Materials Chemistry
researchProduct

Interface Amorphization of Two‐Dimensional Black Phosphorus upon Treatment with Diazonium Salts

2021

Abstract Two‐dimensional (2D) black phosphorus (BP) represents one of the most appealing 2D materials due to its electronic, optical, and chemical properties. Many strategies have been pursued to face its environmental instability, covalent functionalization being one of the most promising. However, the extremely low functionalization degrees and the limitations in proving the nature of the covalent functionalization still represent challenges in many of these sheet architectures reported to date. Here we shine light on the structural evolution of 2D‐BP upon the addition of electrophilic diazonium salts. We demonstrated the absence of covalent functionalization in both the neutral and the r…

Thermogravimetric analysisred phosphoruschemistry.chemical_element010402 general chemistryPhotochemistryMass spectrometryblack phosphorus01 natural sciencesCatalysislaw.inventionsymbols.namesakeX-ray photoelectron spectroscopylawElectron paramagnetic resonanceMaterialsFull Paper010405 organic chemistryChemistryPhosphorusOrganic ChemistryBalz–Schiemann productGeneral ChemistryQuímicaFull Paperssacrificial catalysts6. Clean waterMaterials Science | Hot Paperamorphization0104 chemical sciencesElectrophilesymbolsSurface modificationRaman spectroscopyddc:547Chemistry – A European Journal
researchProduct

Atomically resolved TEM imaging of covalently functionalised graphene

2022

AbstractCovalent functionalisation can be a powerful lever to tune the properties and processability of graphene. After overcoming the low chemical reactivity of graphene, covalent functionalisation led to the generation of new hybrid materials, applicable in a broad variation of fields. Although the process of functionalising graphene is nowadays firmly established, fundamental aspects of the produced hybrid materials remain to be clarified. Especially the atomically resolved imaging is only scarcely explored. Here we show aberration corrected in situ high resolution TEM imaging of dodecyl functionalised monolayer graphene at atomic resolution after an effective mechanical filtering approa…

MicroscòpiaMechanics of MaterialsMechanical EngineeringGeneral Materials ScienceGeneral ChemistryCondensed Matter Physicsddc:600Materials
researchProduct

Alkoxide-intercalated CoFe-layered double hydroxides as precursors of colloidal nanosheet suspensions: structural, magnetic and electrochemical prope…

2014

Alkoxide-intercalated CoFe-layered double hydroxides (CoFe–LDHs) were synthesized via the non-aqueous methanolic route. According to powder X-ray diffraction and field emission scanning electron microscopy, they exhibit a nanosized plate-like morphology with a basal space of 9.21 A. The hydrolysis of the material in water leads to colloidal suspensions of nanosheets with lateral dimensions of about 20 nm and thicknesses of ca. 4 nm as demonstrated by atomic force microscopy and dynamic light scattering. Atomic resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy confirm the high crystalline quality of the crystals and the proper Co/Fe stoichio…

Materials scienceLayered double hydroxidesAnalytical chemistry02 engineering and technologyGeneral ChemistryCoercivityengineering.material010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMagnetic susceptibility0104 chemical sciencesMagnetizationDynamic light scatteringScanning transmission electron microscopyMaterials ChemistryengineeringCyclic voltammetry0210 nano-technologyNanosheetJ. Mater. Chem. C
researchProduct

Cover Feature: Boosting the Supercapacitive Behavior of CoAl Layered Double Hydroxides via Tuning the Metal Composition and Interlayer Space (Batteri…

2020

SupercapacitorBoosting (machine learning)Materials sciencebusiness.industryLayered double hydroxidesEnergy Engineering and Power Technologyengineering.materialSpace (mathematics)Energy storageMetalChemical engineeringvisual_artElectrochemistryvisual_art.visual_art_mediumengineeringCoalCover (algebra)Electrical and Electronic EngineeringbusinessBatteries & Supercaps
researchProduct

Liquid phase exfoliation of antimonene: systematic optimization, characterization and electrocatalytic properties

2019

Antimonene, a novel group 15 two-dimensional material, is attracting great attention due to its outstanding physical and chemical properties. Despite its thermodynamic stability, the pronounced covalent character of the interlayer interactions imposes severe limitations on its exfoliation into mono- and few-layer. Here, we develop a systematic study of liquid phase exfoliation (LPE) with the aim to optimize antimonene production in terms of concentration and dimensional anisotropy, investigating the most relevant experimental factors affecting the exfoliation: pre-processing of pristine antimony, solvent selection based on Hansen solubility parameters and ultrasound conditions. Moreover, ex…

Materials scienceRenewable Energy Sustainability and the Environment02 engineering and technologyGeneral ChemistryQuímicaCiència dels materials021001 nanoscience & nanotechnologyExfoliation jointCatalysisCharacterization (materials science)Hildebrand solubility parametersymbols.namesakeLiquid-phase exfoliationX-ray photoelectron spectroscopyChemical engineeringAntimoneneYield (chemistry)symbolsGeneral Materials ScienceChemical stability0210 nano-technologyRaman spectroscopy
researchProduct

Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids

2021

Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1–5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather …

UNESCO::QUÍMICAInorganic chemistryAlkylation010402 general chemistry:QUÍMICA [UNESCO]01 natural sciencesArticleIonCatalysisAcid catalysischemistry.chemical_compoundFriedel−Crafts reactionMicroemulsionLewis acids and basesFriedel-Crafts reactionQD1-999Alkanechemistry.chemical_classification010405 organic chemistryWater microdropletsAlkane microemulsionsIonic liquids3. Good health0104 chemical sciencesAcid catalysisChemistrychemistryIonic liquidddc:547JACS Au
researchProduct

Layered double hydroxide (LDH)–organic hybrids as precursors for low-temperature chemical synthesis of carbon nanoforms

2012

A low-temperature route for the chemical synthesis of diverse carbon nanoforms, including nano-onions and multi-walled nanotubes, is described. The method involves thermal decomposition of a sebacate-intercalated NiFe LDH at 400 °C and benefits from the catalytic activity of FeNi3 nanoparticles generated in situ.

In situChemistryInorganic chemistryThermal decompositionNanoparticlechemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesChemical synthesis0104 chemical sciencesCatalysischemistry.chemical_compoundHydroxide0210 nano-technologyCarbonChemical Science
researchProduct

Small-pore driven high capacitance in a hierarchical carbon via carbonization of Ni-MOF-74 at low temperatures

2016

A hierarchical porous carbon prepared via direct carbonization of Ni-MOF-74 loaded with furfuryl alcohol at 450 °C displays high specific capacitance in comparison with other MOF-derived carbons as a result of the formation of micropores smaller than 1 nm.

Materials sciencechemistry.chemical_element-02 engineering and technology010402 general chemistry01 natural sciencesCapacitanceCatalysisFurfuryl alcoholchemistry.chemical_compoundMaterials ChemistryHierarchical porousCarbonizationMetals and AlloysHigh capacitanceGeneral ChemistryNaturwissenschaftliche Fakultät021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringddc:540Ceramics and Composites0210 nano-technologyCarbonChemical Communications
researchProduct

Mechanical cleaning of graphene using in situ electron microscopy

2020

Avoiding and removing surface contamination is a crucial task when handling specimens in any scientific experiment. This is especially true for two-dimensional materials such as graphene, which are extraordinarily affected by contamination due to their large surface area. While many efforts have been made to reduce and remove contamination from such surfaces, the issue is far from resolved. Here we report on an in situ mechanical cleaning method that enables the site-specific removal of contamination from both sides of two dimensional membranes down to atomic-scale cleanliness. Further, mechanisms of re-contamination are discussed, finding surface-diffusion to be the major factor for contam…

Materials scienceScienceGeneral Physics and AstronomyNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionlawlcsh:ScienceMaterialsMultidisciplinaryGrapheneQGeneral ChemistryContamination021001 nanoscience & nanotechnologyNanocrystalline material0104 chemical sciencesMembranelcsh:QHandling specimensElectron microscope0210 nano-technologyMechanical and structural properties and devicesLayer (electronics)In situ electron microscopyNature Communications
researchProduct

Halide-Mediated Modification of Magnetism and Electronic Structure of α-Co(II) Hydroxides: Synthesis, Characterization, and DFT+U Simulations.

2019

The present study introduces a comprehensive exploration in terms of physicochemical characterization and calculations based on density functional theory with Hubbard's correction (DFT+U) of the whole family of α-Co(II) hydroxyhalide (F, Cl, Br, I). These samples were synthesized at room temperature by employing a one-pot approach based on the epoxide route. A thorough characterization (powder X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis/mass spectroscopy, and magnetic and conductivity measurements) corroborated by simulation is presented that analyzes the structural, magnetic, and electronic aspects. Beyond the inherent tendency of intercalated anions to …

010405 organic chemistryMagnetismepoxide routechemistry.chemical_elementHalideElectronic structure010402 general chemistrycobalt01 natural sciences0104 chemical sciencesCharacterization (materials science)//purl.org/becyt/ford/1 [https]Inorganic Chemistrychemistrymagnetism//purl.org/becyt/ford/1.4 [https]Physical chemistryDensity functional theoryPhysical and Theoretical Chemistrylayered hydroxidesCobaltFisicoquímicaInorganic chemistry
researchProduct

Layered gadolinium hydroxides for low-temperature magnetic cooling

2015

Layered gadolinium hydroxides have revealed to be excellent candidates for cryogenic magnetic refrigeration. These materials behave as pure 2D magnetic systems with a Heisenberg-Ising critical crossover, induced by dipolar interactions. This 2D character and the possibility offered by these materials to be delaminated open the possibility of rapid heat dissipation upon substrate deposition.

Materials scienceGadoliniumMetals and Alloyschemistry.chemical_elementNanotechnologyGeneral ChemistrySubstrate (electronics)Thermal management of electronic devices and systems7. Clean energyCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsChemistryDipoleChemical engineeringchemistryMaterials ChemistryCeramics and CompositesMagnetic refrigerationDeposition (phase transition)Chemical Communications
researchProduct

Solvent-free synthesis of ZIFs: a route toward the elusive Fe(II) analogue of ZIF-8

2019

Herein we report the synthesis of an elusive metal-organic framework, the iron(II) analogue of ZIF-8 with the formula Fe(2-methylimidazolate) , here denoted as MUV-3. The preparation of this highly interesting porous material, inaccessible by common synthetic procedures, occurs in a solvent-free reaction upon addition of an easily detachable template molecule, yielding single crystals of MUV-3. This methodology can be extended to other metals and imidazolate derivatives, allowing the preparation of ZIF-8, ZIF-67, and the unprecedented iron(II) ZIFs Fe(2-ethylimidazolate) and Fe(2-methylbenzimidazolate) . The different performance of MUV-3 toward NO sorption, in comparison to ZIF-8, results …

Zeolitic imidazolate frameworksStorage02 engineering and technologyOverpotential010402 general chemistryMetal-Organic frameworks01 natural sciencesBiochemistryCatalysischemistry.chemical_compoundColloid and Surface ChemistryImidazolateMaterialsThermal-StabilityTafel equationNanocompositeChemistryOxygen evolutionElectrocatalystsGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesChemisorptionPhysical chemistryMetal-organic frameworkAdsorptionCristalls0210 nano-technologyOxygen evolutionZeolitic imidazolate framework
researchProduct

Cover Feature: The Missing Link in the Magnetism of Hybrid Cobalt Layered Hydroxides: The Odd–Even Effect of the Organic Spacer (Chem. Eur. J. 3/2021)

2020

chemistryFeature (computer vision)Chemical physicsMagnetismOrganic Chemistrychemistry.chemical_elementCover (algebra)General ChemistryLink (geometry)Hybrid materialCobaltCatalysisChemistry – A European Journal
researchProduct

Controlling the Formation of Sodium/Black Phosphorus IntercalationCompounds Towards High Sodium Content

2021

The solid-state synthesis of pure sodium-black phosphorus intercalation compounds (Na-BPICs) has been optimized in bulk for two stoichiometric ratios. Specifically, in-situ X-Ray diffraction (XRD) allowed the precise identification of the optimal temperature range for the formation of Na-BPICs: 94°C–96°C. Moreover, as the undesired formation of Na3P takes place at this very same range, we succeeded in introducing a new synthetic route based on a fast-thermal ball milling implementation that results in the bulk production of BPIC without Na3P in 9 out of 10 cases. Finally, by combining XRD, Raman spectroscopy, and DFT calculations we developed a new structural model for Na-based BPICs showin…

DiffractionMaterials scienceSodiumIntercalation (chemistry)Energy Engineering and Power Technologychemistry.chemical_element02 engineering and technologyblack phosphorusDFT calculations01 natural sciencessymbols.namesakeElectrochemistryintercalation compoundsElectrical and Electronic EngineeringsodiumBall mill010405 organic chemistryAtmospheric temperature range021001 nanoscience & nanotechnologyX-ray diffraction0104 chemical scienceschemistryChemical engineeringX-ray crystallographysymbols0210 nano-technologyRaman spectroscopyStoichiometryddc:547Batteries &amp; Supercaps
researchProduct

Alkoxide-intercalated NiFe-layered double hydroxides magnetic nanosheets as efficient water oxidation electrocatalysts

2016

Alkoxide-intercalated NiFe-layered double hydroxides were synthesized via the nonaqueous methanolic route. These nanoplatelets exhibit high crystalline quality as demonstrated by atomic resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Moreover, the presence of the alkoxide moieties has been unambiguously demonstrated by means of thermogravimetric analysis coupled to a mass spectrometer. These NiFe-LDHs can be exfoliated in water or organic solvents and processed into homogeneous ultra-thin films (&lt; 3nm thick) with the assistance of O2-plasma. The study of their behaviour as water oxidation electrocatalysts has shown an outstanding perf…

Thermogravimetric analysisMaterials scienceFOS: Physical sciences-02 engineering and technologyOverpotentialengineering.material010402 general chemistryMass spectrometry01 natural sciencesInorganic Chemistrychemistry.chemical_compoundPhysics - Chemical PhysicsScanning transmission electron microscopySpectroscopyChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceTafel equationLayered double hydroxidesMaterials Science (cond-mat.mtrl-sci)Naturwissenschaftliche Fakultät021001 nanoscience & nanotechnology0104 chemical sciencesChemical engineeringchemistryddc:540Alkoxideengineering0210 nano-technologyInorganic Chemistry Frontiers
researchProduct

Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy

2020

The synthesis of a drug delivery platform based on graphene was achieved through a step‐by‐step strategy of selective amine deprotection and functionalization. The multifunctional graphene platform, functionalized with indocyanine green, folic acid, and doxorubicin showed an enhanced anticancer activity. The remarkable targeting capacity for cancer cells in combination with the synergistic effect of drug release and photothermal properties prove the great advantage of a combined chemo‐ and phototherapy based on graphene against cancer, opening the doors to future therapeutic applications of this type of material.

multifunctionalizationCarbon materialsCancer therapyAntineoplastic AgentsNanotechnology[CHIM.THER]Chemical Sciences/Medicinal Chemistry010402 general chemistry01 natural sciencesCatalysislaw.inventionDrug Delivery SystemslawCell Line TumorNeoplasmsmedicineHumanscancerDoxorubicindiazonium saltsCàncerMaterialsComputingMilieux_MISCELLANEOUSgraphite010405 organic chemistryGrapheneChemistryCancerGeneral MedicineGeneral ChemistryPhotothermal therapymedicine.disease0104 chemical sciencesDrug deliveryCancer cellSurface modificationmedicine.drugAngewandte Chemie International Edition
researchProduct

A Straightforward Approach to Multifunctional Graphene

2019

Graphene has been covalently functionalized through a one-pot reductive pathway using graphite intercalation compounds (GICs), in particular KC8 , with three different orthogonally protected derivatives of 4-aminobenzylamine. This novel multifunctional platform exhibits excellent bulk functionalization homogeneity (Hbulk ) and degree of addition while preserving the chemical functionalities of the organic addends through different protecting groups, namely: tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (Cbz) and phthalimide (Pht). We have employed (temperature-dependent) statistical Raman spectroscopy (SRS), X-ray photoelectron spectroscopy (XPS), magic angle spinning solid state 13 C NMR …

Thermogravimetric analysisIntercalation (chemistry)010402 general chemistry01 natural sciencesCatalysislaw.inventionPhthalimidesymbols.namesakechemistry.chemical_compoundX-ray photoelectron spectroscopyCompostos orgànicslawMagic angle spinningMaterialsComputingMilieux_MISCELLANEOUS010405 organic chemistryGraphene[CHIM.ORGA]Chemical Sciences/Organic chemistryOrganic ChemistryGeneral ChemistryCombinatorial chemistry0104 chemical scienceschemistrysymbolsSurface modificationRaman spectroscopy
researchProduct

Quantifizierung der kovalenten Funktionalisierung von schwarzem Phosphor

2020

Es wurde eine direkte Quantifizierungsmethode zur systematischen Bestimmung des Funktionalisierungsgrades von kovalent modifiziertem zweidimensionalem (2D) schwarzen Phosphor (BP) mittels Raman-Spektroskopie durchgeführt. Die erfolgreiche reduktive Methylierung des BP-Gitters mit unterschiedlichen Funktionalisierungsgraden unter Verwendung von Natrium-Interkalationsverbindungen wurde mittels 31P-MAS-Festkörper-NMR-Spektroskopie nachgewiesen. Darüber hinaus ergab die Korrelation von 31P-MAS NMR-Spektroskopie und statistischer Raman-Spektroskopie (SRS) die erste Methode zur Bestimmung des Funktionalisierungsgrades von BP allein durch die Evaluierung der Intensitätsverhältnisse bestimmter Peak…

Materials science010405 organic chemistry02 engineering and technologyGeneral Medicine021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciences
researchProduct

Few-layer Black Phosphorous Catalyzes Radical Additions to Alkenes Faster than Low-valence Metals

2020

Abstract The substitution of catalytic metals by p‐block main elements has a tremendous impact not only in the fundamentals but also in the economic and ecological fingerprint of organic reactions. Here we show that few‐layer black phosphorous (FL‐BP), a recently discovered and now readily available 2D material, catalyzes different radical additions to alkenes with an initial turnover frequency (TOF0) up to two orders of magnitude higher than representative state‐of‐the‐art metal complex catalysts at room temperature. The corresponding electron‐rich BP intercalation compound (BPIC) KP6 shows a nearly twice TOF0 increase with respect to FL‐BP. This increase in catalytic activity respect to t…

P-block catalysisIronIntercalation (chemistry)Inorganic chemistryAlkenes010402 general chemistryblack phosphorus01 natural sciencesCatalysisCatalysislaw.inventionInorganic ChemistryMetalchemistry.chemical_compoundironCatàlisilawPhysical and Theoretical ChemistryMaterialsradical additionValence (chemistry)Full Paperalkenes010405 organic chemistryGraphenep-block catalysisOrganic ChemistryBlack phosphorusFull Papers2D materials0104 chemical sciencesRadical additionchemistryOrganic reactionvisual_artddc:540visual_art.visual_art_mediumOrganic synthesisCarbon monoxideCHEMCATCHEM
researchProduct

Antimonene: a tuneable post-graphene material for advanced applications in optoelectronics, catalysis, energy and biomedicine

2023

The post-graphene era is undoubtedly marked by two-dimensional (2D) materials such as quasi-van der Waals antimonene. This emerging material has a fascinating structure, exhibits a pronounced chemical reactivity (in contrast to graphene), possesses outstanding electronic properties and has been postulated for a plethora of applications. However, chemistry and physics of antimonene remain in their infancy, but fortunately recent discoveries have shed light on its unmatched allotropy and rich chemical reactivity offering a myriad of unprecedented possibilities in terms of fundamental studies and applications. Indeed, antimonene can be considered as one of the most appealing post-graphene 2D m…

Electrònica MaterialsGeneral ChemistryMaterialsChemical Society Reviews
researchProduct

CCDC 1047310: Experimental Crystal Structure Determination

2015

Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-iodo)-(isonicotinic acid)-copper(i)]Experimental 3D Coordinates
researchProduct

CCDC 1899779: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(bis(mu-2-methylbenzimidazolato)-iron)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1825894: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal Systemcatena-(bis(mu-2-methylimidazolato)-iron unknown solvate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1401258: Experimental Crystal Structure Determination

2015

Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131

Space GroupCrystallographyCrystal Systemcatena-[(mu-iodo)-(mu-methyl isonicotinate)-copper]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1047311: Experimental Crystal Structure Determination

2015

Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131

Space GroupCrystallographyCrystal Systemcatena-[(mu-iodo)-(mu-methyl isonicotinate)-copper]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1403318: Experimental Crystal Structure Determination

2015

Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-iodo)-(methyl isonicotinate)-copper(i)]Experimental 3D Coordinates
researchProduct

CCDC 1899778: Experimental Crystal Structure Determination

2019

Related Article: Javier López-Cabrelles, Jorge Romero, Gonzalo Abellán, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Minguez Espallargas|2019|J.Am.Chem.Soc.|141|7173|doi:10.1021/jacs.9b02686

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-2-ethylimidazolato)-iron)Experimental 3D Coordinates
researchProduct

CCDC 1047309: Experimental Crystal Structure Determination

2015

Related Article: Khaled Hassanein, Javier Conesa-Egea, Salome Delgado, Oscar Castillo, Samia Benmansour, José I. Martínez, Gonzalo Abellán, Carlos J. Gómez-García, Félix Zamora, Pilar Amo-Ochoa|2015|Chem.-Eur.J.|21|17282|doi:10.1002/chem.201502131

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[(mu-iodo)-(ethyl isonicotinate)-copper(i)]Cell ParametersExperimental 3D Coordinates
researchProduct